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Abstract

The degree of imbalance forced by deep-convection in a three-dimensional variational analysis scheme (3D-Var) is
examined. Simulated surface precipitation-rates are used with various degree of errors together with different
“ background atmospheric fields covering a range of forcing from summer to explosive weather regimes. Dynamical
imbalances are defined only for the fastest timescales associated to gravity waves and diagnosed according to the
Implicit Normal Mode framework. Local measures of ageostrophic perturbations are also considered over rainy areas.
Slow time-scale perturbations on internal gravitational modes introduced by convection during 3D-Var are also
monitored using temporal evidence of their presence.

It is found that gravity-wave imbalance is introduced early in the minimization process when no balance constraint is
imposed (other than the simple local geostrophic constraint used in the background error statistics). Precipitation
observations localized over a restricted horizontal domain are sufficient to trigger non-negligeable imbalances. A
challenging issue is the introduction of slow time-scale internal modes which significantly differ from those already
present in the background trajectory. Whether these oscillations need to be controlled in some ways in order to ensure
that the variational adjustment of convective forcing leads to slow time-scales within some neighborhood of those of the
background trajectory remains an open question. Traditional normal mode tools as those used in implicit normal mode
initialization (especially for the first two internal vertical modes) can be used for such constraining problems in
principle. For operational applications, the now widely used digital time-filtering approach presumably would need
some extension in order to achieve the same controlling effect on slow time-scales.

1. Introduction

The problem of assimilating surface precipitation in operational data analysis systems is now receiving a
considerable attention among the data assimilation community. Among the various candidate for the analysis
scheme to assimilate such data, the variational approach receives the most intense consideration but more
traditional approaches for such problems, e.g. the nudging method are currently in use at some operational
centers (the Met. Office in England for instance, Jones and MacPherson 1997). A model time-tendency
apf)roach is also under investigation at the Data Assimilation Office (DAO) at NASA (Hou et al. 2000a,b,
2001). The variational approach offers a coherent consideration of error statistics and a direct use of model
operators normally present during a forecast. This approach however is not without serious difficulties at the
present time. At the statistical foundation, we still need to clarify the use of appropriate error distribution for
~modelization and observational contributions. A simple example of this aspect is given in Errico et al.
(2000). The importance of model error contribution, especially at the end of the time assimilation window, in
a 4D-Var assimilation context presumably also reduces the possible impact of crucial (end time) data needed
for improving short-term forecast of precipitation for instance. Many other basic issues like these still need to
be addressed before claiming the superiority of the 4D-Var approach over other approaches like those
mentioned above in the context of short-term precipitation forecast for instance.
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On the other hand, many important and basic properties of the minimization problem and special
characteristics of different convective schemes were isolated and clarified in so called 1D-Var precipitation
assimilation contexts ; Fillion and Errico (1997, hereafter noted FE), Treadon (1997), Fillion and Mahfouf
(2000, hereafter noted FM), Marécal and Mahfouf (2000a,b).

The current state of research on the potential usefulness of the variational apporach for precipitation
assimilation is now mainly focused on 3D and 4D contexts. These contexts require carefully designed
experiments to clearly exhibit and isolate thé source of potential problems that may appear and more
importantly, to optimally assimilate such observations. This paper is dedicated to such an attempt ; i.e.
clarifying the degree of excitation of gravity waves during 3D-Var assimilation of surface precipitation rates.
We deliberately discard unnecessary technical details (that we know from operational experienceE to have a
limited impact) and focus on the desired phenomenon.

The focus .of this study is on the examination of extra-tropical gravity wave forciﬁg within the 3D-Var
analysis step. A special attention could also be placed on global dynamical balance based on a similar
analysis system as the one used here but designed for the whole globe (as the ones used operationally at the
Canadian Meteorological Center CMC in Montréal, Canada, the European Center for Medium range
Weather Forecasts, ECMWF in Reading, England, Météo-France in Toulouse, France, and the National
Center for Environmental Predictions, NCEP in Washington D.C., USA). Results such as those of Lane et al.
(2000) (see also their references) for the tropical regions represent a useful background in order to extend
their analysis to the data assimilation context. We have deliberately separated the research task on the proper
treatment of balance constraint within 3D or 4D-Var in two steps : (1) the diagnosis of imbalance during a
multivariate variational analysis of precipitation data involving moist-convection and (2) incorporation of a
control term within the variational analysis to penalize departures from reasonable balance known a-priori
from theoretical considerations. Considerable work was done by Dr. A. Kasahara and colleagues at
CGD/NCAR during the last two decades on diabatic initialization. Their contribution to the problem of
variational analysis of precipitation data (in a more restrictive way as used here) and combined treatment of
fast gravity-wave noise in the tropics is relevant to our problem (see for instance Kasahara et al. 1996 and the
chain of references on their work in their reference section). There is also the Physical Initialization
procedure, initiated by Dr. T.N. Krishnamurti and colleagues at Florida State University and further
developed by other contributors (see e.g. Krishnamurti et al. 1993). Within this approach (basically nudging),
some research work has been done on the balance issues as reported for instance in Kumar (1990). Related,
potentially interesting research work was done by Drs. G. Browning and H.O. Kreiss on the Bounded
Derivative Initialization theory, and also recently the emergence of their reduced system dynamics for
mesoscale applications (see also Thomas and Browning, 2000 for time-stepping issues related to gravity
waves). It is at the same time obvious that these previous contributions, which have long been discarded in
operational applications, now become very important in order to optimally constrain the analysis step to
assimilate precipitation observations. Although this balance issue is by no mean restricted to the assimilation
of precipitation data (other conventional data raise similar kind of balance considerations), it forces more the
developers of new operational analysis schemes to explicitly consider the influence of moist-physical
‘processes in the analysis step (e.g. moist-convection).

Section 2 describes the forecast model used and the data assimilation procedure. Section 3 describes the
results of the examination of gravity wave imbalance for a summer case and an explosive winter case.
Section 4 gives a summary and conclusions of the study.
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2. The model and data assimilation components

2.1 The model

The model used here is the Mesoscale Adjoint Modeling System (MAMS2) at the National Center for
Atmospheric Research (NCAR) described by Errico et al. (1994) including some modifications mentioned
below. Other useful details about the original model formulation can be found in Anthes et al. (1987). Basic
features are: '

Area: Limited area, primitive equation model prescribed in flux form on an Arakawa B-grid with a
Lambert conformal mapping.

Boundary conditions: Lateral boundary conditions are formulated using a Davies and Turner (1977)
relaxation scheme applied within 5 grid points of the domain’s edge.

Time-scheme: The time scheme is split-explicit following Madala (1981) with an Asselin (1972) time filter.
(r=-pr)

s _pt)
pressure. The same definition of vertical-coordinate is used in the GEM (Global Environmental
Model, Coté et al. 1998) model used operationally at CMC for regional and global weather

forecasting. This has implications for the constructlon of balanced temperature analysis increments
as discussed later.

Vertical-coordinate: o= where p is pressure, p, is the model top at 10 mb, p, is surface

Vertical grid: The wind components (u,v), femperature (T) é.nd mixing-ratio are defined on 16 equally

spaced levels in values of ©. The vertical finite-differencing follows the energy-conserving
formulation of the NCAR Community Climate Model (CCM2; Hack et al. 1993).

Boundary-Layer scheme: Stability-independent bulk formulation following Anthes et al. (1987).
Vertical Diffusion: Stability-dependent following Kiehl et al. (1996).

Horizontal Diffusion: Fourth-order scheme with a time-independent coefficient applied to the wind,
temperature and mixing-ratio except near the lateral boundaries where diffusion is second order.

Dry convective adjustment: Acts only on temperature with no accompanying mixing of moisture.

Ground-Temperature: The prognostic equation for ground-temperature includes radiative effects modeled
identically to those of Anthes et al. (1987), which includes consideration of fractional coverage by
three levels of clouds determined simply as a piece-wise linear function of relative humidity.

Large-scale precipitation: Based on a value of 100% relative humidity. Excess moisture is precipitated after
approximately accounting for increase in temperature and saturation vapor pressure due to
condensation. Values for the specific heat of air and latent heat of evaporation are treated as T-
independent for this calculation. No evaporation of precipitation falling below the level of
condensation is considred.

Moist convection: Relaxed Arakawa-Schubert (RAS) scheme developed by Moorthi and Suarez (1992), plus
a consideration of evaporation of falling precipitation (provided by Moorthi and Suarez) and depth-
dependent relaxation time scales. These time scales range betwen 2. 5 h for deep clouds to 1h for
shallow clouds (here a minimum depth of 100 mb).

2.2 The background fields and simulated data
The background fields used in the expén'ﬁeﬁts reported here were produced from a short-term 6-h forecast
from initialized analyses. Those fields come from ECMWF analyses interpolated from 7 pressure levels

(100, 200, 300, 500, 700, 850, 1000 hPa) to the 16 equally spaced o levels of the 3D-Var/MAMS?2. The
horizontal resolution of ECMWF fields is compatible with a global spherical-harmonic representation with a
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triangular truncation at T42. These fields are produced on a Gaussian grid of 128 x 64 mesh points in the
zonal and meridional direction respectively. The initialization is performed with an adiabatic first-order
implicit normal mode approach (Temperton 1988) and the details of the initialization procedure can be found
in Errico et al. (1994) and references. The deepest three vertical modes are initialized using three iterations of
the first-order Machenhauer’s scheme. The model was run with complete physics at a horizontal resolution
of 50 km. There are 65 x 65 grid points in the north-south and east-west directions respectively, giving a
horizontal domain of approxiinately 3200 Km in both horizontal directions. In order to give various
estimates of the degree of imbalance caused by the adjustment of convection in this multivariate 3D-Var
analysis, a summer case and an explosive winter case were chosen. The summer background fields are valid
at 00 UTC, june 17, 1997. The explosive case is the same one as used by FE and the background fields are
valid at 0600 UTC, 12 february 1982.
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Fig. 1. Mean sea-level pressure for the summer case : 17 june 1997, 00 UTC and explosive winter case :
12 February 1982, 06 UTC. Small circles indicate grid-point locations where the RAS convective scheme
produces surface precipitation. : :

Figure 1 shows the mean sea level pressure of the background fields for both summer and explosive cases. In
addition, the grid points where convective precipitation is producing surface precipitation are shown by small
diamonds (i.e. the RAS scheme is applied to the temperature, specific-humidity and surface pressure of the
background). Also appearing in the ﬁgufes is the disk to be used when Simulating “obsc_ai'ved” surface
‘precipitation-rates. Note the clear delimitation of convective points cl_osé to the boﬁndaries in fig.1 due to the
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absence of convective treatment of grid points within the sponge layer, which is restricted to the five nearest
points from the edge of the domain. ‘

The simulation of “observed” surface precipitation-rate data was done using a random perturbation about the
background precipitation-rate using a 25% amplitude (uniformly distributed). Once again, as in FE and FM,
we do not consider the important aspect for operational assimilation of precipitation data of the so called
“convective/non-convective” discrepancy between the background and observation from remote detection
(satellite or radar inStruments) of surface-precipitation. We recognize that this is definitely one crucial aspect
that needs to be examined in future studies. As opposed to the 1D-Var studies of FE and FM, the present
three-dimensional context forces a realistic use of the horizontal distribution within the observation disk of
the sign of the surface rain-rate innovations, i.e. increase or decrease of precipitation. This information was
given to us by Dr. Mahfouf and Marecal from ECMWF, and was extracted from their tropical 1D-Var
experiments on precipitation assimilation. It is relevant at this point to stress that at the present time, little is
known on the statistics of model and observational errors involved in current satellite or radar estimates of
surface precipitation-rates.

This crucial aspect of the assimilation problem needs further attention in order to avoid improperly forcing
these data into the continuously growing and sensitive data assimilation procedures used at operational NWP
centers. The emphasis is placed in this study on the dynamical balance leaving for future studies in realistic
operational context the question of the impact on short and medium range forecast.

2.3 The 3D-var Scheme

A simple 3D-Var scheme was developed during the course of this study and designed for limited area
models. It is based on many similar assumptions (although less sophisticated) currently in use in major
operational centers but is basically a limited-area version rather than global spatial coverage. It is similar to
the HIRLAM/ALADIN limited-area 3D-Var formulation (Gustafsson et al. 1999).

The simple approach taken here is to consider data away from the lateral boundaries of the domain (i.e.
distant by more than the horizontal correlation scales used in this study, and outside the model relaxation
zone, i.e. 5 gridpoints). The analysis is formulated in terms of analysis increments. The problem of
incorporating the lateral boundary conditions within the analysis step is generally considered at the present
time to be an open question. This aspect, together with the well-posedness of dynamical balance schemes is
simply avoided here in order to focus on the balance characteristics of the precipitation assimilation problem.
This means here that whenever the model is used to compute time-tendencies, constant lateral boundary
conditions are used. | ‘

Analysis increments for a given scalar field £ is represented by its Discrete Fourier-Transform (DFT) :

N,-1N,-1
Em= 2, X Erexp(2mimj/ Ny)expQuinl/ N,),
j=0 1=0

and Inverse Discrete Fourier Transform (IDFT) :

N.—1N, -1 N
1 N g .
&= T > Y &, exp(—2mijm/ N, )exp(-27iln/ Ny).

XY m=0 n=0
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Here, N, = N, = 64 (the dimension of the inside-mesh in Arakawa B grid).

We introduce the vector 8x = (&u, dv, T, &, 5pS)T, i.e. gridpoint analysis increments. If « and v are

the components of the wind vector along the axes of the coordinate system, then the wind images U.and V
are given by

= V=— ;
. tang1/2

m. m ~ sing
Using the Helmholtz decomposition theorem, we have the relations

oL A U

¥ x T Ay

u % | sing; | tang/2 0716 .
m= . [ :l 61 =30° ,¢ is colatitude .

where ¥, ¥ are the streamfunction and velocity potential of the wind field.

From the streamfunction analysis increment Oy, we define a “balanced” mass increment &P as

OoP = f oy

We define a balanced temperature increment 6Tb = VJP , where the matrix V acts on vertical profiles

of 6P. The latter is usually obtained from linear regression of forecast differences for such quantities (e.g.
Derber and Bouttier, 1999, Gauthier et al. 1998). Such a procedure was unavailable to us since no sequential
data assimilation procedure is availble at NCAR. We took advantage here of the fact that the CMC model’s
coordinate is the same as the one used here. There is however a difference between the number of vertical
levels (28 versus 16 for GEM and MAMS?2 resp.) and vertical distribution of levels between the two models
(variable as compared to uniform vertical distribution for GEM and MAMS2 resp.). This is a limiting aspect
of the current study in the sense that this may limit the full transposition of our balance diagnostic results to
operational centers which make use of regressions directly from their analysis system. Similar and
sometimes more sophisticated regression procedures are used to define their balanced components of mass
(this the case for ECMWF for instance). We believe however that although some dynamical balance details
may vary, most of our analysis results to be presented here should transpose reasonably well to current 3D-
Var operational practice and be consideréd useful when precipitation data will (or is) considered. Our
approach is to use the CMC 28-levels regression matrix, noted Vy;, and use interpolation operators between
the two high (H) and low (L) resolution vertical grids (i.e. GEM versus MAMS?2) such that

6Tb = VéP' = HL VH HH 6P (2.2)

Figure 2 shows the result of 3D-Var for a single observation at 500 hPa. The vertical structure of Ty, (solid-

line) indicates that our approach produces reasonable results in terms of known vertical background error
correlations for temperature. Also, the much weaker amplitude of Tu (dashed-line) indicates the proper

behavior of the analysis and reflects simply the smaller error variance ascribed to this analysis variable as
compared to the effective Tb error variance. Note however that our modelling of the vertical correlation of

T

 is not standard (as compared to operational centers using a similar approach) since it uses the Gaussian
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assumption that does not allow negative lobes. This could be another limitation of our study for useful
transposition to operational practice but we believe the impact of this difference on balance diagnostics is
small. The reason for this is twofold : the use of only surface-precipitation data here and the fact that the
convection scheme acts to change the vertical profiles of T and q much more below 700 hPa. The net result
of this is that the vertical correlation of T;; which is relevant during the minimization is its local structure

which is well approximated by the Gaussian assumption.
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Fig. 2. Balanced (solid line) and unbalanced (dashed-line) temperature increments resulting from the
3D-Var assimilation of one single temperature observation at 500 hPa.

Combining the horizontal and vertical transforms above, the unbalanced part of temperature at each
horizontal gridpoints is obtained as '

6T, =6T — 8T, = 6T — fVEy (2.3)

where f'is the local Coriolis parameter value. This transform basically describes an operator B which acts on
temperature and streamfunction increments, leaving the other parts of the state-vector unchanged.

Background-error correlations are assumed to be homogeneous and isotropic in the horizontal. The gridpoint
model used here is a Gaussian function with horizontal correlation scales allowed to vary in the vertical.
Their horizontal spectral representations (spectral densities) follows Yaglom (1987), ch. 4, Daley (1991), ch.
4. This approach is used for all analysis variables which are the streamfunction (), velocity potential (%),
unbalanced temperature (Ty), specific-humidity (q) and surface pressure (ps). The resulting correlations in

Fourier/Vertical physical space are block-diagonal for each analysis variables. This is expressed as
I o -1 -1 - |
Jp= 861 CT 8; 6¢=F D Box; D= diag loy.0,.01,.0,.0,, ] 24,

where F represents a DFT in the horizontal.

A further eigen-decomposition of the vertical matrices for each horizontal waves of the Fourier
representation in the horizontal completely diagonalizes the background term. More precisely, (ignoring the
horizontal mode notation for simplicity), we get : ’ ‘
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Jb—— 5§TC“‘ 65 = —5§T (EAE‘I)‘I 65

1 e e
=205 ®ATET) 6 ——(65 "B (PET )
=-;- Kk ‘where Sk= ARS8

The vertical correlation matrices being real-symmetric, we have ET=E"! and the desired transformation is:

k= AV2ETFDIBSx (25 .

This defines the control vector for the minimization. In pratice, the initial minimization point is chosen to be
the background state and for such cases, during the minimization, we only need to recover the grid-point
analysis increment dx from &K, i.e. we use exp11c1t1y

5x = Lok =BID FIEAYZ 6k (26).

Here, B! simply means obtaining 87}, from (2.2) and then 67 from (2.3). In terms of this control
vector, the full functional to be minimized and its gradient are :

J=4;—-5kT5k+%(H(_L5k))TR-1(H(Lak)),
VJ= 6k + 'ETR Y (H(LSK)).

The adjoint operator L' is just the transpose of the matrix representation of the operator L (as defined in
(2.6)) except for an additional operator following F in order to take account of the change of norm from

complex to real vector representatlons We use the M1IQN3 rmn1m1zat10n code of Gilbert and Lemarechal
(1989).

The observation operator H for precipitation-rates at the surface is defined as in FE where the RAS moist-
convective scheme is used. '

The background error statistics are as follows. The vertical variation of the standard deviations of the error
on the unbalanced part of temperature, i.e. © T, » is specified as in FM but interpolated from the 31 ECMWF

levels to the 16 MAMS levels. There i no horizontal variation of OT; however over our limited-area

analysis domain. The values for 0,0, are obtained from the model coordinate 3D-Var analysis system

operational at CMC since june 14, 2000 via Daley’s partitioning from the wind components (ref. Daley 1991,
sec 5.2.27),i.e. ‘

- 2 . =
Oy =VN1-v* Ly0,; o0, =VL, 0,

No horizontal variation on the analysis domain of these quantities is considered. The parameter V2 is
allowed to vary in the range 0 < V< 0.1, i.e. from purely rotational wind analysis increments to a level of
divergent wind increment similar to innovations typically observed when computed against radiosonde
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network (Hollingsworth and Lénnberg 1986). Values above 0.1 are not considered here but thejr impact on
the covariance structure is discussed in Daley (1985). Although the 3D-Var code developed here has the
flexibility to accomodate vertical variation of horizontal correlation scales for each analysiys‘ variables, we
decided to keep them fixed in our numerical experiments. There are basically two reasons for doing this.
First, no sequential data assimilation cycle was available to us in order to derive such statistics, as in Derber
and Bouttier (1999). We could attempt to model this vertical variation according to ‘what is currently
available at operational centers. However, based on this information, it appears that no 31gmﬁcant variation
is apparent below 500 hPa. In addition, FM showed that most of the vertical adjustment of temperature and
moisture during the adjustment of moist -convection is done in the lower troposphere for the majority of
convective schemes examined. For these two reasons, the followmg fixed horizontal scales were used in the
experiments to be presented in the next section : '

Ly=L, =Ly =L, =150Km.

Finally, the vertical van'atibn of the error standard-deviation for specific-humidity is also jeAxtréc‘ted ’from the
CMC system. Table 1 gives the explicit values used in this study for the vertical variation of the above
statistics where a vertical interpolation was used to bring CMC’s 28 vertical levels to MAMS 16 levels.

Level oy, (m2s2) » Or, (K) o, (g/Kg)
1 3.25x106 0.61 0.87 x 102
2 3.09x10° | 0.65 0.1 x 107"
3 2.71x108 0.68 0.15x 10°1
4 2.31x108 0.64 0.28 x 1071
5 2.02x108 0.63 0.59 x 1071
6 1.81x106 0.63 0.1
7 1.62x106 0.63 | 0.17
] 151x106 0.62 0.24
9 1.48x 106 0.62 ' 0.31
10 144x106 0.61 0.39
11 1.41x106 0.61 1 0.50
12 138x 106 0.66 0.64
13 134x106 0.70 0.83
14 131x108 0.69 1.02
15 130x106 0.73 1.07
16 130x1096 0.80 1.15
Table ]

2.4 Balance diagnostics

We use Temperton’s (1988) Implicit Normal Mode approach (see also Juvanon du Vachat 1986, Bourke and
McGregor 1983) to characterize the imbalance developed during the course of the unconstrained 3D-Var
analysis, i.e. when no explicit balancing term is added to the functional presented previously. This diagnostic
involves the computation of the value BAL for each vertical modes diagnosed. This quantity is defined as

Bz = [[ {@ot+o[@ni+@nk|} aay
D

where the equivalent geopotential depth ® and the time tendencies of wind-images U and V are for a given
vertical mode (ref. Temperton and Roch 1991) among those treated by the diagnostic (ﬁrst three deepest
modes here). The integral is performed over the horizontal analys1s domain. The need to complement this
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diagnostic will be discussed as we proceed with the results in the next section. It is important to stress here
that Machenhauer’s first-order balance condition is well monitored by the BAL quantity and tends towards
zero for each vertical modes if the \balancing‘ scheme converges (Temperton 1988). In addition, ‘as
demonstrated by Errico (1989a,b), the full model (including physical processes) as used here develops a
balance which satisfies accurately this Machenhauer’s condition ; i.e, the balance is basically an adiabatic

one for the deepest gravitational modes. For shallowest (slower) internal gravitational modes,
Machenhauer’s balance (including highest order ones) is less repfesentative of the model’s own balance
where these modes have non-negligeable time-tendencies. Our interest here lies in the diagnostic of
imbalance on the deepest three vertical modes caused by the adjustment of convection during 3D-Var.

The sequence of stéps to compute the BAL quantity, for each vertical modes, is :

1.

10.

Run the adiabatic MAMS2 model for one forward timestep to obtain the coupled
tendencics (8, (p * ), 8,(p *¥),6,(p * T),6,(p*) , where p*= (p, — p;), p, is surface pressure,

Dy aprescribed, x-y independent, top pressure.

Go ‘ﬁ'brn

(6,(p*u),8,(p*V),6,(p* T),6,(p*) to (GU.6V.5,9) ,
where U,V are wind-images as defined above 'ahd(a is an auxiliary variable called pseudo-
geopotential defined as |
o = ]7,,”,(¢+RT_1n L__“L’Q—]
where T, D, are time and space independent p* and T about which the linearization is performed
(to compute the vertical normal modes), ¢ is geopotential obtained from the hydrostatic equation.
Go from (6,U,8V,6,¢) to (6,¢,6,D,6,¢) using the vorticity and divergence operators of the
model in terms of wind-images. ,’
Couple the tendencies(4,{,6,¢) to form the ageostrophié vorticity tendencyd,7, where

2

m 2
= - —V
n=¢ I ®

fo
P

Solve for AD : —m? V2 (AD) +%%(AD) = :lifo(@ n)

Compute (5,0)g: (6:0)g =m’ ®V*(a7) = (AD)

Get (8)¢ : 6,(2)6=6,() B

Compute (6,¥): V2(6¥); =m™> (f AD)

Compute (6;U),(6,7)g, from (6¥)¢. (4 2)s

Compute a value of BAL for each vertical modes as defined above.
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In addition to the BAL value, we introduce a local value giving an indication of mass convergence forced by
the multivariate analysis and related to the balance criteria mentioned above. This value is defined here as

L4B = [| (8,D)? dxdy.
Disk

Since one constraint of the Implicit Normal Mode Initialization approach (INMI, Machenhauer's scheme), is
defined in terms of the vanishing of the time-tendency of the divergence over the model's horizontal domain,
for each vertical mode considered, the value LAB would tend to zero as the INMI scheme is iterated. In
order to avoid the dominance over the rainy area assimilated of the exterior disk contribution to the above
horizontal area integration, the LAB value is introduced. The meaning of LAB will loosely be used as a
Limited-Area Balance but this latter word should be used with great care since it only gives a partial portrait
of the imbalance in a general context. In addition, this LAB value helps to visualize the extent to which the
mass convergence, so important in the triggering and maintenance of moist-convection, evolves locally in
time and can be used to better appreciate its potential effect on convection. In other words, we are
specifically interested here in the temporal evolution of the LAB value for each vertical modes. The time-
tendency of the linearized potential vorticity appearing as an additional component of the full
characterization of the first-order balance condition (stated above) has also been monitored. It was observed
that this component adds nothing new over the temporal behavior of the LAB value and has a very similar
behavior whether in forecast or 3D-Var analysis mode. For this reason, we did not add this contribution in
our local diagnostic. Moreover, the BAL value is a bit restrictive in our context since it sums the contribution
of time-tendencies over the whole model integration domain and (as mentioned above) tends to hide the local
imbalance created during 3D-Var due to the dominance of the ouside disk contribution to the integral
(especially for internal vertical modes). For this reason, we mostly discuss results of our experiments in
terms of the LAB value.

3. Results

31  1D-Var versus 3D-Var

We present a first experiment to give an idea of the difference of results that can be obtained when surface
precipitation data are assimilated point by point ‘as with 1D-Var and the case where all available surface
precipitation data are used in the disk (see Fig. 1, summer case). Figure 3 shows the results of these two
types of variational analysis in terms of the reduction of the norm of the gradient, surface rain-rate at the
center point of the disk, and the resultlng spe01ﬁc-hum1d1ty and temperature analysis mcrements (sohd and
dashed lines respectively).

As is the case in numerous 1D-Var analyses performed in FM for instance, it is eeen that the reduction of the
norm of the gradient is significant (4 orders of magnitudes) and the convergence is fast (3 iterations). On the
other hand, the results from 3D-Var show that the reduction of the norm of the gradient is more difficult
(only one order of magnitude after 20 iterations). It is also interesting to note that due to the overall
interaction with other convective points in the disk(via the 3D background coupling), the surface rain-rate is
decreased during the first two iterations and then gradually increased to match more closely the observed
rain-rate. Also important to note is the significant difference in vertical structure of the analy31s mcrements
for 1D and 3D-Var respectlvely at the center pomt of the disk for T and g- ' '
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" Fig. 3. Results of 1D-Var and 3D-Var an‘alyses using the summer case. For the 1D-Var analysis, only the
rain-rate at'the center of the disk in Fig.I is assimilated. For the 3D-Var analysis, all rain-rate
observations within the disk are being assimilated.

3.2 Summer case

We now turn to the examination of the 3D-Var analyses and especially in terms of gravity waves triggering.

The first case examined is the summer case presented in Fig.1. The results are presented in Fig. 4. First, as
mentloned prev1ously, the reduction of the norm of the gradlent is only one- order of magnitude after 20
iterations. To g1ve a global measure of the adjustment of surface rain-rate, we computed the linear
correlatlon coefﬁelent over the observation disk of the logarithm of the analy51s rain-rate and the observed
rain-rate for each iteration durmg the minimization. It is seen that a gradual adjustment towards observations
is accomplished (not 100% though!) and almost stationary after 10 iterations in spite of the slight but
continued reduction of the norm of the gradient after 10 iterations. In order to give an idea of the rate of
convergence in terms of amplitude of the analysis increments, we show in the third panel on the right, the
euclidean norm of the analysis increments for T and q for each vertical levels over the observation disk for
the first five iterations (not labeled in the ﬁgure).

The grav1ty wave (GW). tnggenng is now discussed. The ﬁrst panel on the left (second hne) shows the
behavior of the LAB value deﬁned prewously for the external vert1ca1 mode. It is worth mentioning how this
was computed practlcally At every iteration of the mlmmlzanon the analys1s increments of mass, wmd
moisture and surface pressure are added to the background state to form the current analy51s fields. These
fields are defined on their respective grids following Arakawa’s B-grid and this is done con51stently during
the minimization. Then, the model is integrated for one forward timestep. The following steps are described
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in the previous section to compute balance diagnostics. Note that this approach is corisistcnt with INMI
approach following Temperton and Roch (1991).
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Fig. 4. Results of 3D-Var analysis using the summer case. The norm of T/q changes is computed at each
vertical level and over the observation disk. Values of LAB defined in section 2 are given in lower panels
Jor the first three vertical normal modes. Solid lines in these lower panels are for the LAB value at each
iterations of 3D-Var. The dashed lines in each panels indicate the extremum values of LAB, computed
during the 12h background trajectory and represent the natural forcing of these modes in a 12 h forecast
starting from the balanced background state.

The solid line shows how the LAB value is affected for the external mode. A gradual increase is observed
during the minimization, indicating a forcing of external GW structure by the adjustment of convection to
force precipitation according to the available information of surface precipitation. The degree of this
dynamical imbalance must be compared against some measure however. This is done by comparing the
natural variability of this LAB value when the model is integrated for 12h starting from the balanced
background state. The maximal and minimal values of this quantity have been retained and plotted as the two
dashed lines in figure 4. It is seen that the level of imbalance on this external mode is presumably enough to
excite external GW modes and be seen for instance by following the time trace of surface pressure at a grid
point located inside the disk. Before showing this, we note the additional fact that based on the two other
panels respectively for the first and second internal vertical modes, the degree of excitation of the first
internal mode is seen to become more important during the last ten iterations but remains within the
variability of the background values. The second internal mode being weakly forced. o

To judge of the temporal behavior of the resulting analysis, the model is integrated for 12h from the 3D-Var
analysis fields and compared against the temporal behavior of the background for the same period of time.
Figure 5 shows the time traces of surface-pressure (top panel), divergence at 700 hPa (middle panel) and
vertical motion at 700 hPa (lower panel). The behavior of the surface-pressure for the analysis case is
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consistent with the external mode diagnosis of fig: 4. The introduction of a distinct internal mode behavior
between the analysis and background is apparent in the lower two panels as can be Judged from the
significant 6-8 h time penod
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Fig. 5. Time traces of surface-pressure (top panel), 700 hPa divergence (middle panel) and vertical
motion at 700 hPa (lower panel) for 12h model integration. Solid. line is for the forecast using 3D-Var
analysis fields, dashed line is for the forecast using the background state (referred to as the background
trajectory in the text).

33 Explosive winter case

Similar experiments were performed with an explosive winter case. This case is the same one as used by FE
and the background fields are valid at 0600 UTC, 12 february 1982. Figure 6 shows that the rate of
convergence of 3D-Var is a bit better than the summer case and reach almost two orders of magnitude
reduction of the norm of the gradient within 20 iterations. The structure of the norm of the analysis
increments of T and. q is converging as fast as the summer case but we note less internal structure in the
vertical profiles. This is consistent with the panels of the time tendency below for the first two internal
modes where we see a weak forcing of internal vertical scales during the first half of the minimization (first
10 iterations). Note however that the amplitude of the internal mode forcing is stronger both for the
‘background trajectory and the 3D-Var analysis as compared to the summer case. The first panel below for
the time tendency of the barotropic mode shows a significant forcing for this mode by 3D-Var and
significantly exceeds the natural variability present in the background trajectory. Figure 7 shows the
temporal behavior of the same diagnostic quantity used for the summer case. It is clear that there is still a
prominent 6-8 h period oscillation present in the forecast done with the 3D-Var analysis as compared to the
background trajectory. This appears to be related to a transient oscillation since this amplitude disappear
after 12h of integration. Note also that this temporal behavior is not simply due to the passage of the cold
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front since this structure of convection was already present in the background state and 3D-Var only
enhanced the amplitude of this convective activity based on rain-rate observations. It is clear however that
this forcing of convection through 3D-Var results in a transient oscillation.
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Fig. 6. As in Fig. 4 except for the explosive winter case.

Finally we note that the degree of the fast external mode imbalance is not perceptible very far after the
beginning of the forecast (1 or 2 hours) and leaves the disk area with a slow time evolution very similar to
the background trajectory. Other experiments performed (results not shown) showed that this region of the
explosive case does not exhibit sustained oscillations that can be preceptible by this simple time trace of the
surface pressure. This is not caused by a limitation of the LAB quantity as compared to the BAL quantity for
the external mode since we explicitly examined the behavior of the BAL value during the 3D-Var
minimization and observed a similar increase as the LAB value (one order of magnitude larger after 20
iterations of 3D-Var). The results here simply show that there is a limitation to use the balance diagnostics
such as those used here in a static mode since it tells nothing on the rapidity of dissipation of the barotropic
gravity mode energy during the model integration; a behavior that is really what is needed during sequential
data assimilation rather than a static estimate of the degree of forcing of the fast modes. This philosophy
being based on the idea that the background state needs to be balanced in a data assimilation system. With
this respect, if the dissipation of the fast vertical gravity waves is done on a time scale of the order or smaller
than the sequential assimilation period (typically 6h), then these modes in such cases (as applies here with
the explosive case) do not represent a serious nuisance. This would definitely not be the case for a 1h
sequential data assimilation procedure however.
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F zg 7. As'in Fig. 5 except for the explosive winter case.
4, Summary

This paper has shown that the 3D-Var assimilation of surface precipitation-rate observations can lead to
significant fast (external) and slow (internal) gravity waves. This being the case in a context close to state of
the art 3D-Var assimilation schemes for operational purposes around the world. It remains in the future to
examine the effect of using an explicit control of the amplitude of the gravity mode tendencies in the 3D-Var
analysis step on the nature of the adjustment of convection. Controlling the fast external gravity waves is
now efficiently done using normal mode techniques or digitél filtering in time. Controlling the amount of
slow (internal) gravity modes can also be done as an explicit constraint using normal mode characterizations
but appears more difficult to achieve with the digital filtering approach. Tn particular, it was shown here with
a summer case and an explosive winter case that the 3D-Var analysis triggers internal modes which seem to
appear as transient oscillations that significantly differ with the background trajectory. The degree of
retention of the time tendencies of the gravity modes on various vertical scales needs to be quantified in
order to avoid transient oscillationé but also to allow a proper adjustment of convection over rainy areas.
These features represent essential issues to be clarified before operational applications and will form the
subject of a following study. It would be beneficial to the operational data assimilation community if similar
experiments as those repoi‘ted here could be duplicated by advanced opérational data assimilation centers.
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