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On the accuracy of the semi-geostrophic approximation
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Abstract

The semi-geostrophic model has been widely used to understand atmospheric flows
such as fronts and developing cyclones. However, there have been a number of demonstra-
tions of its lack of accuracy. This paper presents theory and computations to demonstrate
that the semi-geostrophic model is an accurate approximation to the primitive equations
on horizontal scales larger than the Rossby radius of deformation or when the ratio of
horizontal to vertical scales is greater than f/N.

Keywords: Balance; Semi-geostrophic; Accuracy

1 Introdvuction

The semi-geostrophic approximation to the primitive equations was introduced by Eliassen
(1947) and developed and popularised by Hoskins (1975). The semi-geostrophic equa-
tions have a very simple structure which allows solution by analytic techniques using
the geostrophic coordinate transformation, and by geometrical techniques. Cullen et al.
(1987) showd that the geometrical solution technique allows the equations'to give under-
standing of a wide range of mesoscale phenomena, such as the limit on inland penetration
of sea-breezes, barrier jets upstream of orography, and the control of convective mass
transport by the large scale circulation. :

Unfortunately, the semi-geostrophic model has been to some extent discredited by
demonstrations of its lack of accuracy in solving problems where the primitive equations
have smooth solutions and accurate comparison is possible. Examples include the com-
parison of solutions given by a set of different balanced models in Allen et al. (1990),
and comparisons of baroclinic wave simulations by Snyder et al. (1991). The primitive
equations in three dimensions have much more complex solutions than the shallow water
equations, so in this context a highly accurate representation of the solution by a sim-
ple model is undesirable. However, estimates of accuracy are still needed to assess the
usefulness of the predictions made by the simple models, in particular to assess in which
asymptotic regimes the results are likely to be physically relevant.

The original assessment of accuracy by Hoskins (1975) was that for axisymmetric vor-
tices, the worst case for the semi-geostrophic approximation, the error was 10 percent for
cyclonic vortices with Rossby number 0.55 and anticyclonic vortices with Rossby number
0.2. These estimates are consistent with the more recent assessments of accuracy referred
to above. In particular, the data used by Allen et al. contains strong anticyclonic vortices,
which are shown to be the main source of error in the semi-geostrophic approximation.

In this paper we estimate the error by comparing the evolution of the potential vor-
ticity with that of the equivalent potential vorticity derived from the primitive equations.
Clearly a semi-geostrophic model cannot predict those parts of the primitive equation so-
lution which are independent of the potential vorticity. To give a complete picture, we also
compare the complete solution of the primitive equations with that derived by diagnosing -
the potential vorticity from the complete solution and inverting to obtain the dynamical
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fields. This difference is a measure of the motions which are independent of the potential
vorticity. For consistency, we carry out this procedure using the semi-geostrophic inver-
sion procedure. The results show semi-geostrophic theory should be most accurate for
_length scales greater than the Rossby radius of deformation, or aspect ratios less than

f/N. In this regime the potential vorticity is dominated by variations in static stablhty
We then demonstrate by computations with a shallow water model that the theoretical
prediction that the error will be O(Bu?), where Bu = Ro/Fr, is observed in practice.
We also compare the results with those given by a shallow water version of the nonlinear
balance equation. The semi-geostrophic model has larger errors for Bu = O(1), in agree-
ment with the studies referred to above, but the errors become comparable for Bu < 0.2.
We also show that the rate of transfer of energy to 'unbalanced’ motions in the primitive
equations is O(Bu?), given initial data in exact balance and usmg the seml—geostrophm
definition of "balance’. : o

The balance equations ‘as used, for instance, in Holm (1996) and McWilliams et. al.
(1999), are accurate for all Burger numbers. For ease of reference, we analyse the bal-
ance equations using the same methods as applied above to semi-geostrophic theory. The
split between balanced and unbalanced parts of the solution to the primitive equations
is now different, because the inversion procedure is different. The rate of generation of
unbalanced energy from balanced initial data is also different. The evolution error of the
potential vorticity is shown to be O(Ro®) or O(Fr?). However, the balance equations do
not have such a simple solution structure, and spontaneous violations of the solvability
conditions are possible. It remains to be demonstrated that they can g1ve equivalent in-
31ghts to those obtalned by the seml—geostrophlc model.

2 Approx1mat10n of Boussinesq 1ncompre551ble flow
by balanced systems

We use as ’exact’ equations the non-hydrostatic, Boussinesq equations in Cartesian ge-
ometry, with constant Coriolis parameter f. These are sufficiently general to support the
analyses carried out in this paper. : : ‘

: %Y-+kav+v¢— g0k /0o
2= 0 o 1)
Vv=0

The boundary conditions are that there is no normal flow at the rigid upper and lower
boundaries 6T of a region I' in (%,y, 2), and there are periodic boundary conditions in
and y. Here z is a pseudo- height coordinate, as in Hoskins (1975), ¢ is the geopotential,
and 6 is the potential temperature, with basic state value 0o. f and g are the Corlohs
parameter and acceleration due to gravity. Energy conservatlon 1s expressed as

E= / {§(u2+v2+w2) ~ g0z/6}dr = aconstant (2)
T
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These equations also conserve the Ertel potential vorticity

g=(C+).VO=(V x v+ fk).V6 | (3)

We will also illustrate the theory by using the shallow water form of the equatlons
using h as the depth of the fluid:

Dv | -
Dt‘i‘kav—i-th—— 0 . (4)
Oh
i hv =
8 . +V.hv=0
Energy conservation is expressed as
E = /{ ~h(u? + %) + ghQ}d'r = a constant ‘ - (5)
The potential vorticity is
_(€+1)
In either case, we can write the evolutionequation for the potential vorticity as
. bg
at-i—qu-O 7 . 7 : (7)

~ In order to assess how well the solutions of these equations can be apprommated by’
those of a simpler model, we must define specific asymptotic regimes characterised by a
small parameter. Assume horizontal and vertical length scales L and H, and velocity scale
U. The Brunt-Vaisala frequency for equations (1) is N? = g/0,00/0z. Then the Rossby
number is defined by Ro = U/fL, the Froude number for equations (1) by Fr =U/NH,
and for equations (4) by Fr = U/+/(ghg), where hg is the mean value of h. The Burger
number is defined as Bu = Ro/Fr. Note that only f, g, and hg are invariant in time. The
other scaling parameters may change in magnitude during the flow evolution. In particu-
lar, Fr is quite robust for the shallow water equations, as it only varies with U, but is not
robust for the three-dimensional equations where N and H can vary enormously in time.

We now assume that (1) or (4) is approximated by a balanced model which conserves
potential vorticity. g is taken as the ’slow’ variable , as in Vallis (1996). In the balanced
model, the velocity, written as up, can be derived from g by an invertibility relation
(Hoskins et al. (1985)). Initialise both models with the same g. Then all the other fields
required to solve the balanced model can be derived from g. The initial data for the exact
equations is assumed to satlsfy the scaling assumed for the asymptotic regime chosen,
and these scale assumptions are assumed to remain valid in time. Then, if the asymptotic
regime is characterised by a small parameter ¢, we can estlmate the error in evolutlon of L
the potential vorticity by seekmg an estimate

u=up(1 + O(")) ‘ (8)

If this is satisfied, the evolution error in the potential vorticity will also be O(€™). Since
the potential vorticity is assumed to be an unapproximated slow variable, the error in its
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evolution is the important error to estimate in evaluating the accuracy of the balanced
approximation. Another, separate, error measure is the accuracy to which a balanced
state approximates the real state. One suitable measure of this is the difference bwtween
the total energy E of the real state and the energy e of a balanced state having the same
potential vorticity. '

This type of analysis, though useful in understanding the behaviour of the atmosphere
in different regimes, falls well short of a mathematically rigorous analysis, such as those
carried out by Babin et al. (1996) and Embid and Majda (1996). A rigorous approach
would be to initialise both sets of equations with the same values of all variables deribed
by the invertibility principle from a given g. It would then be necessary to show that the
solution of the exact equations diverged at a rate O(¢") from that of the balanced equa-
tions, with given values of f and g, but no constraints on horizontal or vertical scale other
than those satisfied by the initial data. Such an analysis has to deal with the robustness
of the asymptotic regimes. The ability of the exact equations to generate small scales
very fast makes rigorous estimates difficult. : :

‘Tn order to understand how well the potential vorticity evolution is approximated, it
is helpful to relate it to the other variables. This can be done using classical geostrophic
adjustment theory which constructs a geostrophically balanced state with the same po-
tential vorticity as the given data. If Ro « Fr and Bu < 1, the underlying balanced
state has approximately the same pressure and potential temperature field as the general
state.- We can also express this condition as L > Lg, where Lg is the Rossby radius
of deformation. If I < Lg, so Fr « 1,Bu > 1, the underlying balanced state has
approximately the same vertical component of vorticity as the general state but a dif-
ferent pressure and potential temperdture field. This can be quantified using the theory
of geostrophic adjustment for the linearised shallow water equations set out in Haltiner
and Williams (1980). Consider the case where the pressure is a function of z only. The
balanced state is given by :

oy = m ((LR/L)Qv—l—’i(fL)_lh) s o | (9) -
hy = m (~iER/EP s Lo+ 1)
(9) shows that
o= b1 = O(La/D) + O/ DN (10)

where ¢, is the pressure field dedﬁced by the inve;ée geostrophic rglatioh from the wind
field. In the large Burger number case ‘ o

oy = o1 — O((L/ L)) + O((L/Lr))v, (1)

We will generalise these estimates in the next sections.
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3 Accuracy of the semi-geostrophic model

3.1 Formulation and method of analysis

The semi-geostrophic approximation to (1) takes the form

i o
V94 fkxv+Vé= 0

Dt
‘ D8
| 5= 0 (12)
(f'uga _f'u'g: gek/o()) = V¢
Vv=0

The third equation is a statement of the geostrophic and hydrostatic relations. These
equations are valid for variable Coriolis parameter, but for the purposes of this paper we
exploit the ablhty to analyse the equations in a simple way for the special case f constant
In that case we introduce the geostrophic and isentropic coordinates

(X,Y,2) = (& + f gy — " ug, —g6/60) (13)

We can then rewrite (12) as

DR utgy00,0) = =1k x
X= V(g4 +e?) (14)
Vv=" 0

We can interpret this equation as describing motion of particles in (X, Y, Z) space with a
velocity f~!(ug,vg,0). This can be shown to be non-divergent as a function of (X,Y, Z),
so that the Jacobian

_oX,Y,z)y
— O(z,y,2)

s conserved following the motion. This is the potential vort1c1ty form of the equations
mtroduced by Hoskms Detaﬂs of the derlvatlon are glven in Cullen and Purser (1989)

- (15)

We now seek to estimate the accuracy of semi—geost’rophjc theory by cdmparing the
evolution of ¢ with that of an equivalent quantity derived from the primitive equations.
We therefore need to project -the solution of the primitive equations onto semi-geostrophic
balanced states. First define

XY 2 =@ f - i) ()

Then we can rewrite (1) as
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X*
DD + %k xVp= 0
Dw 08¢
o T, = g0/6o (17)
V=0

Equations (17) conserve a potential vorticity

. OX*Y" ZY)

: 18
9(z,y, 2) (18)
Given ¢*, we can reconstruct the rest of the fields by first inverting (18) to give
9(z,y,2)
* 1Y
P = 8X,Y, Z) (19)

This defines the volume of fluid Wthh has spec1ﬁc values of X*. Then construct a state
of the fluid satisfying

(X*,¥",2%) = VP = V(§ %" + I ) (20)

with P convex, by carrying out a projection which moves fluid particles from positions x
to new positions x* in T' while preserving their values of X*. Write this projection as

H(u, v, w,8) = (up,vp,0,0)
x*'=x+(£n,¢)
up(x*) = u(x) — £ (21)
vp(x*) = v(x) + £
Oy (x*) = 0(x)

where the projection is generated by a displacement & = (£,7,() of the fluid which
satisfies V.E = 0. The only boundary condition that can be specified is the statement

(w*,y*; z") er (22)

which is ensured by settmg En = 0 on OI'. This is 31gn1ﬁcantly dlfferent from the
boundary conditions required in other forms of potential vorticity inversion. Shutts and
Cullen (1987) show that this can be interpreted as minimising the energy integral

. 1 ' . C
E= / {52 +0?) - gb2/bo}dr | (23)
T
with respect to particle displacements that conserve X*.

For small departures from balance, the dlsplacement can by estlmated by a linearisa-
tion, scaled by a parameter a. Set : :
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V%p = V.(fv, —fu, ~96/60)
= (fv,—fu,—g6/0y).n on oL (24)
E= (é-v m, C) - CY((f’U, —f'u'v _99/90) - VQS)

Bp

The balanced state can be obtained by iteration of (24) with appropriate choices of .
Write the original, conserved, energy of the primitive equation solution as F, and the
energy after minimisation as e*. Then (E — €*) is a measure of the unbalanced energy,
where balance is deﬁned by seml—geostrophlc theory. The change to the energy in one
iteration 1s : :

o= [t Pt g0)00) ~ (VoY (9

This is negative definite, and vanishes when the balanced state is reached. The relative
changes to the wind and mass fields can be estimated by considering the effect on the two
sides of the thermal wind equation; f 22 5, and ﬂ— 69 .- The local change in v is approximately

(52- + f€), and in 0 is approximately (5> 89 Assummg £/¢ has magnitude L/H, the rela-
tive magnitude of the changes to the thermal wind balance is 1/Bu?. Thus the change to
the pressure field in the low Burger number reglme is O(B u ) as.given by the linear theory.

The magnitude of the displacement = is determined by the amount by Wthh the data
fails to satisfy the geostrophic and hydrostatic relations themselves, which is O(Ro). If
L > Lg, the projection primarily alters the velocity field. The correction required will
be of order RolU, where U is the velocity scale, and the horizontal displacement required
will thus be £ = O(RoU/f). Thus ¢/L = O(Ro)z.

Note that, followmg Shutts and Cullen(1987) (25) can be used to deduce

e—Ot/ AudT : SRR ’('2(;')

where detA = ¢*, where A is the matrix with elements 0X;/8z;. Thus we can estimate
E—e< a/ MNE[2dr S * (27)

-where Ais the largest eigenvalue of A

3.2 Accuracy of the evolution of potentlal vort1c1ty

To estimate-the error in the evolution 1mphed by sem1~geostroph1c theory, assume that we
have computed a solution of the primitive equations (17), with particle positions x(t), and
‘particle values X*(¢). At each time t; we project to the balanced state using (21). This
involves displacing the particles to new positions x*(¢) while preserving their values of
X*,Y*and Z*. Write:g—’; to.express a derivative following the 'minimum energy’ particle
- positions x*, and write the ’velocity’ that achieves this'as V = (U, V, W). The condition
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= 0 implies V.V = 0. The boundary conditions (22) imply that V.n = 0 on 9I.
Then the equations expressing the evolution of this balanced state are

DX .
D kX V= 0_ ‘
D*a
Dt 0 . ,».(28)

(X‘* V2= VP

The * after the term in Vo 1nd1cates that this term.is calculated at x(t) from the
solution of (17), and added to the solutions of (28) at positions x*. This means that (28)
cannot be solved without prior knowledge of the solution of (17). However, (28) can be
solved uniquely once (k x V¢)* is specified. The displacement means that (V@)* is in
general no longer the gradlent of a scalar, and thus (28) does not conserve energy. Thus
the balanced enérgy e* can change in time. Note that this formulation is. very close to
the generalised Lagrangian mean form of equations introduced by Andrews and McIntyre
(1978) and Buhler and McIntyre (1998) in the context -of understanding wave-mean flow
interaction. . 3 o . ; SRR L

-Bquations (28) represent the exact evolution of ¢*, and are equivalent to the generic
equation (7). The semi-geostrophic evolution of a state with the same potential vorticity
can be obtained according to (12) by replacing the term (k x V¢)* in (28) with k x V¢,

‘Where by = fZ(P — ——(mz +4?) and P is the scalar potential appearing in (28). .

Write ’

(Wﬁ V¢~ EV(V¢)+0(I§|) o (29)

Using V¢ = O(fU) + O(Ro), and the previous estimate £ = O(RozL) the second term
can be estimated as Ro?L.fU/L. We can then say that

(Vo)* — Ve = V(1 +O(Ro%)) =V, = - (30)

- As shown in the prev1ous subsection, the difference V(¢ — #) can be estimated as
RoBu2V¢b Thus the overall error in the prediction of the balanced motion is O(Ro?),
provided that Bu? < Ro. For a Rossby number of 0.1, th1s requires a Froude number of
greater than 0.3. If this corresponds to a wind of 10ms~! and a length scale of 1000km,
this implies a vertical scale less than 3.3km for N 2 =10"2

We can make a sharper estimalte' than (29) by time avéraging the unbalanced motiomn.
‘This procedure was used by Babin et al. -(1997) and Embid and Majda (1996) in their
analyses of the shallow water equations. This-is only relevant. if Ro*> > RoBu?. This
‘estimate depends ofi the characterisation of the motion as:a slowly varying pressure field,
with particle positions changing 45 a result of‘both geostrophic motion and inertio-gravity
oscillations superposed on the geobstrophic motion. We first estimate the rate of change
of the pressure field. Using the hydrostatic relation gives -
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. |
X- 3% (31)

[ fuve ~ TEN @

This estimate based on integrating the vertical pressure gradient is appropriate for the
regime L > Lg. In contrast, the effective N 2 and Bu for the vertically meaned motion is
infinite for incompressible ﬂow Since the geostrophlc relation shows that.¢ ~ LfU, (31)
shows that

- 0¢

Bt

The pressure tendency thus has a slower timescale than the inertial frequency by a

factor Bu2. Using the estimate V(¢— ¢p) =~ RoBu?V¢;, the same applies to the tendency
of ¢p. Using (24), we have

~ féu% o | (33)

Pe=2 proEvil) o
_ 9 v o¢
=7, t fut 0EVZ)

The vertical component ¢ of the displacement is chosen to satisfy V.2 = 0. Then we have
from (17), writing a dot for a rate of change following particle p051t10ns

E+ 2+ O(E.Vg—:) =0 | (35)
s : y

2 2V

=0

Use the definition x, = x + &, so that X, = x + E. This equatlon has two tlmescales f -1
and (Bu?f)~! =771, It is easy to see that it has solutions of the form = ' ‘

(En=@mm@e (36

where

ic+ﬁosinft+0(5.v§?):o o @)

Oz

N
3,) =0

All the terms in (37) are con51stent with the slow time scale 7. Thus averaglng over the
period f~! gives

— Eosingt +0(8.V

F=0Bu)E = mmww%) (39

Takmg the time mean of (29) thus improves the estimate of (V¢)*~V¢ to O((RoBu)?).
Since in this regime Ro < 1, the overall error estimate becomes O(RoBwu?), as the term
V(¢ — ) in (30) dominates. This is the prediction we test in our computations.
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3.3 Rate of energy transfer between balanced and unbal-
anced flow

We first estimate the relative contributions to e of the kinetic and potential energy terms
in (23). The available potential energy terms can be estimated from the difference between
[ g6z/6; and the same quantity evaluated from a minimum energy configuration with 6 a
function of z only. This can be shown to give (INH)? ¢y, where ¢, measures the horizontally
varying part of the pressure field. The kinetic energy density can be estimated using the
geostrophic relation as (fL)™2¢, The kinetic energy is thus O(Bu?)e.

The evolution of e can be calculated from (28). Replace X* by the original variables
multiply the first equation by (up,vp) and the second by z and add. Using W = D =, and
the fact that V.Vs = —fUuv, + fVup — gW8/0, integrates to zero, we find that

L Jwwo e (39

This is zero if (V¢)* can be written as Vr for some scalar , because V.(us,vp,0) = 0.
In general, (30) gives (V¢)* = V(1 + O(Ro?)). In the time mean, the difference will be
improved to O((RoBu)?). Thus we have

De
Dt

This suggests that energy will only transfer between the balanced and unbalanced

O(f(RoBa)z) /(ug +bv§) = O(f(RoBu)*Bu?)e (40)

~ flow on a timescale 7(RoBu)~2. Thus in well initialised computations, the rate of gen-

eration of unbalanced energy should be O(RoBu)? . 'We test this in our computations also.

Now calculate the value of E — e which is consistent with the scaling. Allowing for the
relative dominance of the potential energy in the balanced state, and the dominance of
the velocity perturbation in the unbalanced component, this gives £ —e = O((RoBu)?)E.
Equation (40) shows that E — e varies over a time scale 771, which is the 'slow’ tlmescale
for equation (35). The overall picture is thus self—cons1stent .

Using (29), we can also seek a sharper estimate by calculating the condition that
(V¢)* = V to leading order in E. This gives

53 &p  On p 3 d%p _On 0%p
dy dz2 ' By 0z0y 0Oz Oyoz T 8z 8y

This is satisfied for lows independent of one horizontal coordinate. This fits with the
original semi-geostrophic scaling of Hoskins and Bretherton (1972), which permits L to
be arbitarily small in one direction as long as it stays large in the other. The energy esti-
mate shows that a genuinely two- dimensional flow will conserve its balanced energy, and
thus the partition of energy between balanced and unbalanced motion is ﬁxed for all time.

@

It will be of interest to seek other cases where (41) is either zero, or smaller than
would be expected from general estimates. In such cases at S will be small, and if & —e is
initially small, it will only grow slowly, S0 that the ﬂow stays closer to balance than would

- normally be expected ’

10
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The accuracy estimates above agree with the standard asymptotic error estimate,
showing that the latter is consistent. This is because the terms neglected in semi-
geostrophic theory are —D—g%‘l. Since ugy = O(Ro)u, and —,% = O(Ro)f, the neglected
terms are O(Ro)? smaller than the largest retained terms. k |

4 Accuracy of the balance equations

4.1 Formulation and method of analysis

We summarise the accuracy estimates for the balance equations using a similar frame-
work to that set out above for semi-geostrophic theory. This helps to relate the behaviour
of the two models. Vallis (1996) also presents analyses of various forms of the balance
equation based on potential vorticity.

Write the decomposition of the velocity field into rotational and divergent parts as

('u"ra'UTa 0) + ('u’da ’Ude)

u =
Vi (tr,vr,0) = 0. : L (42)
Vi x (ug,vq,0) = 0 ‘

Since V.ug = 0, w is the only ihdependent variable in ug , With,ud and vg deyt,ér_niinéd
from it. Following Holm (1996), we write the Hamiltonian form of the balance equations
as . : s . BN T X

D B S |
—m(ur, vr) + (ur Vitta + vr Vavg) + (= fv, fu) + Vp¢ =0
' pe
m-t W
8 duy
5, 9060t G-

These equations conserve energy (with only the rotational wind appearing in the ki-
netic energy) and potential vorticity

a5 = (V x v, + 1K).V6 (44)

ug is determined implicitly. If ggpg is given, v, and # can be calculated by using the
diagnostic relation obtained from taking the horizontal divergence of (43). wg can be
determined implicitly from the time derivative of this relation. Write these calculations
in the form

(vr,va,0) = B(gag) | N )
Then a natural projection from the solutions of the primitive equations (1) to those
of (43) is to set o ‘ '

Tps(v,0) =Bl T
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4.2 Accuracy of the evolution of potential vorticity

If equations (1 ) and (43) are started with the same potential vo‘rticity, the error in evo-
lution will simply be the error in the advecting velocity, since both models conserve
potential vorticity. Holm (1996) (eq. (5.10)) shows that taking the horizontal divergence
and vertical derivative of the momentum equation in (43) glves an omega equation of the
form

2(92

—5(2)V*w — fP—— +LOT =0 S , (47)

where S(z) is of order N2, and LOT denotes terms of lower order in derivatives of w.
The largest terms in LOT will typically be V2(v, - V6) and f8/82(Vv, - Vv;). These
have magnitudes s HN2U/L? and fU?/(HL?). The ratio of these terms is Ro : Fr?. The
coefficients of w in (43) have magnitudes N?/L? and f2/H?, with ratio Ro? : Fr?. Thus
for Bu < 1, we have w ~ RoUH/L, and for Bu> 1, w~UH/L.

If we derive an equation of the form. (47) directly from (1), we obtain

9% 0w

a2 822

If the solution of (47) is substituted directly into (48), and we asume that the time

variations in LOT are on an advective timescale U/L, then the error in w resulting from

using (47) is O(Fr?) if Bu > 1 and O(Ro?) if Bu < 1. Thus the error in the evolution

of ¢ will be respectively O(Fr?) and'O(Ro ). For Bu =1 the error.is O(qu): O(Fr?).
We will demonstrate the improvement for Bu < 1 in our computations. '

— 8(2)Viw — f2~——+LOT_O (48)

In general, (48) has fast wave solutions which will grow as a result of the time-
dependence of LOT even if absent from the initial data. The asymptotic analysis of
Ford et al. (1999) shows that their growth is at O(Fr?), but their interaction back on
the potential vorticity, which only depends on the time-averaged effect of the waves, is
at O(Fr%). Applying the same argument for Bu < 1 shows that the rate of growth of
inertio-gravity wave energy will be O(Ro%). Embid and Majda (1996) and Babin et al.
(1990 1997) carry out rlgorous analyses of this effect usmg tlme averagmg over the fast
waves. ' : S

5 Computatlonal tests

. B. 1 Numer1ca1 models used

The experiments are designed to test the predictions that the errors in semi-geostrophic
theory scale as O(Bu?) for fixed Ro, and the rate of generation of unbalanced energy from
initialised data is also O(Bu?). We use'a set- of spherical shallow water models. The semi-
geostrophic model is that described and used by Mawson (1996). It uses semi-lagrangian
advection of the primitive variables (ug,vg, h), and an implicit method of calculating (u,v)
to-ensure that the geostrophic relation is satisfied at each new time level. The variables

12
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(h,u,v) are held on a C grid, and (ug,v,) are held on a D grid. The implicit equations are
solved by a multigrid method. The data are initialised by first choosing analytic height
and geostrophic wind fields, and then carrying out the discrete initialisation procedure
set out in Mawson (1996). The initial values of » and v are set by making an initial time
step, and calculating the » and v needed to preserve geostrophic balance.

The primitive equation model is a shallow water version of the implicit version of
the UK Meteorological Office model (Cullen et al. (1997)). It uses a C grid, semi-
lagrangian advection, and multigrid solution of the implicit equations. The nonlinear
balance equations are solved by adapting the primitive equatlon code Equa,tlon (47) in
shallow water form becomes

ghgv V-v—fV.-0u+LOT=0 (49)
This is used to calculate the divergence at each timestep, and then the condltlon vt+5t = vd
is enforced by correcting v, and h iteratively while conserving the potentlal vort1c1ty This

can be achieved by setting

ghoV2D — f2V D = (Mot _ ()t
V- (U, V) = .
R = p(M — pyD 7 (50)
uw ) = (M 4y
v = ot — U

D is a correction with the same dimensions as a divergence.

The initial values are set by carrying out a short initial timestep and performing the
necessary iterative solution.

5.2 Experiment design

The initial data are chosen to give a wavenumber 2 pattern in each hemisphere, with no
height perturbation close to the equator (Fig.1). This is legal initial data for the semi-
geostrophic model which has to have inertially stable data. The data are 1n1t1ahsed for the
sem1—geostroph1c model, and then passed to the primitive equation model Both models

are run for 2 days. The results from the primitive equation model are then initialised us-

ing the semi-geostrophic initialisation procedure, and compared with the semi-geostrophic
results. This gives the evolution error of the semi-geostrophic model. The unbalanced en-
ergy in the primitive equation model is estimated from the difference made by initialising
the day 2 results. The procedure is shown diagrammatically in Fig.2. The evolution error
is B —V, and the unbalanced part of the primitive equation solutions is P — V. .

The same design is used to measure the error of the’ nonlinear balanced ‘model. The’

initialised data used in the first experiment is re-initialised using the nonlinear balance -

model. The primitive and nonlinear balanced models are run for 2 days, and the results
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Figure 1: Initial height data for shallow water tests
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Figure 2: Experimental setup: A-analytic initial data, I-data initialised for balanced model,
B-forecast. using balanced model, P-forecast using primitive equation model, V-initialised end
state from primitive equation model
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compared as above. Since the two initialisation procedures are different, the two primitive
equation runs are also slightly different. '

The base resolution for the experiments was a latitude longitude grid with 96 points
around latitude circles and 65 points between the poles. The results were also generated
using a higher resolution of 192x129 points. Though the general behaviour as the param-
eters were varied was the same for both resolutions, in the semi-geostrophic tests there
were significant differences in individual results. The complete semi-geostrophic experi-
ment was thus also run at the higher resolution, and a further check carried out using a
288x193 grid for one set of parameters. The nonlinear balance model is more compatible
with the primitive equation model. Sample runs with the 192x129 grid showed that it
was unnecessary to repeat the whole experiment at higher resolution.

The experiments were designed to test the effect of varying Burger. number for fixed
Rossby number. Thus the same perturbation height field was used for all runs, but the
mean value was varied from 5760m down to 182.5m. The amplitude of the superposed
wave was £170m, so that the lowest mean valie used is just sufficient to avoid the height
becoming zero. The horizontal velocity had a maximum value of about 10ms~1!. the grav-
ity wave speed associated with the mean height varied from 240ms~ to 42ms~!, Table
1 lists the values used, together with typical Froude and Burger numbers.

o Table 1: Parameters ﬁsed. ;
gom Ro=U/fL Fr=U/\/(g¢)

5760 0.04 0.04
2880 0.04 0.06
1440 0.04 0.08
720 0.04 0.11
360 0.04 0.16

180 004 0.22

5.3 Results
The results for the height evolution errors are shown in Fig.3, with the wind errors in
F1g 4. The results for the measures of 1mbalance are shown in Figs 5 and 6. The experi-
ment was carried out as above with one exceptlon It proved impossible to initialise the
day 2 results from the primitive equation model at high resolution and large values of
-the mean height. using the semi-geostrophic initialisation scheme., which was based on a
local iteration. This was because of the development of significant height perturbations
at the equator, and the availability of only a local iteration to remove negative potential
" vorticity, as described in Mawson (1996). A different, non-local, initialisation algorithm
would be required to resolve this problem. The two parts of the error are therefore plotted

together in. the relevant parts of Figs.3 to 6. Results for 1nd1v1dual cases run at hlgher

resolution are also plotted to validate the results.
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"It is readily seen that the O(Bu?) behaviour expected for the evolution error of the
semi-geostrophic model is clearly demonstrated. The behaviour of the nonlinear balanced
model is consistent with an O(Bu) behaviour of the error for Bu < 1. The much lower
errors for the balanced model for larger values of mean height is consistent with the re-
sults of Allen et al. (1990). The two models have comparable errors once the gravity wave
speed is of the order of 50ms~1

The measures of imbalance also show the expected behaviour. In the semi-geostrophic
case the O(Bu?) behaviour is clearly seen at high resolution, though the low resolution
results are less reliable in this measure. In the balance equation results, the rate of
generation of gravity wave energy clearly reduces for small Bu.

6 Conclusions

We have demonstrated the expected rate of convergence for small Burger number in the
semi-geostrophic model, and shown that the errors are comparable to those of the nonlin-
ear balance equation in the small Burger number regime. This should help to formalise
the applicability of the wide range of analytic and geometric predictions that can be made
using semi-geostrophic theory. We note that neither model shows greater accuracy in pre-
dicting the potential vorticity than in predicting the total evolution. The imbalance errors
and potential vorticity evolution errors are of comparable size for all cases tested. The
results would have to be averaged over the inertio-gravity wave period before we could
expect to demonstrate higher accuracy in potential vorticity evolution. This is difficult
in a real case such as that illustrated because of the wide range of inertio-gravity wave
frequencies present. '
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Figure 3: r.m.s. height evolution errors (m) after 48 hours plotted against gravity wave
speed (ms™!). Stars indicate balance equation results on a 192x129 grid, the diamoend a semi-
geostrophic result on a 288x193 grid. '
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Figure 4: r.m.s. wind evolution errors (ms™)) after 48 hours plotted against gravity wave
speed (ms™!). Notation as Fig.3 ‘
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Figure 5: r.m.s. height imbalances (m) after 48 hours plotted agamst gravity wave speed
(ms™*). Notation as Fig.3 ~
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Figure 6: r.m.s. wind imbalances (ms~!) after 48 hours plotted against gravity wave speed
(ms~1). Notation as Fig.3
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