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Abstract

An important element of a data assimilation system is the statistical model used for
representing the correlations of background error. This paper describes a practical algo-
rithm that can be used to model a large class of two- and three-dimensional, univariate
correlation functions on the sphere. Application of the algorithm involves a numerical
integration of a generalized diffusion-type equation (GDE). The GDE is formed by re-
placing the Laplacian operator in the classical diffusion equation by a weighted linear
combination of powers of the Laplacian. The general solution of the GDE defines, after
appropriate normalization, a correlation operator on the sphere, which can be interpreted
as a convolution integral, the kernel of which is an isotropic correlation function. The
free parameters controlling the shape and length scale of the correlation function are the
products kT, p = 1,2, ..., where (—1)Px; is a weighting (“diffusion”) coefficient (s, > 0)
attached to the Laplacian with exponent p, and T is the total integration “time”. The
algorithm can be viewed as an extension of the iterative Laplacian grid-point smoother of
Derber and Rosati (1989), the latter following from a numerical integration of the classical
diffusion equation (i.e., a special case of the GDE with k, = 0 for all p > 1), for which
the correlation function can be shown to be well approximated by a Gaussian with length
scale equal to v/2rk17. ‘

The Laplacian-based correlation model is particularly well suited for ocean models
as it can be easily generalized to account for complex boundaries imposed by coastlines.
Furthermore, a one-dimensional analogue of the GDE can be used to model a family
of vertical correlation functions, which in combination with the two-dimensional GDE,
forms the basis of a three-dimensional, (generally) non-separable correlation model. Gen-
eralizations to account for anisotropic correlations are also possible by stretching and/or
rotating the computational coordinates via a symmetric “diffusion” tensor. Examples
are presented from a variational assimilation system currently under development for the
OPA ocean general circulation model.

1 Introduction

A central task in the development of a statistical (e.g., variational) data assimilation system
is the estimation and representation of the background state error covariances. In practice,
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these covariances must be modelled as approximations to the true covariances of background
error. In general, this is done by parameterizing the covariances using smoothing functions
or filters, and balance relationships which employ such simplifying assumptions as isotropy,
homogeneity, geostrophy etc. (Daley 1991). The number of adjustable parameters in the co-
variance model, such as the standard deviations and correlation length scales of the background
error, is usually quite small compared to the number of individual covariances that actually
need to be specified (typically on the order of 10! or greater for global applications with gen-
eral circulation models of the atmosphere or ocean). These parameters can be determined
by fitting the covariance models to available statistical information on the background errors,
obtained, for example, from statistics of the observed-minus-background field (Hollingsworth
and Lonnberg 1986; Lonnberg and Hollingsworth 1986) or of some other proxy for background
erTor. '

Ideally, the covariance models should be made flexible enough to capture the main char-
acteristics of the available estimates of the background error covariances. This paper focusses
on a particular aspect of covariance modelling, namely that of deriving efficient and flexible
algorithms for representing two-dimensional (2D) and three-dimensional (3D), univariate cor-
relations on the sphere, with a special emphasis on the applicability of these algorithms for
variational data assimilation systems with ocean models.

The background error covariance models employed in variational assimilation systems with

atmospheric models commonly rely on a representation of correlation functions in terms of a
spherical-harmonic expansion. Such a formulation is used operationally at the European Centre
for Medium-Range Weather Forecasts (ECMWT) (Courtier et al. 1998; Rabier et al. 2000),
the National Centers for Environmental Prediction (NCEP) (Parrish and Derber 1992), the
Canadian Meteorological Center (Gauthier et al. 1999) and the United Kingdom Meteorological
Office (UKMO) (Lorenc 1997). The free parameters in the correlation model are the spectral
variances of the correlation function, which are generally specified from statistics of forecast
differences valid at the same time (Rabier et al. 1998). Spectrally-based correlation models,
however, are not very practical for ocean models since the lateral boundary conditions imposed
by the coastlines are difficult to handle within a global spectral basis function expansion.
‘Correlation models formulated directly in physical (grid-point) space are generally easier to
adapt to bounded-domains and hence better suited for the ocean assimilation problem. For
example, Lorenc (1992, 1997) and Parrish et al. (1997) have developed correlation models based
on recursive grid-point filters, one variant of which is applied routinely in the UKMO real-time
global ocean forecasting system (Bell et al. 2000). The recursive filter is very efficient and can
accommodate geographical variations in correlation length scale, but has limited flexibility in
the shape of the correlation function and is difficult to make isotropic (Lorenc 1997).

Derber and Rosati (1989) proposed the use of an iterative Laplacian grid-point filter
(smoother) in order to build a 2D isotropic correlation function that approximates a Gaussian.
The Derber and Rosati scheme is used operationally at NCEP for producing ocean initial
conditions for seasonal climate forecasting (Behringer et al. 1998). A close variant of the
algorithm has been described in some detail by Egbert et al. (1994) and Bennett et al. (1997),
who interpret the Laplacian filter in terms of a time-step integration of a diffusion equation.
The key idea is that the integral solution of the diffusion equation defines a covariance operator.
In this paper, we build on these ideas to construct 2D and 3D univariate correlation models that
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are both numerically efficient and sufficiently general to support a number of desirable features:
correlation functions with different shapes (not just Gaussian), geographically variable length
scales, horizontal/vertical non-separability, and 3D anisotropy.

The paper is organized as follows. Section 2 presents the variational assimilation problem.
A general, multivariate formulation of the background error covariance matrix is also described
in order to isolate clearly the univariate, correlation component, the specification of which is
the subject of this paper. In section 3, the main features of the 2D “Gaussian” correlation
model of Derber and Rosati are described. Particular attention is given to the interpretation
of the model in terms of the spherical harmonics (ignoring boundaries). A straightforward
extension of this correlation model is then proposed as a means of generating a general class
of 2D isotropic correlation functions on the sphere. A one-dimensional (1D) version of the
model is also introduced for representing a class of vertical correlation functions. Several issues
related to the practical implementation of the algorithm are discussed in section 4. A 3D
correlation model is also developed. In section 5, the correlation structures are illustrated in
several examples from a variational assimilation system (Weaver and Vialard 1999) for the OPA
Ocean General Circulation Model (OGCM) of the Laboratoire d’Océanographie Dynamique et
de Climatologie (LODYC) (Madec et al. 1999). In particular, the impact of ocean boundaries
and various extensions to account for 2D and 3D anisotropy are discussed and illustrated.
Concluding remarks are made in section 6. An appendix provides some mathematical details
and a numerical illustration of a matching procedure that can be used to relate the exact
solution of the diffusion equation on the sphere to a Gaussian covariance operator.

The notation used in the paper closely follows that of Ide et al. (1997).

2 Formulation of the problem

2.1 Variational assimilation and its dual formulation

Following Courtier et al. (1998), the variational formulation of three-dimensional assimilation
(3D-Var) is introduced. In its incremental formulation (Courtier et al. 1994), 3D-Var attempts
‘to minimize the following cost function,

J(6x) = -;—5XTB_15X + %(de - d)"R™(Héx — d) (1)

~ - s

v e

Jb Jo

where dx = x — x’, x Dbeing the model state vector and x? its background estimate. The
observation vector, y?, is contained within the the innovation vector

d=y° - H(x) (2)

where H is a suitable linear approximation of the observation operator H (-) in the vicinity of
x?. The matrices B and R contain the assumed covariances of background and observation
error, respectively. In practice, these matrices are defined as approximations to the true error

covariance matrices

B=E [(xb - Bx]) (x* - E[x])T] (3)
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R = E[(y°~ H(EK)) (y° ~ H(B[x])"] (4)

where E[-] denotes mathematical expectation.

The observation term (J,) measures the it between the model increment in observation
space and the innovation vector. The background term (J;) penalizes the size of the increment
vector (i.e., measures the fit to the background state). At the minimum, the resulting analysis
increment (5X is added to x” in order to provide the analysis x®

x® = x® + 6x°. (5)

Following Courtier (1997) and Derber and Bouttier (1999), the cost function (1) is rewrit-
ten in terms of a new variable, v, defined by

v=BT2¢x (6)

where BY/2 is taken to be any “square-root” matrix such that B = BT/2B!/2, This leads to the
equivalent analysis problem of minimizing

J(v) = —;—v v+ i (Hax — d)TR(Héx — d) (M

with
6x = BT/2y, (8)

A gradient descent method is used to iterate to the minumum of J. On each iteration,
the gradient of J with respect to v is required, which from (7) and (8) is given by

Vo] = Voby + Vyd, = v+ BY2 vV, J, (9)
where
Vexdo = HIR™ (Hox — d). (10)

At the start of minimization v = éx = 0, providing the initial guess is taken to be x = x.
As a result, only the transformation (8) from v to 6x (involving B7/2), and the associated
adjoint transformation in (9) from Vs J, to V,J, (involving BY/?) are actually required on
each iteration. This formulation thus allows us to circumvent the explicit specification of the
inverse matrix B™!, while at the same time prov1d1ng a generally efficient preconditioner for
the minimization (Lorenc 1988).

The three-dimensional Physical-space Statistical Analysis System (3D-PSAS) (Cohn et al.
1997) provides an alternative algorithm for solving the incremental, variationa] analysis prob-
lem (Courtier 1997). 3D-PSAS involves the iterative minimization of a cost function of the
form

F(w) = -w'(R+HBH)w — wid (11)

2
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with
6x = BH w, | (12)

w being an increment defined in the dual of observation space. As with 3D-Var, 3D-PSAS may
be implemented using an algorithm for applying B*/? and B7/? to a given vector; the inverse
operators are not required providing w = 0 (x = x°) is the first guess for minimization. Strictly
speaking, only B is required for 3D-PSAS. Nevertheless, the definition of B through a square-
root factorization is a practical way of ensuring both its symmetry and positive definiteness
(Gaspari and Cohn 1999).

It is worth remarking that, although we focus the discussion in this paper on B and
the associated 3D variational analysis problem, the basic techniques we develop will be equally
applicable for representing model and/or boundary-forcing error covariances in weak-constraint
four-dimensional variational assimilation (4D-Var) or its dual formulation (4D-PSAS) (Egbert
et al. 1994; Courtier 1997).

2.2 General formulation of the background error covariance matrix

Because of its size, B can be neither estimated completely nor stored explicitly. (Recall that B
is an NV x N matrix where N, the dimension of the model state vector, is typically greater than
10°.) We are therefore forced to model B as an operator. Specifically, we wish to define B as a
sequence of operators, from which a factorization of the form B7/2 BY/2 can be easily deduced.
For convenience we continue to use matrix notation, although it is important to bear in mind
that the matrices are never explicitly computed in practice. By definition, B is a symmetric
and positive definite matrix. The diagonal and off-diagonal elements of B correspond to the
background state error variances and covariances respectively. The covariances can be split into
two contributions: block-diagonal elements that represent the auto-covariances between grid-
points corresponding to a particular model variable (i.e., the univariate component of B), and
the remaining elements that represent the cross-covariances between grid-points corresponding
to different model variables (i.e., the multivariate component of B).

Recently, Derber and Bouttier (1999) have proposed a compact and powerful formulation
of the background error covariance matrix which allows separating the univariate and multi-
variate components of B into distinct operators. It is useful to outline their formulation in
order to put the present work in the context of a fully multivariate covariance operator. In
their formulation, the model variables are first partioned into balanced and unbalanced com-
ponents, except for one variable which is taken in totality (i.e., for this variable there is no
distinction between balanced and unbalanced). This (total) variable is then used to establish
linear balances with the remaining variables. This procedure can be represented through a
linear balance operator, Kj, acting on the unbalanced variables. As the model increment is
defined as the sum of the balanced and unbalanced components, the full balance operator is
K; = K} +1 where I is the identity matrix. In terms of the balance operator, B takes the form

B = K;B,K{ (13)

where B, is the error covariance matrix for the unbalanced variables, which is taken to have

Technical Memorandum No. 306 5



o . .
S Correlation modelling on the sphere

a block-diagonal structure (i.e., the cross-covariances between the unbalanced variables are
assumed to be negligible).
By definition, B, can be factored as

B, = ICX (14)

where ¥ is a diagonal matrix of background error standard deviations and C a symmetric
matrix of background error correlations for the unbalanced variables. Thus, from (13) and
(14), we can represent the transformation in (8) by the sequence of operators

ix =K, X CTy | (15)

where C/2 is defined such that C = CT/2CY/2. As C is block-diagonal, the operator CT/2v
in (15) can in turn be split into individual operators, CI/2 v, that act independently on the
different variable components, v, of v.

The purpose of this paper is to focus on the design of univariate correlation operators
(Co = CI/2CY?) that are both efficient for large state vector assimilation problems and well
adapted to oceanographic applications in complex-boundary domains. Deriving an appropri-
ate multivariate balance operator (K;) and estimating the free statistical parameters in the
covariance model (e.g., X) are equally important issues but are beyond the scope of this paper.

3 Correlation modelling on the sphere

3.1 Modelling a Gaussian correlation function using the diffusion
equation |

The following 1D problem provides a simple framework for interpreting the basic procedure
for constructing correlation operators on the sphere, which we develop subsequently in sections
3b-c. The starting point is the 1D diffusion equation

on &

H.—_——.

ot 0z?

where & is a spatially homogeneous diffusion coefficient. We consider solutions to (16) on the

real line IR such that n(z,t¢) vanishes as z — Zoo. It is convenient to represent the general
solution symbolically by an integral operator £;

=0 (16)

n(z,0) £ n(z,T) (17)

where 7(z,T') is the result of integrating (16) over a time interval 0 < ¢ < T with 7(z,0) as
initial condition.

A simple interpretation of the above operator can be given by considering the explicit
solution of (16). The Fourier transform of (16) yields

on (2, t)
ot

= —k2°7(Z, 1) (18)
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where 7j(Z,t) denotes the Fourier transform of 7(z,t) and Z is the variable in Fourier space.
Equation (18) is readily integrated in time to give

=2
7(z,T) = 7(2,0) e "% (19)

In (19) we recognize the product of 7(Z,0) with a Gaussian function. As the inverse Fourier
transform of a Gaussian is also a Gaussian, 7(z,T) is the result of the convolution of 7(z,0)
with a Gaussian function; '

?’](Z,T) — \/4711__HT /z, e~(z - Z/)z/‘l”“Tn(z',O) dz' (20)

where the product 2xT can be interpreted as the square of the length scale of the Gaussian
function.

‘ The Gaussian in (20) is homogeneous and isotropic as it depends only on Euclidean
distance r = |z — 2'|. It is well known that such a function defines a valid (positive definite)
covariance function on IR. This follows from the fact that its Fourier transform (the exponential
in (19)) is everywhere positive (e.g., see Gaspari and Cohn 1999). The integral equation (20)
thus defines a covariance operator, which provides an interpretation of the operator £.

By definition, a correlation function has unit variance; i.e., its value at the origin, r = 0,
equals one. The Gaussian covariance operator £ can be easily transformed into a Gaussian
correlation operator C, by post-multiplying n(z,T) by the constant factor v4wxT, which can
be represented symbolically by

n(z,0) —C—T'> VankT n(z,T). (21)

On a discrete grid, the action of C, may be effectuated in one of two ways: either by
evaluating the convolution integral in (20) directly using numerical quadrature, or by the gen-
erally more efficient technique of iterating a discretized (e.g., finite difference) version of the
differential equation (16) and normalizing the result as in (21). The latter is the essence of the
Derber and Rosati scheme (see also Egbert et al. (1994)). In the next section, we present the
theoretical basis of the scheme for application on the sphere.

3.2 Interpretation on the sphere

In 3D Euclidean space (IR?), the solution of the diffusion equation leads to a convolution integral

with a Gaussian function that depends only on Euclidean distance r=y/{(z — #/)2+(y — y')2+ (z — #)2
between points (z,y, z) and (2',4/,2') in IR®. This is an obvious extension of the 1D example
in the previous section. Any homogeneous and isotropic correlation function in IR3, such as
the 3D Gaussian, can be readily transformed into a valid isotropic correlation function on the
spherical space S? if Euclidean distance is substituted by chordal distance

r = 2asinf/2 = 2a(1 — cos§)*/? (22)
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where §, 0 < 0 < 7, is the angular separation (great circle distance) between points on the
sphere of radius a (Weber and Talkner 1993; Gaspari and Cohn 1999).) One might expect,
therefore, that the solution of the diffusion equation on the sphere leads to a convolution integral
involving the Gaussian function e~ "*/2L* where 7 is given by (22) and L? = 2xT as in the 1D
example. This turns out not to be the case as shown below; the solution has a covariance
interpretation but the actual covariance function is not Gaussian, even though numerically it
can be very closely matched to a Gaussian as discussed by Hartman and Watson (1974). This
feature is investigated in more detail in the appendix.

Consider the diffusion equation
%ZZ- - kV3 =0 (23)
where V? is the Laplacian operator defined on the sphere ¥. When the domain over ¥ contains
boundaries (e.g., coastlines in the case of an ocean model), we must supplement (23) with
boundary conditions. For the moment we consider ¥ to be free of boundaries. Boundary
related issues will be addressed in section 5b.

A scalar field n(A, ¢,t) may be expanded as

o0 n

nA¢t) =2 2 Y (A ¢) (24)

n=0m=-n

where Y;™(), ¢) are the spherical harmonics, A is longitude (0 < A < 27) and ¢ is latitude
(—7/2 < ¢ < w/2). The ¥;™(A, §) are orthogonal and normalized following the usual convention
in meteorology,
1
4dma?

/E YO, )Y (A, 6) d5 = Syt (25)

where * denotes complex conjugate, 0, is the Kroneker delta, and ds = a? cos ¢ d) d¢. Since
the spherical harmonics are the eigenvectors of the Laplacian operator on the sphere, with
—n(n + 1)/a® the associated eigenvalues, the diffusion equation (23) becomes

dnm n(n+ 1)
n m 2
dt Pz e (26)

which over the interval [0, 7] readily integrates as
2
M) = mp()eFInin+ /e (27

The spectral coefficients 77" (0) can be determined by multiplying (24) by Y,™'(), ¢) and applying
the orthonormality condition (25);

(0) = s 100,600 Y7, 9) @)

27972

1As pointed out by Weber and Talkner, the Gaussian ¢—(ab)"/2L , whose argument —a# follows from a

first-order development of (22) for small 8, is not necessarily a valid (positive definite) correlation function on
the sphere even though it has often been used in meteorology and oceanography.
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Substituting (28) into (27), and (27) into (24), and applying the Addition Theorem for
the spherical harmonics (Arfken 1966, pg. 450), the solution to (23) can be written as

1B T) = 2 [ 10;5T) (X, ,0) d (20)
where
f(0;kT) = Z JoPl(cos ) = f: Vant e~ wTn(n + 1)/GZP,;’(COS 9), (30)
n=0

0 being the angular separation between the points (A, ¢) and (X, ¢’') on the sphere, and P?
the Legendre polynomials. As the coefficients f, of the Legendre polynomials are positive,
the integral kernel f(0; kT') is the representation of an isotropic covariance function (Courtier
et al. 1998). Equation (29) thus defines a covariance operator and can be interpreted as a
convolution of the scalar field n(A, ¢,0) with the covariance function f(6;«T).

The value of the covariance function at the origin (6 = 0) gives the variance at any point;

F(0; 5T = an\/2n+ —-Z (2n + 1) e~#Tn(n+1)/a® (31)

where we have used the fact that PJ(1) = +/2n +1 as implied by the normalization in (25).
Each coefficient f,+/2n -+ 1 gives the contribution to the total variance from a given total
wavenumber n, and hence provides the variance power spectrum of f(6;xT). Furthermore,
f(8;kT)/ f(0; FuT) defines the associated correlation function. ‘

The length scale of the correlation function can be defined following Daley (1991);

f(0;kT)
V2§(0; kT)
© (2n+1)e~ R n(n+1)/a’
Yoon(n+1)(2n+1) e~ kI n(n+1)/d®

which shows that, as in the 1D example, kT is the parameter controlling the length scale of the
correlation function. Moreover, as shown in the appendix, for scales relevant in meteorology
and oceanography (L < a) matching (30) to a Gaussian leads to

L’ = -

= 2a? (32)

L? ~2xT (33)
in direct analogy with the 1D example.

3.3 Extension to a larger class of isotropic correlation functions on
the sphere

The correlation model can be extended to represent a larger class of correlation functions by
considering the solution of a more general partial differential equation,

on i kp (=) 0 =0 (34)
ot =" 7 |
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where kp, p=1, ..., P, are non-negative weighting coefficients. The classical diffusion equation
(23) is a special case of (34) with x, = 0 for all p > 1. Thus, we will refer to (34) hereafter as
a generalized “diffusion” equation (GDE). The general solution of (34) is of the form (29),

1
4ma?

(A ¢, T) =

/2 18 kT, . kT (N, 8, 0) d (35)

with integral kernel given by
00 P
fO; 8T, ...,6pT) = > V20 +1 exp{~ > kT (n(n + 1)/a2)p}P,‘:(cos 6). (36)
n=0 p=1 )

Equation (36) defines a family of isotropic covariance functions on the sphere; the associated
correlation functions are f(6; k1T, ..., 6pT)/ f(0; 51T, ..., kpT). The length scale of the correla-
tion function can be defined in the usual way;

o SOk T, ..., 5pT)
V2f(0; k1T, ..., 6pT) |
\ %, (2n+1) exp{— iy T (n(n + 1)/a2)p}

= 92a . 37
on (n+1) (2n+1) exp{— TE, 5,7 (n(n + 1) /a2)?} e

2 =

The free parameters controlling the spectrum (shape) and length scale of the correlation func-
tion are the sequence of products x,T, p =1, ..., P, where P is defined such that xp # 0 and
rp = 0 for all p > P. For the special case P =1, (36) and (37) reduce to (30) and (32) with
K1 = K.

Figure 1 illustrates the variance power spectrum (upper panel) and grid-point represen-
tation (lower panel) of four different correlation functions generated numerically using (36)
with a truncation at total wavenumber 106. The solid curves in Fig. 1 correspond to the
near-Gaussian (P = 1) from Fig. 7 in the appendix. The dashed and dashed-dotted curves
correspond to P = 2 and P = 3 respectively, with x, = 0 for all p < P in both cases. The
dotted curves also correspond to P = 2 but with non-zero values defined for both #; and .
For each correlation function the (non-zero) products x,7 have been tuned according to (37)
in order to give a length scale of 500 km as in the Gaussian example in Fig. 7. ‘

The effect of including higher order terms in the GDE (while holding the length scale
fixed) is clear. From the spectrum, there is a progressive decrease in the variance at large
scales (wavenumbers 1 to 14), increase in the variance at intermediate scales (wavenumbers 15
and 30), and sharper drop-off in the variance at small scales (wavenumbers greater than 30).
In grid-point space, the correlation functions are.very similar over 0 < r < L. The higher
order terms in the GDE, however, increase the rate at which the correlation function drops off
to zero over L < r < 2L, and increase the amplitude of the negative-positive oscillations in
the correlation function for r > 2L, with these oscillations tending to zero at large separation
distances.

10 Technical Memorandum No. 306
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3.4 Modelling vertical correlation functions

In direct analogy to (34), a generalized 1D diffusion equation can be used as the basis for
modelling a class of 1D correlation functions. Consider the equation

on & . 0%\ _
7+T§=jln,,<—~@> =0 (38)

where R and &, are analogous to P and &, in (34). The general solution of (38) on IR
can be easily obtained using the Fourier transform, following the example in section 3a. In
particular, the solution can be expressed as a convolution integral, the integral kernel of which
is a covariance function given by the inverse Fourier transform

1 ~./\
h(z; 61Ty, ..., KRTY) = 27T/exp{ Zn”T "2T} V22 gz (39)

where T, is the total integration time and ¢ = v/=1. As with f(6; T, ..., spT), the sequence
of products of the diffusion coefficients (x?) with the integration time (7,) controls the shape
and length scale of h(z; k{1, ..., k%T,). For R = 1, (39) reduces analytically to the Gaussian
n (20). For R > 1, with kg # 0, there is no obvious closed analytical form of the covariance
functions; however, for given values of k2T, (39) can be solved numerically to yield a family
of covariance functions similar to those in Fig. 1. Taking z as the vertical coordinate in the
model, then (38), together with appropriate top and bottom boundary conditions, provides a
statistical model that may be used for representing the vertical correlations in C,, as dlscussed

further in sections 4c and 5d.

4 Practical implementation

In the previous section, we showed that the integral solution of the diffusion equation on the
sphere could be interpreted as a covariance operator. In particular, we showed that the solution
could be expressed as a convolution of the initial condition with an isotropic covariance function
that could be closely matched to a Gaussian. The possibility of representing other isotropic
covariance functions by solving a more general differential equation was also discussed. In
this section, we discuss the practical implementation of the algorithm within the design of a
univariate correlation operator. Some generalizations of the algorithm will be discussed and
illustrated in section 5 with reference to specific examples. ‘

4.1 Discrete representation of the generalized diffusion equation
within a horizontal, univariate correlation operator

Consider the following semi-discrete representation of the GDE (Eq. (34)), based on an explicit
forward differencing of the temporal derivative;

M) = 1tm1) = 3 koAt (= 92) 0t (40)
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where At = t,/m is the step size and m is a positive integer. The total integration time
is T'=tp, M being the total number of integration steps. The sequence of products k,T" =
KpMAL, p = 1,..., P, determines the spectrum of the covariance function from (36), and the
length scale of the covariance function from (37). Once these parameters are specified, x,At in
(40) is set to k,T/M with the value of M chosen large enough so as to maintain the numerical
stability of the forward differencing scheme. For the diffusion equation (P = 1), the stability
condition is roughly x;At/e?* < 1/4 where e is the minimum grid spacing. In this case, the
product £1At can be determined directly from the length scale criterion (33), k1At = L?/2M.
For a given L, this leads to the requirement that M > 2(L/e)?.

Assuming that the geographical coordinates (A, ¢) are continuous functions of a general
set of orthogonal curvilinear coordinates (z,7), the Laplacian in (40) can be written in the

general form
eae L (2 (200). 8 () "
eres \ 01 \ ey 01 07 \ ez 3j

where e = e1(A(4,7),¢(¢, 7)) = 051/0i and ey = ez(\(i,5),d(4,7)) = Os9/83 are metric co-
efficients that define the curvilinear distance elements (dsi,dsz) = (e1di,eaxdy) in the (1, 7)
coordinate system. Equation (41) is self-adjoint for the scalar product (i, 72) = [mi72 ds1dss;
ie., (V?n1,m2) = (m, V?n.). The discrete analogue of this scalar product is (m;, 75) = 7f W n,
where W is a diagonal matrix of local area elements As;Asy (and 7, and 72 are to be inter-
preted now as finite-dimensional vectors). Letting D denote the matrix representation of the
discretized Laplacian in (41), and D* its corresponding adjoint, then from the self-adjointness
property of D and the general definition of the adjoint operator, (Dn,me) = (1, D*n), it
follows that D = D* = W 'DTW.

The discrete operator, Lp, that defines the convolution integral (35), can be represented
by an integration of (40) over M steps;

n(ta) = Lpn(to) (42)
where
Lp = {I - EP: Kp At (—D)‘”} : | (43)

From the self-adjointness property of D, we can factor Lp as

P M/2 P M/2
Lp = {I — > KpAt (—D)P] {1 — > KpAt (—D)P}

p=1 p=1
- Ly
P M/2 P M2
- [1 — 3" kAt (—W—IDTW)”] {I 3 kpAt (—D)P}
p=1 p=1

P M2 P M2
- W {1 ~ Y kAt (—DT)”} W [I — 2 fplt (—D)”}

p:]_ p:l
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= WL WLY?
= LWL ?w. (44)

Lp is self-adjoint with respect to the metric W; i.e., Lp maps a field from the primal space
(e.g., model space) into itself. The action of Lp thus conserves the physical units of the input
field. Lp can be transformed into a symmetric covariance matrix by multiplying it either to
the left by W or to the right by W1, as evident from the factorization (44). We may define
the covariance matrix either way, but its interpretation is somewhat clearer by following the
latter. Therefore, without loss of generality, we define the covariance matrix as

Lp W = LY2wtLT2 (45)

The associated covariance operator then corresponds to an integration of the difference equation
(40) from an initial condition scaled at each grid point by the inverse of the corresponding local
area element. This is consistent with the general definition of a covariance operator, which
represents a mapping from the dual space into the primal space and hence does not conserve
the physical units of the input field (Tarantola 1987).

A matrix, A, of normalization coefficients is required to convert (45) into a correlation
matrix; i.e., A ensures that the standard error deviations effectively used in B, (Eq. (14)) are
indeed those which are specified through ¥. In general, the elements of A will be spatially
dependent (see section 5b) in which case A, like X, must be introduced on either side of the
filter covariance matrix in order to maintain symmetry (cf. the scalar normalization in (21)).
Thus, the auto-correlation matrix associated with an arbitrary scalar field o has the form

Co = ALY*WILE?A (46)
= (W) (WL )
= CI2cle (47)

The procedure for computing the normalization coefficients is discussed in some detail in the
next section.

The presence of W in the general matrix expression for C, illustrates explicitly the grid-
dependence of the correlation operator and hence of the scalar product of the background
term (J;) in (1) whose metric depends on C*. This scalar product defines a weighted sum of
increments over the model domain and thus naturally should depend on the model grid.

Lorenc (1997) and Parrish et al. (1997) discuss a similar procedure for designing a 2D
horizontal covariance operator using a 1D recursive filter. The 2D covariance operator is formed
from a matrix product of the 1D filter, applied successively along orthogonal grid directions
(cf. L}/ ? in (44)), with its adjoint (cf. W“ng/ ’W in (44)). The resulting covariance operator,
however, does not give an isotropic response as illustrated by Lorenc (1997). This contrasts the
Laplacian-based filter (L.p) which is isotropic by construction. (A numerical validation of this
result is provided by Fig. 2 (upper panel) of section 5a). Furthermore, the Laplacian can be
made invariant in any orthogonal curvilinear coordinate system, a feature that is particularly
useful for models with distorted grids, such as global ocean models that have the north pole
singularity rotated onto a land point (Madec and Imbard 1996).
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4.2 The normalization matrix

As discussed in the previous section, a diagonal normalization matrix A is required to convert
the covariance matrix LpW ™ into a correlation matrix of the form (47).2 The diagonal ele-
ments of A are the inverse of the square root of the corresponding diagonal elements of Loy W!;
i.e., the inverse of the intrinsic standard deviations (square root of the variances) of Lp W™ .
Note that the variances of LpW ™! have physical dimensions of inverse length squared, in con-
trast to the variances of B, which have physical dimensions equal to the square of the physical
units of the background variables.

For the isotropic filter Lp, applied in a boundary-free domam A is simply a constant mul-
tiple of the identity matrix where the constant can be determined analytically from the variance
of the covariance functions in (36); A = (1/v/%) 1 where t = £(0; 51T, ..., kpT) /4ma?, the extra
factor 4ma® coming from the normalization in (35). For the Ly-filter, ¢ ~ g(0;7)/4ma® ~ 1/27L?
(cf. Eq. (77) in the appendix).

In section 5, we discuss more general implementations of the filter (e.g., applications
in bounded domains (section 5b) and extensions to account for anisotropic correlations (sec-
tions 5c-d)) for which the true variances are no longer well approximated at all grid-points by
a spatially homogeneous constant. To compute the true variances at each grid-point requires a
specific algorithm. Two algorithms are proposed below, one of which computes the variances
exactly, the other approximately.

Let #; denote the [-th diagonal element of the matrix LpW™1!; i.e., the intrinsic vari-
ance of the covariance filter at the I-th model grid-point. Since, in practice, LpW™! is
available as an operator, the element #; can be computed by applying LpW™! to the vec-
tor e, = (0,...,0,1,0,...,0)7, the entry equal to one being located at the [-th grid-point. The
value of the filtered field at the [-th grid-point gives the filter variance at that point; i.e.,
t; = el Lp W~te; with 1/4/7; defining the I-th diagonal element of A. This algorithm is com-
putationally expensive as it requires, in general, as many applications of the covariance filter
as there are model grid-points. The algorithm is, however, well suited for parallel computers
as the filter variance at the different points can each be computed on a separate processor.

Rather than computing the variances exactly using the above algorithm, a cheaper al-
ternative is to use a randomization method (Fisher and Courtier 1995; Andersson et al. 2000)

to estimate the variances approximately. Consider the transformation v = L}/ W-1/2y where
v is a Gaussian random variable, drawn from a population having zero mean and unit vari-
ance; i.e., F[v] = 0 and E[vv’] = L. The transformed random variable verifies F[¥] = 0 and
E[vwT] = Ll/ QW“lLT/ ? = LpW-L. Therefore, from an ensemble of Q random vectors Ve,
g = 1,...,Q, the variances of the filter covariance matrix can be estimated from the diagonal
elements of

LpW™! = iv A zi?:( PWy) (LYW ,) (48)

The variances converge to the true variances when @ is large. For Gaussian statistics, it can

2Lp is a scale-dependent filter, with the property that it conserves the spatial mean of the input field. For
this reason, the diagonal elements of the covariance matrix LpW ! will not, in general, be equal to one.
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be shown (Barlow 1989, pg. 89) that the standard error in the estimated standard deviations
(inverse of the normalization factors) is 1//2Q (e.g., 10% for an ensemble of 50).-

4.3 A three-dimensional correlation model

In a multi-level ocean or atmosphere model, the univariate correlation matrix C, must account
for error correlations in the vertical as well as the horizontal. Three-dimensional correlation
models are often assumed to be separable in that they are constructed as a product of a horizon-
tal and vertical correlation function, which depend only on horizontal and vertical separation
respectively (Daley 1991). Specifically, the function formed from the product of the covariance
functions (36) and (39), normalized by their respective variances, corresponds to a special class
of separable, 3D correlation functions, which may be modelled by a combined integration of
the 1D and 2D GDEs.

We assume that the vertical direction is normal to the geopotential surfaces on the sphere.
Furthermore, we assume that the vertical distance z is a continuous function of a generalized
vertical coordinate k, orthogonal to the curvilinear coordinate surfaces (4,4) on the sphere, so
that the vertical second-derivative operator in (38) can be expressed as

&n 1 (0 (10dn
FE . (575 (m)) (49)

where e3 = O0s3/0k = 0z/0k is the metric coefficient defining the vertical distance element
ds3 = egdk in this coordinate system. In what follows, we will use the subscript/superscript
v to distinguish the parameters and operators associated with the vertical correlation model
from those associated with the horizontal correlation model of section 4a, which for notational
~consistency will hereafter be denoted with a subscript/superscript h. Let DY be the matrix
representation of a discretized version of (49). The matrix operator, L%, that integrates the 1D
(vertical) GDE from ¢ = 0 to ¢t = T, = M,At, can thus be expressed as
R M,
I-> kiAt, (DY) . (50)
r=1
The symmetric vertical covariance matrix associated with (50) is then LYW where W, is a
diagonal matrix of vertical grid elements As; (cf. Eq. (45)).

The convolution of an arbitrary scalar input field with the combined horizontal-vertical
covariance function may be achieved by a two-step procedure: (i) for each model level k,
integrate the 2D GDE (34) from ¢ = 0 to ¢ = T} with the field to be convolved taken as initial
condition; (ii) for each horizontal grid point (7,7), integrate the vertical GDE (38) from t = 0
to ¢ =T, using the result from (i) as initial condition. Noting that the horizontal and vertical
operators commute, we can express this 3D covariance operator as

Ly W, LE W, = Ly W, Ly 1 wit L™
— L1}J{1/2L;L31/2w—1 L’}l;T/zL'URT/Z (51)

where W = W; W, is a diagonal matrix of volume elements As;As;Ass. Thus, the 3D
correlation matrix has the same form as (46) with Lp replaced by the product L% L%. Note
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that the elements of the normalization matrix A must now have physical dimensions of volume
in order to render the correlation matrix dimensionally consistent.

In summary, the square-root factors of the three-dimensional correlation matrix take the
form

= ALYY2LRP Wz, (52)
CY? = W2LATPLYT/2 A, (53)

In words, the operator CZ/2, which in 3D-Var is needed for transforming the increment from
minimization space into model space (Eq. (15)), involves the following sequence of operations:

1. multiply each element of the input vector by the inverse of the square root of its associated
volume element;

[SV]

. perform M} /2 iterations with the horizontal filter Lf{,;
3. perform M, /2 iterations with the vertical filter L';
4. multiply each element of the filtered vector by its corresponding normalization factor.

Likewise, the “adjoint” operator CL/2, which in 3D-Var is needed for defining B'/? in the
gradient transformation (Eq. (9)), involves the sequence of operations 1 through 4 applied in
reverse order, with the horizontal and vertical filters in operations 2 and 3 replaced by their

respective adjoints.

5 Illustrations

The univariate Cy-operator described above has been incorporated within a variational as-
similation system (Weaver and Vialard 1999) being developed for the OPA OGCM (Madec
et al. 1999). In this section, this system will be used to illustrate some of the basic features
of the correlation model, including generalizations that account for anisotropic correlations. In
all examples, the horizontal and/or vertical L;-filter is used.

The discrete differential operators used in the correlation model are based on similar
operators used to solve the equations of the ocean model. These operators are formulated in
orthogonal curvilinear coordinates and discretized on an Arakawa C-grid using second-order
accurate, centred finite differences. The examples presented here have been conducted with a
tropical Pacific version of the model. The configuration extends from 120°E to 70°W and from
30°S to 30°N. The entire model domain is enclosed by solid boundaries, with realistic coastlines
imposed along the eastern and western boundaries, and artificial walls along the southern and
northern boundaries. The zonal resolution is 1° and the meridional resolution varies smoothly
from 0.5° at the equator to 2° at the northern and southern boundaries. The basic configuration
has been adapted from Vialard and Delecluse (1998). The interested reader should refer to that
paper and references therein for a more complete description of the model.
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5.1 Isotropic correlations

The auto-correlations implied by the LI-filter are illustrated in Fig. 2 for a point (I) located
on the equator at 160°'W (i.e., in the central Pacific, far away from boundaries). The auto-
correlation field has been obtained by applying (46) with P = 1 to the unit vector e; defined .
above. Assuming that the variance of background errors is spatially homogeneous (i.e., as-
suming ¥ = o3I with o, constant), then Fig. 2 corresponds to the analysis increment, up to
a proportionality constant, that would be obtained from a single observation. This is easy
to see from (12) noting that for a single observation, w becomes a scalar and HT a column
vector equal to e;, where the value of one in the [-th entry of e; corresponds to the observation
location. The correlation length scale is L = 4° in the upper panel and L = 1° in the lower
panel. The upper panel is a numerical validation of the isotropic response of the filter for- a
value of L large relative to the grid resolution. The lower panel illustrates how the degree of
isotropy is degraded when L is comparable to the grid resolution. In this latter example, L is
equal to the zonal resolution and approximately twice the meridional resolution. Relative to the
correlations computed directly from the Gaussian function, those computed in the lower panel
using the diffusion model are everywhere underestimated, particularly in the zonal direction
where the resolution is coarsest.

5.2 Boundary considerations

In a bounded domain the Laplacian must be supplemented with boundary conditions. For the
C-grid representation of the discrete L2-filter, this requires specifying the value of the filtered
variable’s first derivatives normal to boundary points. For the higher-order L%-filters (P > 1),
additional boundary conditions are required; in general, the first, third, ..., and (2P — 1)
derivatives normal to the boundary must be specified. These boundary conditions can be
viewed as free parameters of the correlation model.

Figure 3 illustrates the auto-correlations generated by the L-filter at three points adjacent
to the coastlines, assuming vanishing first derivatives normal to boundary points (in the ocean
model this boundary condition is analogous to the “no-flux” condition on tracer fields or the
“free-slip” condition on the tangential component of the velocity field). The parameters of
the correlation model correspond to those used for the LP-filter in the upper panel of Fig. 2.
The spatial structure of the correlations near boundary regions is determined primarily by the
geometry of the coastlines; the exact nature of the boundary condition has a much weaker
influence. For example, the correlations in Fig. 3 are relatively robust to changes in boundary
condition from a no-flux to a dissipative flux form.

The primary effect of changing the nature of the boundary condition is to modify the
intrinsic variances (t;) of the filter, and hence the normalization factors (1/4/%;), in the vicinity
of the boundary. Figure 4 shows the difference between the true normalization factors, 1/+/%,
computed using the exact procedure described in section 4b, and the constant normalization
factor, v/2wL, estimated from the analytical solution of the diffusion equation in a boundary-
free domain with spatially homogeneous diffusion coeflicient. The values of the normalization
factors match the analytical estimate very closely except in regions closely confined to the
boundaries where they are smaller by up to a factor of 2.5; i.e., the filter variances are greater
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by up to a factor of 6. However, changing from a no-flux boundary condition to a stronger,
dissipative flux condition results in a reduction of the filter variances, as one might expect
intuitively. In terms of reducing the cost of the filter, the no-flux condition is preferable as it
imposes a less stringent constraint on the size of the time step needed to maintain the numerical
stability of the forward-differencing scheme. '

5.3 Anisotropic correlations: coordinate stretching

There is substantial observational evidence to suggest that correlation scales near the equator
are longer in the zonal direction than in the meridional direction (e.g., Meyers et al. 1988). Such
anisotropy can be accounted for in the diffusion equation by stretching the zonal coordinates in
the Laplacian operator, as discussed in Derber and Rosati (1989) and Behringer et al. (1998).
With reference to the GDE in (34), this can be achieved by replacing V? with V - RV where
R is a diagonal, second-rank tensor of nondimensional “diffusion” coefficients r; and r;,

R:(” O), (54)

07‘_7'

V is the gradient operator

19 108\
V= (aa;ga) ; (55)
and V - c is the divergenc/e operator
. 1 6(6261) 6(61C2)
V.c= 96
¢ 6162( 0] + 8] ’ ( )

with ¢ = (c1, c2)”. The tensor elements r; and r; act, respectively, on the 7 and j components
of the gradient. For the isotropic case, r; = 7; = 1. Note that in the ocean model used in the
examples here, there is a one-to-one correspondence between the computational coordinates %
and j and the geographical coordinates A and ¢; i.e., A = A(%) and ¢ = ¢(j).

Figure 5 illustrates the auto-correlations generated at three different latitudes by an
anistropic version of the L-filter (cf. Fig. 1 in Behringer et al. (1998)). The zonal and merid-
ional length scales have been defined to be 8° and 2°, respectively, at the equator and 4° in both
directions at |¢| > 20° N/S, with a linear transition between these values over 20°S < ¢ < 20° N.
This has been achieved by setting #;7 to L?/2 (as in Fig. 2, upper panel), and varying the
tensor elements linearly from r; = 4 and r; = 1/4 at the equator tor; =r; = 1 at |¢| > 20° N/S.
More generally, the r; and r; can be made inhomogeneous functions of both spatial coordinates
(¢, 7) in order to allow for fully global variations in the length scale.

5.4 Three-dimensional flow-dependent correlations: coordinate ro-
tation

The surface over which the horizontal correlations are effectively computed depends on the
choice of vertical coordinate in the correlation model. In section 4c, the direction of the vertical
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coordinate was assumed to be normal to the geopotential (z-)surfaces, implying that the hor-
izontal correlation function (36) is isotropic along these surfaces. Other choices are of course
possible. For example, in the ECMWF 3D-Var (Courtier et al. 1998), the horizontal surfaces
are defined with respect to the hybrid n-coordinate (a pressure-based, terrain-following vertical
‘coordinate) used in the ECMWF atmospheric model. In general, the vertical coordinate of
the correlation model can be independent of the vertical coordinate used in the actual atmo-
sphere or ocean model. For example, Daley and Barker (1999) suggest the use of potential
temperature (isentropic) coordinates as a means of introducing more flow dependency into the
background error correlation model of an atmospheric assimilation system. The analogy in
an ocean assimilation system is to define the background error correlations with respect to a
potential density (isopycnal) coordinate (e.g., as proposed by Gavart and DeMey (1997) in the
context of Empirical Orthogonal Functions). In this section, we illustrate that a transformation
from, for example, geopotential to isopycnal coordinates is a natural extension of the correlation
- model based on the GDE. For simplicity, we consider only the L;-filter, although in principle
~ the analysis may be extended to accommodate the higher-order filters.

In the 3D L,-filter, the length scale of the horizontal Gaussian function is determined

from L = 4/26}T), and the depth scale of the vertical Gaussian function from D = 1/2x¥7T,. In
other words, for a given correlation scale, we are free to adjust both the diffusion coefficient and
the integration time, providing their product remains constant. (Note that for the higher-order
filters, the product also controls the shape of the correlation function). We can exploit this
fact to derive an alternative form of the Li-filter, which will simplify the transformation to
isopycnal coordinates.

First, for given scales D and L, let us define identical time integration parameters for the
vertical and horizontal L;-filters; i.e., we set M, = M; and At, = At; (and hence T, = T3),
and redefine the vertical diffusion coefficient to be &? = k?D?/L? so that D = /2&/1},. From
(43) and (50), we can express the 3D L;-filter as

L, = LYL}
v v My h 1] Me

= [+ K}At, D' [T+ kfAL, D] (57)
r M,

= [(T+R/At DY) (T+ kkAL, DM
r M,

~ [T+ kfAt, D + &AL DY)
- E'” My,

= |I+&MAL, <Dh + = D”)} (58)
L K1

where we have neglected the term of O (A¢2). (This term can be made small by choosing Mj,
sufficiently large, which we are free to do but at the expense of increasing the cost of the filter).

Equation (58) is the matrix representation of a 3D Laplacian diffusion operator acting on
0 <t < Tj. The 3D correlation function associated with this operator is horizontally /vertically
anisotropic by virtue of the relative scaling factor &¥/s} = D?/L? between the vertical and
horizontal second-derivative operators, where D <« L for meteorological and oceanographic
scales of interest. The relevance of this alternative form of the L;-filter is that we are now
in a position to exploit a classical transformation from geopotential to isopycnal coordinates
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(Redi 1982), as commonly employed in z-coordinate OGCMs for parameterizing lateral mixing
along isopycnal surfaces (e.g., Pacanowski 1996; Madec et al. 1999). First, as in the previous
section, we can express the 3D Laplacian in a more general tensorial form, V - RV, where

T 0 0 i

R=|0r 0|, (59)
0 0 Tk
19 18 10\
= (amaman) .
and
1 [(0(eac1) | Oleics) 1 Ocy

v C_B]_ez( 1 + dj es Ok (61

with ¢ = (c1, ¢g, c3)T. The tensor elements r;, r; and 7 can accommodate coordinate stretching
in the horizontal and vertical planes and can be varied with each grid point (4,7, k) in order
to permit geographical variations of the length and depth scales. Defining the length scales to
be a function of depth or the depth scale to be a function of horizontal position is one way of
introducing non-separability into the correlation model. Equation (58) can be seen as a special
case with r; = r; = 1 and r, = &V /.

Now, we make the assumption that R is diagonal in an isopycnal coordinate system, rather
than in a z-coordinate system as considered above. This requires a simple reinterpretation of
the tensor elements in R; 7; and r; are assumed to be referenced to the “horizontal” plane
defined by a constant isopycnal surface, while 7y is assumed to be referenced to the “vertical”
plane normal to this surface. The representation of the isopycnal R in z-coordinates (our
computational coordinate system) can then be obtained by a coordinate rotation, as described
in Redi (1982) for the horizontally isotropic case r; = r; (see also Griffies et al. (1998)). The
extension to the horizontally anisotropic case r; # r; is straightforward and treated below.

At the beginning of an assimilation cycle, we assume the availability of a statically stable
background potential density surface, p?, with respect to which we can define the “horizontal”
surfaces of the correlation model. In a z-coordinate OGCM, p° is computed diagnostically
from the equation of state, given the background potential temperature field T¢ (i, j, k) and
background salinity field S®(i, j, k) (these being the prognostic density variables in the OGCM),
and the local ocean depth z(k) as input (i.e., o = p?(T¢(i, 4, k), S°(3, 5, k), 2(k))). Implicitly,
in defining p® as our coordinate, we are assuming that the background errors are isotropic,
or weakly anisotropic in the sense of the diagonal tensor (59) with r; # r;, along the p°
surfaces. Such an hypothesis can only be verified objectively by computing the actual statistics
of the observation-minus-background field (e.g., as in Hollingsworth and Lonnberg (1986)).
Nevertheless, the use of p° as a coordinate has a certain appeal physically, which makes it an
attractive possibility providing the background density state is reasonably accurate. If not,
then there may be little virtue in using a p-coordinate. In such a case, a z-coordinate may be
a wiser choice.
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The diagonal tensor R in the isopycnal coordinate system transforms as R = SRST
in the z-coordinate system, where S is a rotation matrix. The elements of S depend on the
components and magnitude of the isopycnal slope vector (—ay, —asa,0) where

es (0p°\ [0p°\ " es (0p°\ (0p°\ "
=2 2232 =—|—l=] . 62
“ e (32') (ak 2=\ 05 ) \ ok - (62
(For details, we refer the reader to Redi (1982) or Griffies et al. (1998)). Since the slopes a; and
ay are generally less than 1072 in the ocean and since 1y ~ O(D?/L?) < 1 while r;, 7; ~ O(1),

the full expression for R can be simplified appreciably. In particular, for the horizontally
anisotropic case (r; # 7;), the expression for the isopycnal tensor approximates as

2 2
Ty <+ 704 Q107

~ af + ag af + c;% (rs ;TZ) R
R\ aan rai + ;05 (63)
7" PRp— . .—_Z_—A% _.7‘ .
v i
—Tja1 —T;Q T + 75 (af + a3)

For the horizontally isotropic (HI) case (r; = r;), (63) reduces to the familiar “small slope”

approximation to R commonly used in an isopycnal mixing parameterization (cf. Eq. (3) in
Griffies et al. (1998)); :

N T 0 —T;01 '
Rur =~ 0 i —7;0n . (64)
~ —ria; —Tiay T+ 1y (al + al)

Figure 6 shows an example of the auto-correlation fields generated by a z-coordinate
and a pP-coordinate version of the 3D L;-filter. The upper panel shows a meridional-vertical
section of a typical background temperature field through 110° W in the eastern Pacific basin.
The corresponding potential density profile is very similar (i.e., the isopycnals are only weakly
modified by salinity). The background field actually corresponds to the analysis at the end
of a one-month 4D-Var analysis of in situ temperature observations, as described in Weaver
and Vialard (1999). The longitude 110° W coincides with a particular section of the Tropical
Atmosphere-Ocean array of moored buoys, the temperature measurements from which were
assimilated in the 4D-Var experiment. In other words, the background profile at 110°W is
already quite close to observations so there may be good merit in building this information into
the background error correlation model. '

The middle panel in Fig. 6 shows the auto-correlation field generated by the separable,
z-coordinate, 3D L;-filter (Eq. (57)) for a point located at 8° N and at a depth of 55 m. The
depth scale and length scale have been set to constant values of 20 m and 4°, respectively.
As the separable filter acts along geopotential surfaces, the resulting auto-correlation field
is insensitive to the background profile, in particular to the strong meridional gradient in the
temperature field between 4° N and 9° N which is associated with the North Equatorial Counter
Current. The bottom panel shows the auto-correlation field obtained using the alternative form
of the 3D L;-filter (Eq. (58)) in conjunction with the isopycnal tensor (64). As expected, the
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correlations are strongest along isopycnal surfaces and fall off rapidly across isopycnal surfaces.
In a 3D analysis, these correlations would essentially define the surfaces over which to smooth
an observation located at the correlation point. Thus, a correlation model based on the lower
panel would clearly be less destructive to the background density profile than a correlation
model based on the middle panel.

The correlations in the middle panel were computed using 10 iterations of the vertical
filter (L?) and 250 iterations of the horizontal filter (Lf). The correlations in the bottom
panel were computed using 8000 iterations of the 3D L-filter, which was roughly the number
required for numerical stability. This represents a substantial increase (roughly a factor of
30) in cost relative to the separable filter, suggesting that alternative (e.g., semi-implicit) time
discretization schemes should be explored as a possibility for reducing the cost of the isopycnal
filter. Furthermore, as the isopycnal correlation model is dependent on the background state,
in a cycling assimilation system the normalization factors would need to be recomputed at
the start of each assimilation cycle, which could only be done feasibly using, for example,
the randomization method described in section 4b. In a z-coordinate correlation model, the
normalization factors must be computed only at the beginning of the first assimilation cycle
(providing the correlation parameters remain time-invariant). In Fig. 6, the normalization
factors were computed using the randomization method with a 100-member ensemble, which
explains why the variance at the correlation point is not exactly equal to one.

6 Concluding remarks

A practical algorithm for modelling a large class of 2D and 3D univariate correlations functions
on the sphere has been described. The theoretical basis of the algorithm lies in considering
the solution of a generalized diffusion equation formed by replacing the Laplacian operator in
the classical diffusion equation by a weighted linear combination of powers of the Laplacian
operator, the weights being analogous to diffusion coefficients. The integral solution of this
equation can be interpreted as a covariance operator on the sphere; the kernel of the covariance
operator is an isotropic covariance function and has an explicit representation in terms of
the zonal spherical harmonics. The fundamental parameters of the correlation model are the
sequence of weighting coefficients multiplied by the total integration time of the generalized
diffusion equation. The practical implementation of the algorithm is iterative and forms a class
of Laplacian-based grid-point filters, one example of which is the basis of the well-known Derber
and Rosati scheme (Derber and Rosati 1989).
The most important features of the algorithm are summarized below.

e The algorithm is easily generalized to account for complex boundary domains and hence
is particularly well suited for modelling correlation functions in ocean data assimilation
applications.

e The shape of the correlation function can be controlled by adjusting the relative weights of
the different terms in the generalized diffusion equation. In general, the more weight given
to the higher order Laplacian terms, the more oscillatory the correlation function. For
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the simplest case in which a zero-weight is given to all but the first-order Laplacian term,
the correlation function is well approximated by a Gaussian (Derber and Rosati 1989).

e The algorithm can be used to represent a class of 1D correlation functions in the vertical
as well as 2D correlation functions over the sphere. This provides the basis of a general
3D correlation operator on the sphere.

e Geographical variations in the length scale and shape of the correlation function can be
accounted for by defining the diffusion coefficients to be a function of the model’s spatial
coordinates.

e The correlation functions can be made anisotropic by stretching and/or rotating the com-
putational coordinate system via a symmetri¢ tensor, as commonly applied in classical
3D diffusion models. In an ocean model, the rotation of the “horizontal” correlation sur-
faces from geopotential to isopycnal coordinates was one particularly attractive possibility
illustrated in this paper.

e The algorithm can be implemented efficiently in most cases. The numerical cost of the
algorithm is largely determined by the minimum number of iterations needed to main-
tain the filter stability, which in turn depends on the specific parameter choices of the
correlation model.
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Appendix: Matching the solution of the heat equation on
the sphere to a Gaussian covariance operator

Consider the function

‘ %) [o%s) In 1
9(0;7) = gaP2(cos0) = > V2n+1 I+E’§”)Y) P?(cos 6) (65)
n=0 n=0 1
where
2
a

Technical Memorandum No. 306 , 23



Si? Correlation modelling on the sphere

L being a length scale to be interpreted shortly. I, +%('y) is the modified Bessel function of

fractional order n + 3 and argument . Equation (65) is a covariance function by virtue of
the positivity of the I, 1(y) for v > 0. Using the expansion (Abramowitz and Stegun 1964,

Formula 10.2.36)
g7 o8t _ Z v2n +1, / ) P3(cos 9) (67)
(65) can be written in the alternative form

S L greost _ Y ycosf
g(eafy)”" Il(’)/) ‘ ' smh’y (68)

The length scale of g(f,~) may be defined following Daley (1991);

0;)
2= -9 907 69
V29(0;7) (69)
The denominator in (69) can be evaluated by applying the Laplacian in spherical coordinates,
1 0 0 1 02
2___ - = ez
vi= a?cos ¢ 8¢ <COS ¢ qﬁ) + aZ cos? ¢ ON2’ (70)

to (68) with 6, the angular separation between points (A, ¢) and (X, ¢'), defined according to
the great circle distance formula

cos = cos ¢ cos ¢’ cos(A — X') +sin ¢ sin¢’. (71)
This leads to
2
z=2. 72
" . (72)

thus the interpretation of L as the length scale of the covariance function represented by g(f,7).
In terms of chordal distance r (Eq. (22)), (68) can be written as

#iriflin) = \/—7116 e = e 73

Hartman and Watson (1974) remark that (30) may be closely matched to (65) by equating
their coefficients on the P? Legendre polynomial,

f),.gT/a —(’Y) _coshy 1
I1( ) sinhy 4’

(74)

the coefficients for n = 0 being already equal to one. For a length scale small compared to the
radius of the earth (y > 1), a first order development of the above equality leads to

T~ —
K 5 (75)

24 : Technical Memorandum No. 306



0

Correlation modelling on the sphere

as in the 1D example. Furthermore, from (73) the variance at any point is

ve

9(0;7) = s 2. (76)

sinh 7y

The covariance operator in (29) can thus be approximated by

2 /672
0T~ 5 [T g 00 d, (77
with L? given by (75).

The gy, in (65) can be evaluated from the modified spherical functions of the first kind us-
ing, for example, the IMSL library. Figure 7, upper panel, depicts the variance power spectrum
of the correlation functions f(0,xT)/f(0,«T) and g(f,v)/9(0,7), as well as their difference.
The lower panel depicts their grid-point values for a length scale of 500 km. A truncation at
wavenumber 106 has been used. The agreement is, as expected, excellent, particularly for the
large scales. The length scale of the truncated function g(f, ) is 500.00 km while it is 500.26 km
for (6, kT). The maximum difference in grid-point space is 107

References

Abramowitz, M. and Stegun, 1., 1964: Handbook of mathematical functions. Dover publica-
* tions, Inc., New York.

Andersson, E., Fisher, M., Munro, R. and McNally, A., 2000: Diagnosis of background errors
for radiances and other observable quantities in a variational data assimilation scheme and
the explanation of a case of poor convergence, @. J. R. Meteorol. Soc., 126, 1455-1472.

Arfken, G., 1966: Mathematical Methods for Physicists. Academic Press Inc.

Barlow, R. J., 1989: Statistics: a guide to the use of statistical methods in the physical sciences.
John Wiley & Son Ltd.

Behringer, D., Ji, M. and Leetma, A., 1998: An improved coupled model for ENSO prediction
~and implications for ocean initialization. Part 1. The ocean data assimilation system. Mon.
Wea. Rev., 126, 1013-1021.

Bell, M. J., Forbes, R. M. and Hines, A., 2000: Assessment of the FOAM global data assimi-
lation system for real-time ocean forecasting. J. Mar. Sys., 25, 1-22.

Bennett, A. F., Chua, B. S. and Leslie, L. M., 1997: Generalized inversion of a global numerical
weather prediction model, II: Analysis and implementation. Meteorol. Atmos. Phys., 62, 129—
140.

Cohn, S. E., Da Silva, A., Guo, J., Sienkiewicz, M., and Lamich, D., 1997: Assessing the
effects of data selection with the DAO Physical-space Statistical Analysis System. Mon. Wea.
Rev., 126, 2913-2926.

Technical Memorandum No. 306 25



S | | Correlation modelling on the sphere

Courtier, P., 1997: Dual formulation of four dimensional variational assimilation. Q. J. R.
Meteorol. Soc., 123, 2449-2462.

Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevié, D, Hamrud, M.,
Hollingsworth, A., Rabier, F. and Fisher, M., 1998: The ECMWF implementation of three
dimensional variational assimilation (3D-Var). Part I: Formulation. Q. J. R. Meteorol. Soc.,
124, 1783-1808.

Courtier, P., Thépaut, J.-N. and Hollingsworth, A., 1994: A strategy for operational imple-
mentation of 4D-Var, using an incremental approach. §. J. R. Meteorol. Soc., 120, 1367-1388.

Daley, R., 1991: Atmospheric data analysis. Cambridge atmospheric and space sciences series,
Cambridge University Press.

Daley, R. and Barker, E., 1999: The NAVDAS Source Book. Naval Research Laboratory,
Monterey California.

Derber, J. and Rosati, A., 1989: A global oceanic data assimilation system. J. Phys. Oceanogr.,
19, 1333-1347.

Derber, J. and Bouttier, F., 1999: A reformulation of the background error covariance in the
ECMWF global data assimilation system. Tellus, 51A, 195-221.

Egbert, G. D., Bennett, A. F. and Foreman, M. G. G., 1994: Topex/Poseidon tides estimated
using a global inverse model. J. Geophys. Res., 99, 24,821-24,852.

Fisher, M. and Courtier, P., 1995: Estimating the covariance matrices of analysis and forecast
error in variational data assimilation. ECMWEF Tech. Memo. No. 220.

Gaspari, G. and Cohn, S., 1999: Construction of correlation functions in two and three di-
mensions. Q. J. R. Meteorol. Soc., 125, 723-757.

Gauthier, P., Charette, C., Fillion, L., Koclas, P. and Laroche, S., 1999: Implementation of
a 3D variational data assimilation system at the Canadian Meteorological Centre. Part I: the
global analysis. Atmosphere-Ocean, 37, 103-156.

Gavart, M. and DeMey, P., 1997: Isopycnal EOF's in the Azores Current Region: a statistical
tool for dynamical analysis and data assimilation. J. Phys. Oceanogr., 27, 2146-2157.

Griffies, S. M., Gnanadesikan, A., Pacanowski, R. C., Larichev, V. D., Dukowicz, J. K. and
Smith, R. D., 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr.,
28, 805-830. '

Hartman, P. and Watson, G. S., 1974: “Normal” distribution functions on spheres and the
modified Bessel functions. Annals of Probability, 2, 593-607.

Hollingsworth, A. and Lonnberg, P., 1986: The statistical structure of short-range forecast
errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111-136.

26 Technical Memorandum No. 306



Correlation modelling on the sphere e

Ide, K., Courtier, P., Ghil, M. and Lorenc, A. C., 1997: Unified notation for data assimilation:
operational, sequential and variational. J. Met. Soc. Japan, 75, 181-189.

Lonnberg, P. and Hollingsworth, A., 1986: The statistical structure of short-range forecast
errors as determined from radiosonde data. Part I1I: The covariance of height and wind errors.
Tellus, 38A, 137-161.

~Lorenc, A. C., 1988: Optimal nonlinear objective analysis. Q. J. R. Meteorol. Soc., 114,
205-240.

Lorenc, A. C., 1992: Iterative analysis using covariance functions and filters. Q. J. R. Meteorol.
Soc., 118, 569-591.

Lorenc, A. C., 1997: Development of an operational variational assimilation scheme. J. Met.
Soc. Japan, 75, 339-346.

Madec, G. and Imbard, M., 1996: A global ocean mesh to overcome the North Pole singularity.
Clim. Dyn., 12, 381-388.

Madec, G., Delecluse, P., Imbard, M. and Levy, C., 1999: OPA, release 8.1, Ocean General
Circulation Model reference manual. Internal report, LODYC/IPSL, France.

Meyers, G., Phillips, H., Smith, N. and Sprintall, J., 1991: Space and time scales for optimal
interpolation of temperature- tropical Pacific Ocean. Prog. Oceanogr., 28, 189-218.

Pacanowski, R. C., 1996: MOM 2 documentation, user’s guide and reference manual. GFDL
Ocean Tech. Rep. 3.1, Geophysical Fluid Dynamics Laboratory/NOAA.

Parrish, D. F. and Derber, J. C., 1992: The National Meteorological Center’s spectral statis-
tical interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.

Parrish, D.'F.7 Derber, J. C., Purser, R. J., Wu, W.-S. and Pu, Z.-X.,1997: The NCEP global
analysis system: Recent improvements and future plans. J. Met. Soc. Japan, 75, 359-365.

Redi, H. R., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12,
1154-1158.

Rabier, F., McNally, A., Andersson, E., Courtier, P., Undén, P., Eyre, J., Hollingsworth, A. and
Bouttier, F., 1998: The ECMWF implementation of three dimensional variational assimilation
(3D-Var). Part II: Structure functions. Q. J. R. Meteorol. Soc., 124, 1809-1829.

Rabier, F., Jarvinen, H., Klinker, E., Mahfouf, J.-F. and Simmons, A., 2000: The ECMWF
operational implementation of four dimensional variational assimilation. Part I: Experimental
results with simplified physics. Q. J. R. Meteorol. Soc., 126, 1143-1170.

Tarantola, A., 1987: Inverse Problem Theory: Methods for Data Fitting and Model Parameter
Estimation. Elsevier.

Technical Memorandum No. 306 : 27



s~ . .
N Correlation modelling on the sphere

Vialard, J. and Delecluse, P., 1998: An OGCM study for the TOGA decade. Part I: role of
salinity in the physics of the western Pacific fresh pool. J. Phys. Oceanogr., 28, 1071-1088.

Weaver, A. T. and Vialard, J., 1999: Development of an ocean incremental 4D-Var scheme
for seasonal prediction. In Proceedings of the Third WMO International Symposium on As-
similation of Observations in Meteorology and Oceanography. 7-11 June 1999, Quebec City,
Canada. ’

Weber, R. O. and Talkner, P., 1993: Some remarks on spatial correlation function models.
Mon. Wea. Rev., 121, 2611-2617.

28 Technical Memorandum No. 306



Correlation maodelling on the sphere

0

T T LA B B R T T T T T T T

T T T T
ft LT

W |

variance

T T
gl

|
i
1
— 1
1070 i
X i
!
]
1
10_6 1 : oo d 1 it a0
1 10 100
wavenumber (n)
‘I_ZIII|IIIll'llll(lllllll!llllll

correlation

~020 0 0 v oo e g e v e e ey

0 10 20 30
8 (degrees)

Figure 1. The variance power spectrum (upper panel) and grid-point values (lower panel) for four different cor-
relations functions f(6; 1T, ..., spT")/ f(0; k1T, ..., spT') generated from Eq. (36). For each correlation function,
the diffusion parameters x,T" have been tuned to give a length scale of L = 500 km. The solid curves correspond
to the near-Gaussian function in Fig. 7 (P = 1 and #;T = 3.08 x 1073). The other curves correspond to param-
eter choices P = 2, k1 =0 and 5,7 = 3.02 x 10~° (dashed); P = 2, 5;T = 1.54 x 1073 and ko7 = 1.39 x 106
(dotted); and P =3, K1 = k2 = 0 and k3T = 3.78 x 1072 (dashed-dotted).
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Figure 2. The auto-correlation field generated by the L-filter (i.e., by applying (46) with P = 1 to the vector
e; = (0,...,0,1,0,...,0)T). The correlation length scale is 4° (upper panel) and 1° (lower panel). The zonal
resolution is 1° and the meridional resolution is approximately 0.5°. The horizontal and vertical axes are in
degrees longitude and latitude respectively. ‘
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Figure 3. The auto-correlation field generated by the Li-filter at three grid-points adjacent to the continental
boundaries. The domain of the ocean model covers the tropical Pacific basin and is closed along all boundaries.
The contour interval is 0.1.
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Figure 4. The relative difference (1 — +/%;/t) between the true normalization factors (1/+/%) for the L-
filter at tracer grid-points in the upper-most level in the model and the constant normalization factor (t =
V27 L) estimated from the analytical solution of the diffusion equation in a boundary-free domain with spatially
homogeneous diffusion coefficient. The boundary conditions used for the L¥-filter assume vanishing normal
derivatives (“no flux”) at the boundaries. The contour interval is 0.1.
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Figure 5. The auto-correlation field generated at three different latitudes (¢ = 0°, 5°N and 15°N) by an
anisotropic version of the L-filter. The contour interval is 0.1. :
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Figure 6. The upper panel illustrates a meridional section of a typical background potential temperature field
in the eastern tropical Pacific (110° W). The middle panel shows the auto-correlation field at a depth of 55m
and latitude 8° N generated by a separable form of the 3D L;-filter (Eq. (57)) defined with respect to the
geopotential coordinate system. The lower panel shows the corresponding auto-correlation field obtained using
the 3D L;-filter (Eq. (58)) defined with respect to an isopycnal coordinate system based on the background
isopycnal surfaces associated with the upper panel.
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Figure 7. The variance power spectrum (upper panel) and grid-point values (lower panel) of the isotropic
correlation functions g(8,)/g(0,7) (solid curve) and f(8,xT)/f(0,kT) (dashed curve). The curves are indis-

tinguishable; the dotted curve is their difference.
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