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ABSTRACT

Weather forecasts are an important input to many electricity demand forecasting models. This study investigates the use of
weather ensemble predictions in electricity demand forecasting for lead times from 1 to 10 days-ahead. A weather ensemble
prediction consists of 51 scenarios for a weather variable. We use these scenarios to produce 51 scenarios for the weather-
related component of electricity demand. The results show that the average of the demand scenarios is a more accurate
demand forecast than that produced using traditional weather forecasts. We use the distribution of the demand scenarios to
estimate the demand forecast uncertainty. This compares favourably with estimates produced using univariate volatility
forecasting methods.

1. INTRODUCTION

Weather variables are used to model electricity demand. Demand forecasts are produced by substituting a forecast
for each weather variable in the model. Traditionally, single point weather forecasts have béen used. In this paper,
we consider a new type of forecast, called weather ensemble predictions. An ensemble prediction consists of 51
different members. Each member is a different scenario for the future value of the weather variable. The ensemble,
therefore, conveys the degree of uncertainty in the weather variable.

We use the 51 weather ensemble members to produce 51 scenarios for electricity demand at lead times from 1
to 10 days-ahead. Meteorologists sometimes find that the mean of the 51 ensemble members for a weather variable
is a more accurate forecast of the variable than a traditional single point forecast (Leith, 1974; Molteni et al.,
1996). In view of this, we consider the use of the average of the 51 demand scenarios as a point forecast of
demand. We use the distribution of the electricity demand scenarios as an input to estimating the uncertainty in
demand forecasts. It is important to assess the uncertainty in order to manage the system load efficiently. A
measure of risk is also beneficial for those trading electricity.

In this paper, we use the electricity demand forecasting methodology of the National Grid Company (NGC) as
a basis for our analysis. NGC is responsible for the transmission of electricity in England and Wales. The
company’s demand forecasts have always been a crucial input to operational planning where the generation output
is scheduled to meet customer demand. However, since the re-structuring of the industry in 1990, and the
introduction of the daily electricity power pool, the NGC demand forecasts have also been used to set the price
of electricity in the pool. With the anticipated new structure of the industry, accurate demand forecasting will also
be required by utilities who will need to predict their customers’ demand, and by those wishing to trade electricity
on financial markets.

Weather ensemble predictions are described in Section 2. Section 3 briefly reviews electricity demand forecasting
before presenting the method and variables currently used by NGC. Section 4 considers how weather ensemble
predictions can be used to improve the accuracy of demand forecasts. Sections 5 and 6 investigate the potential for
using weather ensemble predictions to assess the uncertainty in demand forecasts. The estimation of demand forecast
error standard deviation is considered in Section 5, and demand prediction intervals are the focus of Section 6. The
final section provides a summary and conclusion.
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2. ENSEMBLE WEATHER PREDICTIONS

The weather is a chaotic system. Small errors in the initial conditions of a forecast grow rapidly, and affect
predictability. Furthermore, predictability is limited by model errors due to the approximate simulation of
atmospheric processes in a state-of-the-art numerical model. These two sources of uncertainty limit the accuracy
of single point forecasts, which are generated by running the model at high resolution with best estimates for the
initial conditions (see Figure 1). ' »

Generally speaking, a complete description of the weather prediction problem can be stated in terms of the time
evolution of an appropriate probability density function (pdf) in the atmosphere’s phase space. An estimate of the
pdf provides forecasters with an objective way to understand the uncertainty in single point predictions. Ensemble
prediction aims to derive a more sophisticated estimate of the pdf than that provided by a univariate extrapolation
of the empirical distribution of historic errors. Ensemble prediction systems generate multiple realisations of
numerical predictions by using a range of different initial conditions in the numerical model of the atmosphere, '
which is run at a slightly lower resolution than for the single point forecast. The frequency distribution of the

different realisations, which are known as ensemble members, provides an-estimate of the pdf.

Since December 1992, both the US National Center for Environmental Predictions (NCEP, previously NMC) and
the European Centre for Medium-range Weather Forecasts (ECMWF) have integrated their deterministic high-
resolution prediction with medium-range ensemble prediction (Toth and Kalnay, 1993; Tracton and Kalnay,
1993; Palmer et al., 1993). These developments followed the theoretical and experimental work of, among others,
Epstein (1969), Gleeson (1970), Fleming (1971a, 1971b) and Leith (1974).

Routine real-time execution of the ECMWF ensemble prediction system started in December 1992 with a
31-member configuration (Palmer et al., 1993, Molteni et al., 1996). The number of ensemble members is
constrained by the running time of the atmospheric model. A major upgrade to a 51-member system took place
in December 1996 (Buizza et al., 1998; Buizza, 1998). A further upgrade followed in October 1998, with the
introduction of stochastic physics into the system (Buizza et al., 1999). This aims to simulate model uncertainties
due to random model error in the parameterised physical processes. Ensemble forecasts are produced routinely !
every day for lead times from 12 hours-ahead to 10 days-ahead. Ensemble forecasts of many different weather
variables are archived every 12 hours, and are thus available for midday and midnight. The ECMWF disseminates
ensemble forecasts to the National Meteorological Centers of its European member states, as part of an operational
suite of weather products.

In this study, we have used ensemble predictions generated by the ECMWEF from | November 1998 till 30 April
2000. We limited our study to this period because the introduction of stochastic physics in October 1998
substantially improved the characteristics of the ensemble predictions of surface variables.

2 Technical Memorandum No. 312



0

Using weather ensemble predictions in electricity demand forecasting

pdfo

forecast lead time, ¢

Figure 1: Schematic of ensemble prediction. The initial probability density function, pdf,, represents the initial uncertainties.
From the best estimate of the initial state, a single point forecast (bold solid curve) is produced. This point forecast
fails to predict correctly the future state (dash curve). An ensemble of perturbed forecasts (thin solid curves) starting
from perturbed initial conditions, designed to sample the initial uncertainties, can be used to estimate the probability
of future states. In this example, the estimated probability density function, pdf, is bimaodal. The figure shows that
two of the perturbed forecasts almost correctly predicted the future state. Therefore, at time 0, the ensemble system
would have given a non-zero probability of the future state.
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3. ELECTRICITY DEMAND FORECASTING

In this section, we describe the forecasting process at NGC. We present the modelling approach and the weather
variables in some detail, as they form the basis of our analysis in the remainder of the paper.

3.1 Modelling electricity demand in England and Wales

There is no consensus as to the best approach to electricity demand forecasting. The Puget Power Company in
Seattle organised a 1 day-ahead forecasting competition involving a range of different approaches including: time-
varying splines (Harvey and Koopman, 1993), artificial neural networks (Connor, 1996), multiple regression
models (Ramanathan et al., 1997), judgemental forecasts produced by Puget Power’s own personnel, and Box-
Jenkins transfer function intervention-noise models. The approach taken by NGC is first to forecast the demand
at the 10 or 11 daily turning points and at several strategically positioned fixed points, such as midday and
midnight. These turning points and fixed points are collectively known as cardinal points. Forecasts for periods !
between cardinal points are then obtained by a procedure known as profiling which involves fitting a curve to the
cardinal points (see Taylor and Majithia, 2000). The cardinal point forecasts are produced by separate regression
models which are functions of seasonal and weather variables (Baker, 1985). This method has similarities with
the method of the overall winners of the Seattle competition, Ramanathan et al. (1997), who produced hourly
forecasts by using separate regression models for each hour of the day.

3.2 Modelling midday electricity demand

In this paper, we focus on predicting demand at midday. This is convenient because ensemble predictions are
currently available for midday, although in the future they certainly could be produced for any required period
of the day. Midday is always chosen as a fixed cardinal point by NGC, and so there is no need to perform the
NGC profiling heuristic. Midday is a particularly important period in many summer months because it is often
when peak demand occurs. We follow the procedure of NGC and Ramanathan et al. (1997) and produce a model
for midday based on demand for previous middays and weather variables.

Figure 2 shows a plot of electricity demand in England and Wales at midday for each day in 1999. One clear
feature of demand is the strong seasonality throughout the year which results in a difference of about 500 MW
between typical winter and typical summer demand. Another noticeable seasonal feature occurs within each week
where there is a consistent difference of about 600 MW between weekday and weekend demand. There is unusual
demand on a number of ‘special days’, including public holidays, such as 1 January. In practice, NGC forecasts
demand on these days using judgemental methods. As in many other studies of electricity demand, we elected to
smooth out these special days, as their inclusion is likely to be unhelpful in our analysis of the relationship
between demand and weather.
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Figure 2: Demand for Electricity at Midday in England and Wales in 1999.

Short to medium-term forecasting models must accommodate the variation in demand due to the seasonal patterns
shown in Figure 2 and due to weather. At NGC, demand is modelled using three weather variables: effective
temperature, cooling power of the wind and effective illumination. These variables are constructed by
transforming standard weather variables in such a way as to enable efficient modelling of weather induced demand

variation (Baker, 1985). Effective temperature (TE,) is an exponentially smoothed form of TO,, which is the mean
of the spot temperature recorded for each of the four previous hours.

TE, =170, +1TE

The influence of lagged temperature aims to reflect the delay in response of heating appliances within buildings

to changes in external temperature. Cooling power of the wind (CP,) is a nonlinear function of wind speed, W,,
and average temperature, TO,. It aims to describe the draught-induced load variation.

cp = |Wi(83-T0) if 70,<183 M
0 if 70,2183

Effective illumination is a complex function of visibility, number and type of cloud and amount and type of
precipitation. Since NGC needs to model the demand for the whole of England and Wales, weighted averages are
used of weather readings at Birmingham, Bristol, Leeds, Manchester and London. The weighted averages aim
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to reflect population concentrations in a simple way by using the same weighting for all the locations except
London which is given a double weighting.

Since the aim of this paper is to investigate the potential for the use of ensemble predictions in electricity demand
forecasting, we opted to use only weather variables for which ensemble predictions were available. Ensemble
predictions are available for temperature, wind speed and cloud cover (CC)) at midday and midnight. In view of
this, we replaced effective illumination by cloud cover, and we used spot temperature, instead of average
temperature, TO, to construct effective temperature and cooling power of the wind. We do not feel that this
implies that our modelling was weak because many studies in the literature use only spot temperature to model

electricity demand.

A common approach to electricity demand forecasting is to predict separately the weather related demand and the
non-weather related demand, the ‘base load’. For simplicity, in this paper, we follow the two-stage approach of
NGC. The first stage aims to identify the weather related component by estimating a regression model similar to

the following:
demand, =ag + a; TE, + a; TE,2 +a3CP;+as CC,+ as t+ ag £+ a; £+ as P

+ dg FRI, + ayg SAT, + aj SUN; + app W], + dis WZ, +dig W3, + & (2)

where FRI,, SAT, and SUN, are 0/1 dummy variables for Fridays, Saturdays and Sundays; W/, W2, and W3, are
0/1 dummy variables representing the three summer weeks when a large amount of industry closes; & is an error
term; and the a; are constant parameters. The time polynomial is used to model in a deterministic way the yearly
seasonal effect that was evident in Figure 2. We followed NGC in using data from the previous two years to
estimate the model, and so a quartic time polynomial was appropriate.

The second stage of the approach involves summing forecasts of the weather related demand and the base load.
A forecast for the weather related demand is produced by substituting traditional weather point forecasts in the
following expression taken from the estimated regression model in (2):

weather _related _ demand = &, TE, + 4, TE! + &, CP, + a4, CC, 3)

Forecasts for the base load are produced judgementally. In this study, we predicted base load using a well
specified ARMA-regression model of the following form:

base _demand, = by +b, FRI, + b, SAT, + b, SUN, +b, W2, +b;W3, +¢
E =0 &, tPE,+0 u_ +u,

where u, is a white noise error term and the b;, ¢ and 6, are constant parameters.

An alternative to this two-stage approach is to estimate a single well-specified ARMA-regression model for
demand, which would include weather variables, dummy variables and ARMA terms. However, the danger is that
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the autoregression in the weather variables would be modelled by the autoregressive terms and would thus reduce
the significance of the weather variables. For example, when we estimated a single well-specified ARMA-
regression model for demand, we had to eliminate cooling power of the wind from our model as it was not
significant. The result would be that the model fails to identify correctly the weather related component. This
could then be a disadvantage when forecasting under conditions of unusual weather, where weather was not
conforming to its previous autoregressive structure.

4. USING WEATHER ENSEMBLES FOR DEMAND POINT FORECASTING
4.1 Creating 51 scenarios for weather related electricity demand

A fundamental result in statistics is that the expected value of a non-linear function of random variables is not
necessarily the same as the non-linear function of the expected values of the random variables. Let us reconsider
the forecast of the weather related demand which was given in expression (3). In view of the definition of cooling
power of the wind, given in expression (1), and the presence of the TE,” term in (3), it is clear that the weather
related demand is a non-linear function of the fundamental weather variables: temperature, wind speed and cloud
cover. The usual approach to forecasting the weather related demand in all electricity demand models simply
involves substituting a single high resolution point forecast for each weather variable. Bearing in mind the result
regarding the expectation of a non-linear function of random variables, it would be preferable to first construct
the probability density function for the weather related electricity demand, and then to calculate the expectation.

Although estimation of the density function of weather related demand is not straightforward, weather ensemble
predictions do enable a reasonably sophisticated estimate to be constructed. Since we have 51 ensemble members
for temperature, wind speed and cloud cover, we can substitute these 51 weather scenarios into expression (3) to
deliver 51 scenarios for weather related demand. The histogram of these 51 demand scenarios is an estimate of
the dénsity function. The estimate of the mean is calculated as the mean of the 51 demand scenarios. In Sections
5 and 6, we assess the accuracy of the shape and spread of this estimated distribution. This is less of an issue in
this section, as our aim is to estimate the mean of the density function. Meteorologists often find that the mean
of the 51 ensemble members for a weather variable is a more accurate forecast of the variable than the single high
resolution point forecast. The 51 ensemble members must, therefore, contain information not captured by the
single high resolution point forecast. This provides further motivation for forecasting weather related demand
using the mean of the 51 demand scenarios.

4.2 Comparison of Forecasting Methods

We used 22 months of daily data from 1 January 1997 to 31 October 1998 to estimate model parameters, and 18
months of daily data from 1 November 1998 to 30 April 2000 to evaluate the different forecasting methods. After
eliminating special days from this 18 month period, this gave 500 days for evaluation. We produced forecasts for
each day in our evaluation period from lead times of 1 to 10 days-ahead.

After estimating the regression model and the ARMA model for the two-stage approach described in Section 3,
we produced forecasts by the usual procedure of substituting traditional single high resolution weather point
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forecasts in expression (3) for the weather related demand. Using the same models from the two-stage approach,
we then produced forecasts using the mean of the 51 scenarios for weather related demand.

In order to establish the limit on demand forecast accuracy that could be achieved with improvements in weather
forecast information, we produced demand ‘forecasts’ using the same two-stage approach with actual observed
weather substituted for the weather variables in the weather related demand expression in (3). Clearly this level
of weather forecast accuracy is unattainable, as perfect weather forecasts are not achievable.

In order to investigate the benefit of using weather-based methods at different lead times, we produced a further
set of benchmark forecasts from the following well-specified model that does not include any of the weather
variables:

demand, =cy +c¢, FRI, + c, SAT, + ¢; SUN, +c, W2, +c; W3, + ¢
E=QEL TP € T Y U TU,

where the c;, ¢; and ¥ are constant parameters.

Figure 3 shows the mean absolute percentage error (MAPE) results for the four different methods. We use the
MAPE summary measure because it is used extensively in the electricity demand forecasting literature. It is widely
accepted that, for 1 day-head forecasting, a weather-based method is preferable to a method that does not use
weather information. Indeed, all of the methods entered in the Seattle based | day-ahead forecasting competition
used temperature as an explanatory variable (Ramanathan et al., 1997). We are not aware of a consensus of
opinion regarding lead times up to 10 days-ahead. Our results show that the weather-based methods comfortably
dominate the method using no weather variables at all 10 lead times.

It is interesting to note from the MAPE results that, for day-ahead demand forecasting, there is very little
difference between the performance of the methods using weather forecasts and that of the benchmark method
using actual observed weather. The difference increases steadily with the lead time due to the worsening accuracy
of the weather forecasts.

The results show that using weather ensemble predictions, instead of the traditional approach of using single
weather point forecasts, led to improvements in accuracy for almost all the 10 lead times. These improvements
increased with the lead time, and brought the MAPE results noticeably closer to those of the method using actual
observed weather. For lead times of 4 days-ahead or more, the accuracy of the new approach is as good as that
of the traditional approach at the previous lead time. This could be described as a gain in accuracy of a day over
the traditional approach.
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Figure 3: MAPE for electricity demand point forecasts for post-sample period, November 1998 to April 2000.

5. USING WEATHER ENSEMBLES FOR ESTIMATING THE SPREAD OF DEMAND
FORECAST ERROR

We now turn our attention to estimating the uncertainty in demand forecasts. In Section 6, we consider the
estimation of prediction intervals. In this section, we aim to estimate the spread (standard deviation) of the
probability distribution of demand forecast error. Since the method using weather ensemble predictions as input
produced the most accurate post-sample forecasts in the previous section, we focus on estimation of the spread
of the post-sample errors from this method.

The approach that we take is to model the spread in a series of historic post-sample forecast errors. This was also
the approach taken by Engle et al. (1993). We compare a variety of univariate and multivariate methods. The
multivariate methods incorporate weather ensemble information in the estimate of the error spread. We consider
a range of lead times, unlike Engle et al. who focused only on [ day-ahead forecasting. For k day-ahead
forecasting, we produce k day-ahead variance forecasts in order to evaluate strictly post-sample estimation
accuracy.

Technical Memorandum No. 312 9
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5.1. Univariate methods for estimating demand forecast error spread

The simplest estimate of future error standard deviation is the standard deviation of previous forecast errors. For
each lead time, k, we calculated the variance of the k day-ahead errors resulting from the estimation period of 22
months, 1 January 1997 to 31 October 1998. These variances were then used as forecasts for each day in the
remaining 18 month period. We term this estimator naive because it assumes the variance is constant over time.

A simple approach, which allows the estimator to adapt over time, is to estimate future k day-ahead variance as
the simple moving average of recent squared k day-ahead errors, e,. This estimator is often used to forecast the
volatility in financial returns. We arbitrarily decided to use a 14 day simple moving average. We call this estimator

smal4.

Another estimator, which is often used in volatility forecasting, is the exponentially weighted moving average
(ewma) of recent squared errors. We optimised the smoothing parameter, ¢, separately for all lead times. The
ewma day-ahead estimator is calculated as:

67 = ae’, +(1-a)6’,

An alternative to the ad hoc methods described so far is a statistical modelling approach. Generalised
Autoregressive Conditional Heteroskedasticity (GARCH) models are widely used to model volatility in finance
(see Engle, 1982; Bollerslev, 1986). GARCH models express the conditional variance as a linear function of
- lagged squared error terms and lagged conditional variance terms. For example, the 1 step-ahead GARCH(1,1)

variance forecast is given by

A2 2 ~2
o, =0, +a,¢e_, +B, 6.,

Using the standard set of GARCH diagnostics and tests, we fitted an appropriate GARCH model to the set of
forecast errors from each of the 10 lead times. We are not aware of other studies that have fitted statistical models
to post-sample forecast errors from lead times other than 1 step-ahead. An interesting issue arises in fitting
statistical models to k step-ahead errors. The series of k step-ahead errors from an optimal predictor is likely to
possess autocorrelation which can be described by a moving average process of order k-1 (see p. 130, Granger
and Newbold, 1986). This was evident in our forecast errors. In fitting the GARCH models, we controlled for this
by fitting ARMA-GARCH models, where the ARMA component was an MA(k-1) process for the series of & day-
ahead errors. In using the GARCH model for prediction, the MA(k-1) components play no part as the prediction
is for k days-ahead.

5.2. Using weather ensemble predictions to estimate demand forecast error spread

If there is a strong degree of uncertainty in the weather variables, then there will be a strong level of uncertainty
in the demand forecasts. Therefore, there is strong motivation for using a measure of weather forecast uncertainty
to model the uncertainty in the demand forecasts. Weather ensemble predictions provide information regarding
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the uncertainty in weather, so the issue is how best to use this information to model demand forecast uncertainty.
The spread of the 51 demand scenarios, discussed in Section 4, conveys the uncertainty in the weather component
of demand. We calculated the standard deviation, ogys,, of the 51 scenarios for each day and for each of the 10
lead times. However, this is likely to underestimate the standard deviation of the demand forecast error because
it does not accommodate the uncertainty due to the model error and the parameter estimation error associated with
expressions (2) and (3). In view of this, for each lead time, we performed a linear bias correction by regressing
the absolute value of forecast error on ogys,. We used the first 9 (1 November 1998 to 31 July 1999) of the 18
months of ensemble predictions to estimate the bias correction model parameters. The bias corrected estimator
is of the form:

Explanatory variables can be included in GARCH models. Since there is likely to be useful information in the
weather ensemble predictions that is not captured by the univariate time series extrapolation of the GARCH

model, we estimated GARCH models with O'ENS,, as an explanatory variable. In this paper, we refer to these

models as mixed GARCH models. The day-ahead GARCH variance forecast is then given by
6 =ay+ael, + B,6], +7,SAT, + 7’201%:Ns,: (4)

We experimented with additional explanatory variables but the dummy variable for Saturdays, SAT,, was the only
one that was significant. The coefficient of ogys, was significant in the model for each of the 10 lead times. As
with the bias correction parameters, we used 9 of the 18 months of ensemble predictions to estimate the model
parameters. Engle et al. (1993) modelled prediction day-ahead error spread in terms of independent and lag
variables using the absolute value of the error as dependent variable. However, they did not have access to weather
ensemble predictions, and so their choice of regressors differed from those in expression (4).

5.3. Combining standard deviation estimators

If several forecasts are produced for the same period from different information sources, then a combination of
the forecasts may be able to synthesise this information to deliver an improved prediction (Bunn, 1989).
Combining is, therefore, an alternative to the mixed GARCH model for bringing information fogether from the
ensemble predictions and from the history of the spread of the forecast errors.

To select a univariate method for combining, we compared accuracy on the same 9 months of data used to
estimate the bias correction parameters (1 November 1998 to 31 July 1999). The smal4 method was overall the
most accurate so we included this estimator in the combination. We generated simple average and regression
combinations of the smal4 estimator with the bias corrected ozys, estimator. The simple average is the simplest
and most widely used combining approach. It is considered to be robust since the weights are not estimated and
sum to one. The obvious disadvantage of the simple average combination is that equal weights will be
inappropriate when one forecast tends to be superior to the other. Granger and Ramanathan (1986) propose the
use of unrestricted regression to derive combining weights:

Technical Memorandum No. 312 11
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O, = wy +w 0, +w, 5y,

Although multicollinearity can be a problem for this approach, it has the advantage of being able to correct for
bias in the individual forecasts, unlike the many combining methods that restrict the combining weights to sum
to one. The regression parameters were estimated using the 9 months of data from I November 1998 to 31 July
1999.

5.4. Comparison of standard deviation estimators

We evaluated post-sample forecasting performance for the 10 standard deviation estimators using the 9 month
period from 1 August 1999 to 30 April 2000. After eliminating special days, this period consisted of 252 days.
Table I shows the results for the R* evaluation diagnostic. (In the remainder of this paper, we present results in
tables, as there are too many methods to permit graphical comparison.) The R? is the coefficient of determination
from a LS regression of the absolute value of the post-sample forecast error on the volatility estimator; high values
are preferable. The measure is often used to evaluate volatility forecasts in finance (see Jorion, 1995, and Taylor,
1999). The absolute value of the error acts as a proxy for the unobservable standard deviation. The regression
corrects for any bias and the R*measures the degree to which the estimator varies with the spread of the error. It
is, therefore, a measure of the information content of the estimator. Typically, the R? values are very low. For
example, Jorion (1995) recorded values of between 1.9% and 5.2% in his work with foreign exchange futures.

Lead time (days)
1 2 3 4 5 6 7 8 9 10
Univariate
naive 00 00 00 00 00 00 00 00 00 00
smai4 20 17 09 03 05 11 21 47 71 100
ewma 27 21 18 00 00 00 00 43 0.0 00
garch 22 44 25 01 05 09 18 20 43 09

Ensemble based
stdev of scenarios 17 54 20 35 40 64 75 119 116 7.1
bias corrected stdev 1.7 54 20 35 40 64 75 119 116 7.1

mixed garch 17 77 20 35 43 64 75 124 124 838
Combining sma14 and stdev of scenarios

average 29 37 17 18 17 64 46 96 116 11.0
regression 30 60 23 35 39 32 6.7 120 121 85

Table I: & measure for forecast error standard deviation estimation methods for post-sample period, August 1999 to April
2000.
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The R for the naive estimator was zero for all lead times since it does not vary during the 9 month evaluation
period. The smal4 estimator outperformed the other univariate methods beyond 3 days-ahead. The results show
that the three weather ensemble based methods comfortably outperformed all the univariate methods at almost
all the lead times. The results for the standard deviation of scenarios method and the bias corrected method are
identical since the R> measures covariation after performing a bias correction on the estimator. The regression
method tended to be the better of the two combination methods. Overall, there is little to choose between the
regression combination, the bias corrected standard deviation of scenarios method and the mixed GARCH
approach. However, the bias corrected standard deviation of scenarios approach is the simplest to compute, and
S0, on the basis of the R? measure, we feel that this is the most attractive method of the ten considered.

Table Il shows the post-sample evaluation results using the following mean absolute error (MAE) evaluation
diagnostic; low values are preferable:

T
MAE = }V;”e"l*a"l

Lead time (days)
1 2 3 4 5 6 7 8 9 10
Univariate
naive 401 401 421 458 456 470 484 498 512 542
smat4 408 405 433 471 463 462 477 480 482 476
ewma 389 386 413 464 443 473 472 481 510 531
garch 399 377 394 431 424 430 444 469 469 498

Ensemble based
stdev of scenarios 449 457 460 457 451 446 464 485 499 515
bias corrected stdev 361 367 397 432 417 426 430 432 451 479

mixed garch 361 380 397 432 411 426 430 436 455 481
Combining smai4 and stdev of scenarios

average 376 379 408 443 432 426 445 440 450 459
regression 357 - 365 396 435 415 437 431 433 450 473

Table Il: MAE (megawatts) for forecast error standard deviation estimation methods for post-sample period, August 1999
to April 2000.

Unlike the RZ, the MAE does not correct for bias, and so the results of Table II are a more straightforward
reflection of forecasting performance. The most accurate univariate method is GARCH. In view of the R? results,
it is perhaps surprising to see that smal4 is the poorest of the univariate methods for the first five lead times; there
must be a degree of bias in smal4 at these early lead times. In Section 5.2, we anticipated that bias would be a
major issue for the standard deviation of scenarios method. Comparing the fifth and sixth rows of results in Table
I, we can see that the MAE results for this estimator notably improve with the application of the bias correction.
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The bias corrected standard deviation of scenarios method outperforms the univariate methods and it also tends
to outperform the mixed GARCH method. The results for the combination methods show that there was little
benefit in combining over simply using the bias corrected standard deviation of scenarios approach.

6. USING WEATHER ENSEMBLES FOR ESTIMATING DEMAND PREDICTION
INTERVALS

The most common way of conveying the uncertainty in a forecast is a prediction interval. In this section, we
consider a number of ways of estimating prediction intervals for electricity demand forecasts. Although 95% and
90% intervals are most common in the research literature, Granger (1996) suggests that 50% intervals are also
widely used by practitioners. He points out that 50% intervals are more robust to distributional assumptions and
are less affected by outliers. He criticises 95% limits for often being embarrassingly wide, and thus not very
useful. In order to consider both the tails and the body of the predictive distribution, we focus on estimation of
50% and 90% intervals. More specifically, we evaluate different approaches to estimating the bounds of these
intervals: the 5%, 25%, 75% and 95% quantiles. The 6% quantile of the probability distribution of a variable y is
the value, Q(8), for which P(y<Q(8))=6.

6.1. Estimating quantiles using the standard deviation estimators

The standard deviation estimators, investigated in Section 5, can be used as the basis for estimating the quantiles.
A common approach to generating interval limits is to assume that the conditional distribution is Gaussian. For

example, the 95% quantile is estimated using 1.645&,. An alternative for estimating the 6% quantile is to
multiply each standard deviation estimator by the 6% quantile of the empirical distribution of the corresponding
standardised forecast errors, ¢,/ &, . Gaussian and empirical estimators were used by Granger ef al. (1989), and

both were implemented in this study.

6.2. Estimating quantiles using the distribution of the weather-related demand scenarios

The distribution of weather related demand scenarios underlies the better standard deviation estimators in
Section 5. In view of this, one might surmise that the quantiles of this distribution would be useful for estimating

the quantiles of the predictive distribution. One approach is simply to use the quantiles, Qs (@), of the
distribution of scenarios as estimates of the quantiles of the forecast error distribution. It seems likely that this will
deliver biased quantile estimates, as the spread of the predictive distribution is likely to be wider than the spread

of the scenario distribution. Therefore, we applied a bias correction to the quantile of the distribution of demand
scenarios. We used quantile regression to perform bias correction, as proposed by Granger (1989). The forecast

error series was used as dependent variable and Q,,(6) as regressor. The form of the resultant bias corrected

estimator was then:

0,0)=G+bQ s, (0)
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Since quantile regression is not well known, a brief description here is probably useful. Koenker and Bassett
(1978, 1982) developed the theory of quantile regression for the estimation of the quantiles of a variable, Ve
Suppose that the 8% quantile of y, can be written as a linear function of explanatory variables. Let us express these
variables as elements of a vector x,.

0,01x,)=x,p6) (5)

where f(6) is a vector of parameters dependent on 6. Koenker and Bassett (1978) defined the Gth regression

quantile (0<6<1) as any solution, (6), to the quantile regression minimisation:

mﬂin ( SOy -xpBl+ Ya-0)ly, _xug!]

tly zxp ty <xp

Koenker and Bassert (1982) showed that quantile regression delivers parameters that asymptotically approach the
parameters, (6), in (5) as the number of observations increases.

The common procedure for building an explanatory model for a variable is to look for a relationship between past
observations of that variable and past observations of potential explanatory variables. This is not a feasible
procedure for building a model for the quantiles of a variable because past observations of the quantiles will not
be available, as they are unobservable. The appeal of quantile regression is that past observations of the quantiles
are not required. Instead, the variable itself, y,, is regressed on explanatory variables, x;, to produce a model for
the quantile. The software packages STATA (Stata, 1993) and SHAZAM (White, 1997) perform quantile

regression.
6.3. Combining quantile estimators

We combined a univariate quantile estimator and the bias corrected quantile of the distribution of weather-related
demand scenarios. The smal4 with empirical distribution was chosen as the univariate estimator in order to be
consistent with the spread estimator study of Section 5. We used simple average and quantile regression
combining which was proposed by Granger et al. (1989). The latter involves the quantile regression of the forecast

error series on two quantile estimators, @, (@) and Q,, (@), to deliver an estimator of the form:

0,(0) =wy + w, 0, ©0) +w, 0, 6)

6.4. Comparison of quantile estimators

The most popular measure of quantile estimator accuracy is the percentage of observations falling below the
quantile estimator. For an unbiased estimator of the 6% quanﬁle, this will be 6%. This criterion is used extensively
for evaluating quantile estimators and prediction intervals (e.g. Granger et al., 1989; Taylor and Bunn, 1999).
In this paper, we use this measure as a basis for comparison of the estimators.
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Table Il compares estimation of the 5% quantiles at the 10 different lead times (1 to 10 days-ahead) for the post-
sample period of 9 months, August 1999 to April 2000. The table shows the percentage of post-sample forecast
errors falling below the quantile estimators. The asterisks indicate the entries that are significantly different from
the ideal value at the 5% significance level. The acceptance region for the hypothesis test is constructed using a
Gaussian distribution and the standard error formula for a proportion. The cluster of asterisks in the first six rows
of values in Table III highlights the strong tendency for the estimators using the Gaussian assumption to
underestimate the width of the forecast error distribution. Four of the six estimators based on standard deviation
estimators performed better with the empirical distribution of standardised forecast errors than with the Gaussian
distribution. A notable exception is the naive standard deviation estimator with the Gaussian distribution, which
compared favourably with the best of the other estimators. In Section 5.2, we discussed how the spread of the
distribution of demand scenarios is likely to underestimate the spread of the forecast error distribution. In view
of this, it is not surprising that the results are very poor for the estimator which was constructed simply from the
quantiles of the standard deviation of the 51 weather related demand scenarios; the width of the predictive
distribution was heavily underestimated. However, the bias correction led to a notable improvement. The
combination methods perform reasonably well. It is not easy to see which of the 16 methods is best overall.

Lead time (days)
1 2 3 4 5 6 7 8 9 10

St dev estimators with Gaussian

naive 56 52 67 67 56 60 60 48 48 5bH2
smal4 67 56 60 56 79 87 83 79" 6.7 63
ewma 60 48 b2 b2 71 60 60 6.0 b2 48
garch 48 6.3 87 95% 8.7 9.4* 107 1277 9.9* 12.7%
bias corrected stdev 10.3* 7.9* 95 83 7.9 9.1* 9.1* 10.3* 10.7* 10.7*
mixed garch 40 40 741 83* 87 7.4 127 12.3° 13.5% 143"
St dev estimators with empirical

naive 44 44 32 44 40 36 44 32 32 20
smai4 52 44 40 b2 63 83" 79 67 b2 b2
ewma 63 75 40 48 40 36 40 32 36 24
garch 44 36 28 48 44 44 44 32 36 20°
bias corrected stdev 36 32 24 44 40 28 32 36 52 b6
mixed garch 60 28 32 44 40 48 48 40 63 6.0

Demand scenario quantile
scenario qu 43.7* 46.0* 27.0* 25.0* 20.6* 20.6* 16.7* 20.6* 17.9* 17.9"
bias corrected scenarioqu 44 36 32 40 44 28 36 28 36 44

Combining bias corrected scenario quantile and sma14 with empirical
simple average 44 36 32 48 56 44 52 44 36 40
guantile regression 44 36 52 40 56 63 40 52 40 44

Table Hl: Percentage of errors falling below estimates of 5% forecast error quantile for post-sample period, August 1999
to April 2000 indicates significant at 5% level.
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Table IV compares post-sample performance for the 25% quantile. For this quantile, the use of an empirical
distribution with the standard deviation estimators is clearly preferable to the Gaussian assumption. The fact that
this was not so clearly the case for the 5% quantile contradicts Granger’s (1996) comment that 50% prediction
intervals, and hence 25% and 75% quantiles, tend to be more robust to distributional assumptions than intervals
with bounds in the tails of the distribution. Overall, the standard deviation estimators with empirical distribution
and the combinations perform relatively well.

We do not report the detailed results for the estimation of the 75% and 95% quantiles as the relative performances
of the estimators were broadly similar to the results for the 25% and 5% quantiles, respectively. We chose to
report the 5% and 25% results as the lower half of the distribution tends to be more important for electricity
demand scheduling purposes; the problems caused by a shortfall in electricity availability tend to be more serious
than those resulting from an oversupply of the same size.

Lead time (days)
1 2 3 4 5 6 7 8 9 10

St dev estimators with Gaussian

naive 30.6° 31.7* 33.3* 286 282 27.8 27.0 282 282 278
smal4 29.0 36.1" 34.9* 30.2 31.0* 294 30.6* 29.0 27.8 282
ewma 30.6* 34.1* 33.7* 282 29.4 26,6 270 286 274 282
garch 30.2 35.3* 36.9* 32.9* 31.7* 32.5* 30.6* 33.3* 31.7* 31.7*
bias corrected stdev 34.5* 36.5* 35.7* 32.5* 32.1* 31.7* 31.7* 34.5* 337+ 32.5*
mixed garch 294 34.1* 34.9* 31.3* 33.3* 30.6* 35.7* 35.7° 35.3* 36.1*
St dev estimators with empirical

naive 290 274 218 246 234 218 230 250 282 270
smai4 274 302 278 262 262 250 270 262 262 262
ewma 294 31.0° 278 246 234 218 238 250 274 278
garch 278 254 238 246 226 210 234 250 258 278
bias corrected stdev 286 254 250 214 246 218 246 242 258 290
mixed garch 286 262 222 246 254 202 258 234 278 306"

Demand scenario quantile
scenario qu 52.0* 53.6* 31.3* 37.7* 25.4 329* 234 30.6* 222 270
bias corrected scenarioqu  29.0 266 258 226 214 202 214 21.8 226 246

Combining bias corrected scenario quantile and sma14 with empirical
simple average 274 274 282 226 242 222 234 222 226 262
guantile regression 270 266 27.0 23.0 258 234 242 234 218 230

Table IV: Percentage of errors falling below estimates of 25% forecast error quantile for post-sample period, August 1999
to April 2000. indicates significant at 5% level.
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To summarise the relative overall performance for the methods at the different lead times, we calculated chi-
squared goodness of fit statistics. For each method, at each lead time, we calculated the statistic for the total
number of post-sample forecast errors falling within the following five categories: below the 5% quantile
estimator, between the 5% and 25% estimators, between the 25% and 75%, between the 75% and 95%, and above
the 95%. Table V shows the resulting chi-squared statistics. The asterisks indicate significance at the 5% level.
Unfortunately, we cannot sum the chi-squared statistics across lead times to give a single summary measure for
each of the estimators because the chi-squared statistics for the different lead times are not independent. The
results show that the use of an empirical distribution is preferable to using a Gaussian distribution. Of the
estimators that used an empirical distribution, we would tentatively suggest that the GARCH estimator had the
most consistently good performance across the lead times. Perhaps, not surprisingly, the performance of the
estimators tends to weaken with the longer lead times. The simple average combination performs the best for two
lead times, the quantile regression combination is the best for three lead times, whilst none of the other methods
is the best for more than one lead time. This suggests strong potential for combining a univariate estimator with

one based on weather ensemble predictions.

Lead time {(days)

1 2 3 4 5 6 7 8 9 10
St dev estimators with Gaussian
naive 103" 10.4* 122 7.1 2.6 2.7 2.2 6.5 6.5 7.8
smai4 14.8* 25.1* 25.2* 16.7* 21.9* 20.7* 16.0* 22.3* 151" 243"
ewma 89 18.1* 195 6.3 6.3 2.2 3.6 8.7 6.8 16.1*
garch 10.9* 20.1* 323* 277 16.0* 24.2* 34.0¢ 60.3* 423 75.8"
bias corrected stdev 28.5~ 245 31.9* 205* 16.4* 17.7* 28.3* 48.9* 85.0¢ 89.0"
mixed garch 12.8¢ 19.1* 20.3* 14.6* 20.2* 10.7* 89.9* 91.6* 132.6* 172.1"
St dev estimators with empirical
naive 4.9 9.4 4.6 11 1.1 1.8 3.7 59 11.00 18.1*
smal4 1.3 8.1 7.3 0.8 25 13.4* 11.6* 9.9* 11.5* 23.6°
ewma 86 10.4* 4.8 2.0 1.1 1.8 10.00 4.7 9.2 26.3*
garch 341 7.9 4.1 0.7 0.9 3.1 4.3 5.9 46 20.77
bias corrected stdev 7.2 6.9 5.6 2.1 1.1 3.1 4.9 7.0 105 31.0"

mixed garch 38 106 35 1.1 0.8 4.4 83 11.6° 344" 41.57

Demand scenario quantile
scenario qu 1122.2*1165.8*1334.4* 639.2* 1536.0" 676.6* 1240.3* 831.7* 1167.4"1465.5"

bias corrected scenarioqu 4.5 7.5 3.8 2.8 1.7 5.3 2.5 3.3 28 34.7

Combining bias corrected scenario quantile and smai4 with empirical
simple average 2.2 5.4 6.7 1.0 0.8 1.8 5.4 3.2 40 208"
quantile regression 1.8 9.9+ 122 3.0 0.2 2.6 0.9 0.6 29 5.7

Table V. Chi-squared statistics summarising overall estimator bias for 5%, 256%, 75% and 95% quantiles for the post-sample
period, August 1999 to April 2000. *indicates significant at 5% level.
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The percentage of errors falling below a quantile estimator evaluates only the bias; we should also consider the
variability of the estimation error. For example, consider estimation of the 5% quantile of the 1 day-ahead
predictive distribution using the following two estimators: naive with empirical and GARCH with empirical. The
first column of results in Table TII shows that 4.4% of the errors fell below both of these estimators. Since the ideal
is 5%, both estimators are a little low on average; they possess a degree of bias. Although the bias is equal for the
two estimators, one would surmise that the GARCH based estimator would vary in accordance with the varying
spread of the distribution better than the naive estimator, which by construction does not vary at all. It would be
useful if we could evaluate this variability characteristic.

In the context of evaluating volatility forecasts, the LS regression R* measure has the appeal that the forecasts are
effectively corrected for bias, so that the R then reflects variation about the bias. In view of this, there is strong
appeal for using a quantile regression R* measure to evaluate quantile estimators (Taylor, 1999). By performing

a quantile regression of the post-sample forecast error series, e, on the quantile estimator, 0, (0), we correct for
bias in the estimator before assessing accuracy. The package STATA (Stata, 1993) provides a pseudo-R* which

is analogous to the R” in LS regression.

pseudo-R*> = 1 - sum of weighted deviations about debiased quantile

sum of weighted deviations about raw quantile

A A

3 e}e,—d—BQA,(e)h ¥ (1-9){e,—07—ﬁQ,(9)

=1-= tle,2a+f0,(8) tly <a+B0,00)
Y Ole-00)+ Y. a-o)-0e0)
1le20(6) the, <0(8)

where @ and 5 are the parameters derived when e, is regressed on Q,(0). The raw quantile, Q(6), is a time-

invariant estimator given by the 6% quantile regression with ¢, as dependent variable, and the inclusion of an
intercept but no regressors.

Tables VI and VII show the pseudo-R? for estimation of the 5% and the 25% quantiles respectively; high values
of the pseudo-R* are preferable. Let us first reconsider the comparison of the performance of the naive with
empirical estimator and the GARCH with empirical estimator for the 5% quantile of the 1 day-ahead predictive
distribution. Earlier we noted that the two were equally biased. The first column of results in Table VI shows that
the pseudo—R2 for the naive estimator is zero, but for the GARCH based estimator, it is 12.7%. These results
reflect the fact that the naive estimator does not vary at all, whilst the GARCH estimator tends to vary with the
unobservable quantile to some degree. Note that each of the quantile estimators which are based on a standard
deviation estimator from Section 5 have the same pseudo-R* when a Gaussian distribution is used as to when an
empirical distribution is used. This is because the quantile regression used to estimate the numerator of the
pseudo-R> performs bias correction and so any constant multiplicative factor used to convert the standard
deviation estimator to a quantile estimator ceases to be relevant in calculating the pseudo-R>.
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Table VI suggests that the estimators based on bias corrected standard deviation of the scenarios and those based
on the mixed GARCH standard deviation tend to have the highest pseudo—Rz. Many of the others perform well
at the early lead times but disappointingly for the longer horizons. Interestingly, the results were very poor for the
two estimators based on the quantiles of the distribution of weather related demand scenarios. Although the bias
results in Table II were quite respectable for the bias corrected version of this 5% quantile estimator, Table VI
indicates that there is really very little covariation between the estimator and the unobservable error quantile. Table
VII shows that the relative performance of the estimators for the 25% quantiles was broadly similar to those for
the 5% quantiles. One notable difference is that the estimators based on the ewma standard deviation estimafor
were comfortably the best for the early lead times. The pseudo—R2 results for the 75% and 95% estimators were
broadly similar to the results for the 25% and 5% quantiles, respectively.

Overall, there is no clear single best method according to the estimation bias results in Table V and the variability
results in Tables VI and VIL The two combinations and the mixed GARCH with empirical distribution approach
perform well. However, in view of its relative simplicity, we feel that there is strong appeal to the estimator
formed by using the bias corrected standard deviation of the weather related demand scenarios with an empirical
distribution.

Lead time (days)
1 2 3 4 5 6 7 8 9 10

St dev estimators with Gaussian or empirical

naive 00 00 00 00 00 00 00 00 00 0O
smat4 112 87 40 53 35 17 11 01 04 26
ewma 110 97 66 60 00 00 01 35 02 12
garch 127 64 58 22 60 07 08 00 03 03
bias corrected stdev 50 59 37 31 59 107 76 83 81 37
mixed garch 111 101 32 41 75 04 83 86 69 46

Demand scenario quantile
scenario qu 02 33 05 02 08 05

1 07 06 07
bias corrected scenarioqu 02 33 05 02 08 05 1

0.7 06 07

Combining bias corrected scenario quantile and sma14 with empirical
simple average 105 99 50 53 20 20 19 02 07 18
quantile regression 70 48 39 27 03 16 12 06 06 05

Table VI: Pseudo R for estimators of 5% forecast error quantile for post-sample period, August 1999 to April 2000.
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Lead time (days)
1 2 3 4 5 6 7 8 9 10

St dev estimators with Gaussian or empirical

naive 00 00 00 00O 00 00 00 00 00 00
smal4 06 0.9 16 07 05 03 05 1.8 26 4.0
ewma 1.7 55 45 48 00 00 06 21 09 31
garch 07 32 40 05 06 04 02 00 18 05
bias corrected stdev 0.2 1.1 1.2 0.8 1.2 1.0 2.3 38 36 23
mixed garch 03 44 13 25 14 04 39 47 38 37

Demand scenario quantile
scenario qu 1.0 0.1 00 00 09 10 02 01 16 0.1
bias corrected scenarioqu 1.0 0.1 00 00 09 10 02 O0f 1.6 0.1

Combining bias corrected scenario quantile and sma14 with empirical
simple average 07 09 16 08 13 06 05 15 3.1 4.4
quantile regression 09 08 16 02 15 05 03 19 30 41

Table VII: Pseudo A for estimators of 25% forecast error quantile for post-sample period, August 1999 to April 2000.

7. SUMMARY AND CONCLUSIONS

We have investigated the scope for using weather ensemble predictions in electricity demand forecasting for lead
times from 1 to 10 days-ahead. We used the 51 ensemble members for each weather variable to produce 51
scenarios for the weather-related component of electricity demand. For almost all 10 lead times, the mean of the
demand scenarios was a more accurate demand forecast than that produced by the traditional procedure of
substituting a single point forecast for each weather variable in the electricity demand model. Since demand is
a nonlinear function of weather variables, this traditional procedure amounts to approximating the expectation
of a nonlinear function of random variables by the same non-linear function of the expected values of the random
variables. The mean of the 51 scenarios is appealing because it is equivalent to taking the expectation of an
estimate of the demand probability density function.

The distribution of the 51 demand scenarios provides information regarding the uncertainty in the demand
forecast. However, since the distribution does not accommodate demand model uncertainties, it will tend to
underestimate the forecast uncertainty. In view of this, we applied a linear bias correction to inflate measures of
standard deviation and quantiles taken from the scenario distribution. The resulting standard deviation estimator
compared favourably with estimators produced using univariate volatility forecasting methods. Using the same
standard deviation estimator as a basis for estimating prediction intervals also compared well with univariate
methods. We, therefore, conclude that there is strong potential for the use of weather ensemble predictions in
improving the accuracy and uncertainty assessment of electricity demand forecasts.
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