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Abstract

We review recent efforts to improve the accuracy of both the vortical
and gravity-wave components in primitive equation simulations. The present
study focuses on the shallow-water equations, in an idealised doubly-periodic
geometry, where it is at least conceivable to obtain accurate results over a
wide range of flow regimes. We discuss three main topics: (1) the impor-
tance of accurately representing potential vorticity, (2) the advantage of
using different sets of prognostic variables for maintaining balance and for
minimising erroneous gravity-wave production, and (3) the sensitivity to
spatial resolution. o : P
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1 Introduction

Global atmospheric modelling continues to demand ever increasing resolution and
computer power. With increasing resolution, improvements are made in forecast
skill, but often these improvements are not dramatic given the additional computer
cost. Is there an alternative? Here, we discuss a possibility, a promising one in
the idealised shallow-water context studied so far, that suggests that increasing
resolution is far less worthwhile than simply changing the prognostic dynamical
variable set.

The first step in this work was to use the potential vorticity (PV) explicitly, and to
ensure its accurate representation by evolving it in a fully-Lagrangian manner, as
in Contour Advection (Dritschel, Polvani & Mohebalhojeh 1999; hereafter DPM).
The explicit use of PV was shown in DPM to greatly improve the accuracy of
shallow-water simulations in comparison to standard pseudo-spectral and semi-
Lagrangian treatments. Moreover, it was shown to be hugely cost effective: for a
given accuracy, contour advection is a factor of 100 to 1000 times more efficient
than these other numerical methods.

The next step was to replace the other shallow-water prognostic variables com-
monly used (the height and divergence) by other variables (Mohebalhojeh &
Dritschel 2000a; hereafter MDa). This idea was motivated by the observation
that the divergence fields in the (undamped) Contour-Advection (CA) simula-
tions of DPM contained an unrealistically high level of gravity wave activity. This
noise diminished only gradually with increasing numerical resolution. The prin-
cipal source of this noise was found to come from the height-tendency equation;
here, small errors in computing the nonlinear term generate significant erroneous
gravity waves. This suggested that using a different set of prognostic variables
which avoids the numerical integration of the height-tendency equation might lead
to improvements in accuracy. The first such scheme used the divergence & and its
first time derivative §; as prognostic variables in place of height h and §. This leads
then to a diagnostic equation for h, given ¢ and §;. The nice feature of this scheme
is that, in the limit of vanishing Froude number, it reduces to quasi-geostrophy, a
property not shared by the standard schemes in use. More than that, this scheme
does not filter gravity waves, and therefore it is not a balanced model, yet im-
portantly it recovers the underlying balance expected to be there at small Froude
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numbers. The numerical results for this scheme show a dramatic improvement in
solution accuracy, and the virtual elimination of erroneous gravity waves.

Here we discuss this scheme and its generalisations (further details may be found in
the submitted paper: Mohebalhojeh & Dritschel 2000b). All of these schemes are
based on hierarchies of balance conditions, yet do not filter the gravity waves. We
emphasise that there are great advantages to underpinning a numerical model with
variables that respect physical relations between the flow variables, as in balance.
The key result is that, in doing this, one improves directly on the accuracy of
the large and intermediate scales. It turns out that, as a consequence, there is a
dramatic improvement at the small scales as well. That is, our results point to the
need for improvements in the modelling of “well-resolved” scales, rather than for
finding fixes (like diffusion) that control the behaviour of small scales.

In the next section, we briefly review contour advection and present the basic sim-
ulation test case. In §3, we describe the various balance hierarchies that generate
new variable sets for shallow-water simulation. In §4 we examine the convergence
of these schemes with increasing resolution and summarise the results over a wide
range of Froude numbers. In §5, we show results for a modified pseudo-spectral
method which uses the prognostic variables § and §; (in addition to the relative
vorticity (), and demonstrate that significant improvements are also possible in
such a method. Finally, some conclusions are made in §6, including remarks on
the extension of these ideas to the three-dimensional primitive equations.
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2 The example

We consider the same test case used by DPM, namely that of a jet instability,
with maximum initial Rossby number R, =~ 0.95 and Froude number F, = 0.45.
This is a challenging test case which starts with a smooth distribution of PV yet
rapidly develops sharp PV gradients and (arguably typical) abundant fine-scale
structure. The PV evolution, computed using the basic Contour Advection code
(hereafter CAg) employing PV, height and divergence as the prognostic variables,
is illustrated in figure 1 up to ¢ = 15 days. This simulation was done on a 5122
grid, and is highly accurate as regards the PV evolution, as discussed in DPM. In
all the simulations discussed below, we employ a time step that strongly satisfies
the CFL condition; we will not discuss the sensitivity to time step in the paper,
except to say that larger time steps reduce the accuracy of not only the imbalanced
part of the flow but also the balanced part. The two are not independent..

The jet destabilises by forming a vortex street, with a clear asymmetry between
cyclonic and anticyclonic vorticity. A detailed description of this case can be found
in DPM, along with comparisons with other numerical methods. We show it here
only as a point of reference for the results below.

[next page] Snapshots of the PV field at times ¢ = 0, 5, 10, 15.
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3 Balance Hierarchies and New Algorithms

Generally, balance means that there exists a pair of independent functional rela-
tions between the three prognostic variables. In view of the advective character of
PV, it is most natural to express two of the variables in terms of functionals of the
PV, ie.

h=Fla & &=0lg

where ¢ is the PV. Equivalently, one could demand such relations for the time
derivatives of h and/or &, so long as the relations are independent. For instance,
a particularly simple choice is to set 6 = 0 and é; = 0. This is the first member
of the é-hierarchy, and its Nth member is just V) = 0 and ¥+ = 0 (where
M) = g5 /3t"; see McIntyre and Norton 2000). These balance conditions require
one to solve a set of nonlinear implicit equations,

Hh = H(fqe+2J(u,v)— V.(v6) (1)
_5(1))

HE = {fV.(v() —gV*V.(vh)} (2)
—{2(J (u,v) — V.(v8)}V
6@

HEW = {fV.(v() - gV*V.(vh)}V (3)

—{2(J(u,v) — V.(VJ)}("H)
4 §(n+2)

(n=1,...,N—-1)
§M =0(n=N,N+1)
(=(h+H)q—f
(W ={-f6-V.(v}" D (n=1,...,N)
B = {—HE - V.(vh)} ) (n=1,...,N 1)
vi® =k x VvV £ YV~20 (n = 0,...,N)
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where H = gHV? — f? is the modified Helmholtz operator, H is the mean fluid
depth, and g¢ = ( — fh/H is the linear PV. This procedure is generally referred to
as PV inversion.

Two other hierarchies considered in this paper involve the ageostrophic vorticity
v = f¢ — gV?h and its time derivatives. This variable is sometimes (inappropri-
ately) called the “imbalance”. The three hierachies considered are then

e J-vy Balance
M =9 |, 4M=p

e J Balance .
M=0 , N=g

e ~ Balance -
M=0 , 4M)=g

How can these ideas help in the numerical solution of the full shallow-water equa-
tions? If we return to the original divergence equation, take its time derivative, one
can simply derive the following inertia-gravity wave equation for the divergence:

(0*/0t2 —H)s =S
where .
S = gV?V.(vh) — FV.(v() + 2J(u,v): — V.(vé):

Now, the first member of the § hierarchy sets § = 0 and §; = 0; however, we need
not do that here but instead directly solve the above “wave equation” as a second-
order in time differential equation for § , or equivalently as a set of two first-order
in time differential equations for &§ and é;. That is, the balance conditions are
relazed. We still have to solve a diagnostic equation for h, namely

Hh = H(fge + 2J(u,v) — V.(v8) — &)

and it is this equation, numerically, that helps to keep the balance intrinsic in
many shallow-water flows. This is demonstrated in MDa,b and again below.
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The above scheme can be generalised to any member of the § hierarchy as follows:
(8*/0t* — H)SW) = sV (N > 1)

where

SM = {gV?V.(vh) = FV.(V() +2J (u,v), — V.(v8) })

We solve the above equation for 6™ and 6+ and replace the balance condi-
tions with them. Then, we recover, diagnostically, h and §M, n =0, 1, ..., N—1
from Eqgs.(1-3).

To summarise, the above demonstrates that there are hierarchies of shallow water
CASL algorithms, all mathematically equivalent but having possibly significant
numerical differences. Table 1 gives the names, the prognostic, and the diagnos-
tic variables used in the CASL and pseudo-spectral (PS) algorithms examined in
DPM, MDa, and here.

algorithm | prognostic variables | diagnostic variables

CAO (q ? h ’ 6) C

CA1:5—'Y (q7 g, 7) (h7 C) '
CAI:’Y (Q7 i) 77?) (ha 67 C)
CAI,J (Q) 67 'St) (h 3 C)
CAZ,B (q7 Jt > Jtt) (h’ ) 67 C)
PSO (Ca h ’ 5)
PSys (¢€,8,4,) h

Table 1: Various CASL and PS (pseudo-spectral) algorithms examined in DPM,
MDa, and here.

We next present some results indicating these differences in the context of the test
case presented in figure 1. '

126



DRITSCHEL, D.G. AND A.R. MOHEBALHOJEH: THE CONTOUR-ADVECTIVE SEMI-LAGRANGIAN ALGORITHM: ...

4 Balance in CASL algorithms

For details of balance and gravity waves in CAq, CA;5, and CA,; we refer the
reader to MDa. The computationally desirable feature of CA;s_, and CA,;, is
the linearity of the diagnostic equations needed to be solved at every time step, as
opposed to the nonlinear equations for CA; s and CA, 5. The difference between
CA,s_, and CA,, was found, however, to be marginal. For this reason, we omit
CA,, from consideration and concentrate on CA; 5_,.

In Fig. 2, the ratio ||6imb]|/||0b]| is shown against resolution for the CASL algo-
rithms CAq, CA; -, and CA; 4. In this paper, for any quantity X, ||X|| denotes
its I? norm as estimated by || X|| = Z (7%, (X)?;)"/?, ng being the number of grid
points in each direction. Further, ésb and Oy, refer to balanced and imbalanced
divergence fields as obtained by inverting the instantaneous PV field by means of
the third-order § balance that employs §(2) = §(3) = 0. For the measure shown, a
four-fold increase in resolution is needed for CAy in order to compete with CAy 5.
At the low-resolution end (ng = 16), CAy is seriously in danger of over-estimating
imbalance. It is worth mentioning that for the lowest resolution, we have nearly
one grid point per Rossby radius. Such poor resolution of the Rossby radius is
common for the high vertical modes in 3-dimensional primitive-equation models.

In Fig. 3, we present the quadratic energy spectra in the imbalanced part at ¢t = 10
and for very high resolution (ng = 512) for CAg, CAy -, and CA; 5. The quadratic
energy is evaluated according to (27 /ng)? 375, 1/2(]v|* + gh®). One can see that
the imbalance at all scales is sensitive to the numerical algorithm. In other words,
it is not exclusively the small scale part of the spectrum which is affected by a

poor representation of the waves.

In Fig. 4, the results presented in MDa for the behaviour of CASL algorithms
CAy, CA,5, CAy; against Froude number are complemented by including the
results from CA;s_,. At small Froude number limit, CA; s, largely circumvents
the false generation of imbalance manifested by CAg. Further, even at the highest
Froude number covered (0.73), CA; s—, still outperforms, albeit marginally, CA,.
This is important because of the need for an algorithm capable of covering a greater
range of Froude numbers without loss of accuracy at small Froude numbers limit.
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This property of CA;;_,, comes at minimal cost. The resulting diagnostic relation
for h is linear and can be solved for example with a fast multi-grid solver. Overall,
the main conclusion is that CA, 5_ provides a good compromise between accuracy,
efficiency, and robustness.
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Figure 2: The ratio ||imb||/]|6b|] for the CASL algorithms with prognostic variables
(g, h, ) (solid), (¢, 6, ) (dash-dotted), and (q, 4, d:) (dashed).
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Figure 3: The quadratic energy spectra in the imbalanced part for the CASL
algorithms with prognostic variables (¢, &, d) (solid), (¢, , ) (dash-dotted), and
(g, 6, &) (dashed).
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Figure 4: Measures of imbalance for CAq (x), CAi; (o), CAzs (+), and

CAi5—y (x). The measures are (a) ||dimbll, (b) ||Gimbll, (€) ||Gimb]|/|b]], and (d)
||Gimb||/||Co]|- See also figure 9 of MDa.
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5 Balance in pseudo-spectral algorithms

The foregoing ideas on maintenance of balance can be applied to conventional
pseudo-spectral algorithms as well. As a preliminary comparison, in Fig. 5 we show
the time evolution of ||dimp|| and ||Gimp|| in the pseudo-spectral algorithms PSy and
PS;,s together with the corresponding results for the CASL algorithms CAy and
CA;s. The resolution is n, = 128. The low level of imbalance in the pseudo-
spectral algorithms relative to their CASL counterparts results from the action of
explicit diffusion of small-scale vorticity (see MDa). In terms of ||§im||, there is
little gain by going from PSy to PS; 5. But the difference in ||¢imp|| is substantial.
The almost continuous growth of imbalanced vorticity in PSy in conjuntion with
a continuous decay of balanced vorticity due to diffusion is clearly due to the
mishandling of the balanced dynamics. In fact, for much longer simulations (200
days) we have not observed any bound on the growth of imbalanced vorticity. The
same patern of growth happens for imbalanced height (not shown).

What are the consequences of a poor representation of these small amplitude grav-
ity waves on the balanced dynamics itself? This is an important question for which
we can provide at least a partial answer. Let us examine for this purpose the broad
scale field of perturbation height h, i.e. the pressure field for the SW equations. In
Fig. 6, we present h at ¢ = 15 for CAg, CA; 5, PSo, and PS4, all using n, = 128.
Notice the merging of two anticyclonic vortices and also the filling of the cyclonic
centres in PSy simulation. Remarkably, PS; ; shows better agreement with CA,
and CA;s. In other words, the elimination of the spurious growth of imbalanced
vorticity can improve the performance of conventional pseudo-spectral algorithms.
To better understand the problem with PSg, we have performed two more PSy sim-
ulations: (a) 5-day and (b) 10-day simulations starting from the fully-developed
states given by CAg at £ = 5 and t = 10, respectively (Fig. 7). One can see clearly
the cumulative effect of errors due to the misrepresentation of small amplitude
gravity waves in the 10-day simulation. The significance or otherwise of the asso-
ciated loss of predictability compared with other sources of errors needs a separate
study.

The same effect can be observed in the CASL\algoritth. The height field at t = 15
for CAp at two higher resolutions ny = 256 and n, = 512 are shown in Fig. 8 (cf.
top panel of Fig. 6). Although it is hard to judge by direct inspection, in certain
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Figure 5: The {2 norms of imbalance versus time for the divergence (left) and the

vorticity (right) fields. The results shown are for CASL algorithms CA, (solid),

CAi,s (dashed); the pseudo-spectral algorithms PSy (thick solid), and PSi s (thick
dashed). '

features CA; 5 at ny = 128 clearly outperforms CAq at the same resolution. These
include the position of the centre of the bottom-right cyclone and the downward
trough of the top-left cyclone. Compared with non-PV based pseudo-spectral PS,
however, the overall effect of the erroneous gravity waves is less dramatic. This
is not surprising, given the fact that PV is the dynamical quantity that is least
affected by the presence of gravity waves, either physical or numerical. This is
another advantage of PV-based numerical algorithms.
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t =15, ng = 128

Figure 6: The perturbation height h at ¢ = 15 for (top-left) CA,, (top-right)
CAis, (bottom-left) PSy, and (bottom-right) PS; 5. The resolution is ng = 128.
The contour inerval is 0.05. The solid line is the zero contour, dashed and dashed-
dotted lines are, respectively, for negative and positive values.

133



DRITSCHEL, D.G. AND A.R. MOHEBALHOJEH: THE CONTOUR-ADVECTIVE SEMI-LAGRANGIAN ALGORITHM: ...

Figure 7: The perturbation height & for (left) 5-day and (right) 10-day integrations
by PS5y starting from the fields given by CAgy at ¢+ = 10 and ¢ = 9, respectively.
The contour interval and line style is the same as fig. 6. '
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Figure 8: The height field as given by the CASL algorithm CAq for ¢t = 15 and

resolutions (left) n, = 256 and n, = 512. The contour interval and line style is the
same as fig. 6.
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6 Conclusion

We have described here recent efforts to improve the dynamical accuracy of SW
simulations without compromising computational efficiency. Indeed, our results
suggest that going to ever higher resolution with the currently used models is not
optimal. A more optimal and viable approach, it appears, is to employ different
sets of prognostic variables that respect the underlying physical flow relations, like
near balance, that normally exist under typical flow regimes. In particular the use
of PV explicitly, as in CA, gives a significant improvement in solution accuracy.
But also, changing the other prognostic variables, e.g. (h,8) = (6, v), has been
shown to give significant further improvement.

Currently we are implementing these ideas in the 3D PE context. This is challeng-
ing in part due to the difficulty in resolving high vertical modes. However, recent
work is encouraging, and we hope to announce new efficient and accurate models
in the near future.
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