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Abstract

Although important uncertainties remain concerning the far wing absorbing line shapes
and the effect of clouds, a high standard of accuracy has been achieved by the scattering
line-by-line models for the modeling of the LW radiative transfer (e.g., Moncet and Clough,
1997). However, the definition of an approach that would enable computation times
suitable for climate studies and a satisfactory accuracy, has proven to be a challenge for
modellers. A fast radiative transfer model is tested at ECMWF': NeuroFlux (Chéruy et al.,
1996; Chevallier et al., 1998b). It is based on an artificial neural network technique (the
Multi-Layer Perceptron: Rumelhart et al., 1986) used in conjunction with a classical cloud
approximation (the multilayer grey body model: Washington and Williamson, 1977). The
accuracy of the method is assessed through code-by-code comparisons, climate simulations
and ten-day forecasts with the ECMWF model.

1 Introduction

Parametric representation, or parameterization, is used in numerical modeling of various
atmospheric processes. It involves a statistical analysis, that enables the representation of the
true processes by simpler parametric relations. Three purposes may motivate such an analysis:
(i) getting a better understanding of the system (e.g., Bretherton et al., 1992), (ii) allowing a
computation of the processes, that is faster than the exact formulation (as in numerous radiative
transfer models - Goody and Yung, 1989), (iii) obtaining a simpler system without having to
deal with the complicated details (as in precipitation schemes; e.g. Sundqvist, 1981).

The most accurate as well as the fastest longwave (LW) radiative transfer schemes include
parameterized components. For instance, the current line-by-line computations take into ac-
count every absorption line from every absorbing gas, but usually do not exactly resolve the
contribution of the line wings after a few tens of cm™! off the centre of the lines. The absorption
coefficients outside this interval are parameterized under the form of structureless continua, of
which contribution to the radiation variations is essential (e.g., Clough et al., 1992; Sinha and
Harries, 1997). The high computational burden of the line-by-line codes prevents their use for
most climatic studies and leads to the use of more heavily parameterized schemes. However,
because a minimum accuracy is required, the resulting gain in computing time is still not suffi-
cient and therefore many General Circulation Models (GCMs) reduce the frequency of radiation
computations, compared to the other diabatic computations. This degrades the quality of the
climate simulations (Wilson and Mitchell, 1986; Morcrette, 1999).

The interactions between LW radiation on the one hand and solid and liquid water on the
other hand, add further difficulties to the atmospheric modeling. Indeed, the computational
burden of the most accurate approaches limits their applicability, and furthermore, all the
variables that they need in input are seldom available. This is obvious in the GCMs, where
the subgrid processes, like the distribution of the cloud particles in a vertical layer, are crudely
treated. Some approximations are necessary to deal with this lack of knowledge.

The parameterizations, the temporal sampling and the approximations lead to high uncer-
tainties in the climate studies and in weather forecasts. Therefore, improvement of the LW
radiative codes is a key objective for atmospheric modeling. An original approach has been ini-
tiated at LMD (Chéruy et al., 1996; Chevallier et al., 1998b). It makes use of an artificial neural
network technique: the multilayer perceptron (MLP) as defined by Rumelhart et al. (1986).
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It has been carried out in a highly parameterized scheme called NeuroFlux, that combines the
MLP with a classical cloud approximation: the multilayer grey body model (Washington and
Williamson, 1977). All the parameters in NeuroFlux, several tens of thousands, are inferred
from a series of learning databanks during supervised learning phases (Chevallier et al., 1998Db).
The neural network-based method enables fast computing times: on a 19 vertical layer-grid,
a gain in computation time of at least one order of magnitude compared to the operational
code at ECMWF (European Centre for Medium-Range Weather Forecasts) has been recorded.
Concerning the accuracy, satisfactory results of code-by-code comparisons between Neurollux
and other radiative transfer models, were obtained (Chevallier et al., 1998b). Preliminary tests
of NeuroFlux in the LMD GCM (Sadourny and Laval, 1984) led to further developments of the
method (Chevallier et al., 1998a, Chevallier et al. 1999)

This paper presents the results of the testing of NeuroFlux in the ECMWF GCM in its 31
vertical layer configuration. It is is structured as follows. Section 2 describes the neural network-
based radiative transfer model. Section 3 presents its instantaneous error through code-by-code
comparisons with the ECMWF operational scheme (Morcrette, 1991; Zhong and Haigh, 1995).
The impact of NeuroFLux on climate simulation is evaluated in section 4. Comparisons of
the simulations with ECMWF analyses of the atmosphere and with observations are used in
section 5 to have a quantitative estlmatlon of the uncertamty introduced. Section 6 contains
the conclusions.

2 Prineiples of NeuroFlux

2.1 The multilayer perceptron

- A MLP (Rumelhart et al., 198'6) is an artificial neural network, that realizes a non-linear
application from an input space to an output space. The information is propagated from its
inputs to its outputs by non-linear projections on successive spaces, that transform and filter
it. Each variable of the various spaces is computed by a non-linear (sigmoidal) transformation
of a weighted sum of the variables from the previous space. The weights of the sums are the
parameters of the MLP. They are inferred once and for all during a supervised learning. A
non-linear regression, based on a gradient descent, iteratively adapts the parameters of the
projections, so that together, they achieve an optimal transformation from the inputs of the
learning dataset to its outputs. It should be noted that, due to this statistical technique,
the choice of the learning dataset is of crucial importance for the accuracy of the multilayer
perceptron parameterization. The gradient descent technique requires the sigmoidal function to
be differentiable. Furthermore, the existence of horizontal asymptotes are important to avoid
the propagation of high values in the MLP. In the following, the sigmoidal functions are the
widely used hyperbolic tangent.

The simple structure of the MLP enables fast computing time for the MLP relatively to its
number of parameters. Therefore, the MLP is an interesting tool for parameterization. The
MLP could be used at various stages in parameterized radiative computations, for example for
the computation of transmissions or for the whole flux computations. In NeuroFlux, the MLP
is combined with an other parameterized scheme, the multilayer grey body model, to compute
the fluxes.
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2.2 The multilayer grey body model

The multilayer grey body model does not include any artificial neural network, but rather
relies on a probabilistic approach, common to many LW radiation codes, to treat radiation
through a pile of overlapping cloudy layers. Assuming the hypothesis of a plane parallel atmo-
sphere, the atmosphere is divided into a stack of N horizontal layers, from the surface to the
top of the atmosphere (TOA). In the following, the bottom layer is layer 1, the top layer is
layer N. Following the multilayer grey body approach, clouds are introduced as grey bodies.
Their contribution to the fluxes is determined by their horizontal coverage n; and their LW
emissivity ¢;, in each vertical layer 4 of the model (Washington and Williamson 1977). ¢; can
be derived from the cloud liquid (or ice) water path [; by the following equation:

6 =1—¢" (1)

where £ is the longwave extinction coefficient whose value varies according to the nature (liquid
or ice) of the cloud (Ebert and Curry, 1992). Equation (1) is a simple parameterization of the
scattering effect in the clouds. As its introduction in GCMs is straight-forward, it is used in
most of the present longwave fast schemes. :

This approach leads to the following expressions for the upward and downward LW radiative
ﬂuxes (e.g., Harshvardhan et al., 1987):

. H-1 H
FH(P) = (1-Cu)Fh(P)+ Y (1~ CedFS(P) ] Ci @
k=0 I=k+1
J+1 J
—'L-l—l l:k 1

H (resp. J) is the index of the highest cloudy layer below (resp. above) the level of
calculation, Cy ; is the probability of a cloudy line of sight between the levels k£ and 3, FT(P)
(resp. Fyf(P;)) the upward (resp. downward) flux at pressure level P, if the only cloud in the
atmosphere was a black body in layer k. With this formalism FO and Fi correspond to the
fluxes in the absence of clouds. The FT’s and the Fi’s k > 0, all are quantities of the form:

P or,(P', P, )

+1
Q(P, P,) = /_ e / dv B(Tn) (B, Pu) + [ Bu(Tp) TP (4)

where P and P; are pressure levels at the boundary of an atmospheric layer, v is the
frequency, p the cosine of the zenith angle, B,(Tp) the Planck function at temperature Tp,
7,(P, P', 1) the monochromatic flux transmittance for isotropic radiation.

The Cj;'s in equations (2) and (3), are called cloud fractional coverages. They are functions
of the n’s and of the €’s and depend on the way the cloudy layers overlap. Various overlapping
hypotheses can be taken into account according to the vertical structure of the clouds: for
instance the maximum-random overlap (Geleyn and Hollingsworth, 1979) currently used at
ECMWF.
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According to equations (2) and (3), the LW fluxes in the presence of multilayer grey bodies,
FT and F*, can be deduced from the clear sky fluxes, FOT and FOi , and from the fluxes in presence
of single layered black clouds, Fl and EFr k>0

2.3 The algorithm

. In NeuroFlux, the computation of the F,;r 's and of the F,ci ’s, k > 0, in equations (2) and
(3), is achieved by a series of MLPs, rather than by a physically explicit scheme. Two neural
networks (respectively NN-Clr and NN-CIrt) compute the clear sky part of the LW fluxes
(respectively Fy and Fy). Then a battery of 2 X N neural networks (the NN-Cld’s) computes
" the contribution of every cloudy layer, FkT and F,f , with & > 0. Each neural network among
the NN-Cld’s is dedicated to the calculation of the fluxes, either upward or downward, in the
presence of a single black cloud in a specified layer k. The overall fluxes F" and F' are then
computed according to equations (2) and (3). Thus, NeuroFlux includes (2 + 2 x N) neural
networks. : :

NeuroFlux is currently defined in such a way that each version of the scheme is dedicated
to a specified vertical discretization. If the vertical discretization is changed, the training pro-
cess on the new system has to be conducted again. In this study, the vertical discretization
is defined from the ECMWE GCM with 31 layers: the temperature, water vapour and ozone
concentrations, as well as the cloudiness effective emissivity, are defined in the middle of these.
The mean C O, concentration and relevant characteristics of the surface, namely its tempera-
ture, pressure and mean LW emissivity in the window region (800-1250 cm™1), are also inputs
to the model. The concentration of the minor gases (N,O and CH, for example) and of the
aerosols are set to the mean current level.

2.4 The learning datasets

The choice of the learning datasets has been the most involving part in the development
of the neural netWork—based radiative transfer model. Indeed, because of the high level of
parameterization in NeuroFlux, the accuracy of the scheme dramatically depends on their
statistical characteristics. The latest learning datasets are based on a 6,000 sounding set: the
latter one comes from the sampling of 1,350,000 atmospheric situations from the ECMWF short-
range forecasts. The method is detailed in (Chevallier et al., 1999). The 6,000 soundings are
represented by temperature and water vapour profiles. Among the variables that are necessary
for the radiative computations, some are not archived in the set: the ozone and cloudiness
profiles, the mean CO, concentration and the surface characteristics. The ozone profiles have
been added from a climatology dependent on season and latitude (Fortuin and Langematz,
1994). The mean C'O, concentration, the surface temperature and LW emissivity in the window
region have been introduced by random drawings between selected boundaries, insuring regular
repartitions desirable for the MLP learnings. As the NN-Clr’s and the NN-Cld’s differ altogether
in the position of the cloud layer among the 31 possible, the cloudiness simply derives from the
learning dataset considered: the learning dataset of the NN-Clr’s include the 6,000 soundings
without any cloud, whereas the other learning datasets include the same 6,000 soundings,
associated with the systematic presence of a black body in a particular layer. Due to these
techniques, the learning sets contain atmospheric situations that may never be observed in the
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atmosphere: they are not only compilations of real atmospheric situations, but are devoted
to teach the networks the computation of LW radiative fluxes from thermodynamic profiles.
For this purpose, it is suitable that a physical phenomenon, like the presence of a cloud in the
atmospheric layers, has a regular more than a realistic distribution in the learning datasets.

In the present study, the ECMWTF operational LW code (Morcrette, 1991; Zhong and Haigh,
1995) was used to compute the radiative characteristics of these soundings (the LW fluxes from
equations (2) and (3)). In the following, it will be referred to as “EC-OPE”. Any other LW
radiative transfer model can be chosen, including a line-by-line code: the learning phases are
the most time-consuming step of NeuroFlux, but they are run only once. The routine utilisation
of NeuroFlux is computationally cheap.

2.5 Validation method

A new version of NeuroFlux has been set up with these learning datasets. Compared to
EC-OPE, it is seven times faster (mean computing time recorded on a Fujitsu VPP700 in
the framework of a ten-day forecast). If NeuroFlux was a perfect simulator, the result of its
computations would be identical to the result of EC-OPE computations. In fact, the neural
network parameterization introduced a small uncertainty in the fluxes and cooling rates. This
has been studied from three points of view: in terms of errors in cooling rates and fluxes, in
terms of long-term (four months) climate simulations, and in terms of forecast accuracy. For the
last two points, the methodology follows the approach of Morcrette et al. (1998) who studied
the impact of the change of radiative transfer model to RRTM (Rapld Radiative Transfer
Model; Mlawer et al., 1997) in the ECMWF GCM.

3 Validation of NeuroFlux through code-by-code com-
parisons

In this section, a code-by-code comparison is presented. It is based on the ECMWF forecast
archive of profiles. Radiative fluxes obtained by using NeuroFlux and by using EC-OPE have
been compared for the whole globe. Global archives from the first of June 1998 for the four
synoptic times (00, 06, 12 and 18 UTC) and at operational resolution 0.5625° x 0.5625° were
taken into account in the statistics: 800,000 atmospheric situations. Results are presented in
three latitude classes. The tropical class covers the 30°N - 30°S region. The mid-latitude class
covers the 60°N - 30°N region and the symmetrical band in the southern hemisphere. The polar
class covers the 30° bands surrounding the two poles. For the three latitude classes, the biases
and standard deviations of the differences between the radiative calculations of NeuroFlux and
those of EC-OPE were computed, as well as the maximum absolute differences. Results for LW
cooling rates are shown on Figure 1.

The standard deviations and the absolute biases respectively are less than 0.4 K.d~! and
0.2 K.d™', except in the lower layer where the standard deviations is around 0.3 K.d~! and the
bias around 1.4 K.d™'. The maximum error reaches 10 K.d~'. The higher standard deviations
in the lower layer are discussed from the neural network point of view by Chevallier et al.
(1999). Their impact on atmosphere simulation is examined in the following. Similar statistics
are presented for the outgoing longwave radiation (OLR) and the surface net flux in Table 1.
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Standard deviations and absolute biases respectively are less than 1.7 W.m™2 and 0.8 W.m™2.
Maximum values reach 7 W.m~2 for the OLR and 9 W.m™2 for the surface net flux. Very
similar results are shown in Chevallier et al. (1999) for analysis archives,-as well as for forecast
data. ~ '

To our knowledge, no radiative transfer has been validated with reference computations
on such a high number of soundings. In particular, the maximum errors performed by EC-
OPE, with reference to the real values, are not known. They are expected to be larger in
cloudy sky, because of the weakness of the cloud radiative transfer parameterization, shared by
most of today’s radiative transfer codes. Nevertheless, the availability of such an exhaustive
documentation of the errors of NeuroFlux leads to strong questions about their impact on GCM
simulations. This is explored in details in the following sections.

4 Validation of NeuroFlux through climate simulations

4.1 Methodology

The assessment of the impact of NeuroFlux in climate simulations has been performed as
follows. An ensemble of 10 members of 4-month forecasts were run with initial dates between
21/04/87 and 30/04/87. Cycle 18r5 of the ECMWF model has been used, with a T63 trun-
cature, equivalent to a 1.875° x 1.875° horizontal resolution. T63 is the usual configuration
at ECMWF for extended-range studies, even though operational forecasts use a smaller grid
(0.5625° x 0.5625°). Indeed, Tibaldi et al. (1990) showed that T63 was sufficiently fine for cli-
mate studies. The shortwave radiation transfer in the GCM is based on Fouquart and Bonnel
(1980) (Morcrette, 1991). Since the atmosphere has a strong chaotic behaviour, the simulations
have been studied as means over the 3-month period between 01/06/87 and 30 / 08/87 and over
the 10-member ensemble. '

4.2 LW fluxes at the boundaries and cloudiness

For the three-month average, the impact of NeuroFlux on the clear sky OLR (figure 2) is
mostly under 2 W.m™2, which is comparable to the uncertainty in the instantaneous OLRs
from NeuroFlux (1 W.m™2, see Table 1). Limited areas display stronger impact, but still under
5 W.m~%. By comparison, the recent change of the surface emissivity in the LW window region
(800-1250 cm™1) from 0.99 to 0.93 for the desert regions in the ECMWF GCM (Gregory et al.,
1998) affected the clear sky OLR by more than 5 W.m™2 over the corresponding regions in the
same conditions of experiment. :

The differences are stronger when the clouds are taken into account in the OLR (figure 3),
though remaining under 14 W.m~2. This is not surprising since cloud models use step functions:
small differences in temperature or water vapour can make clouds appear or disappear. Indeed,
as shown on figure 4, the simulations using NeuroFlux are marked by a small decrease (between
0.01 and 0.03 on an average) of high level cloud cover in the Inter-Tropical Convergence Zone
(ITCZ). This is associated with the increase of full sky OLR in the same region on an average
(figure 3). As far as the other latitudes are concerned, the impact of NeuroFlux on cloud cover
appears to be rather limited, to 0.01, with a maximum at 0.06. The differences for the surface
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net flux, shown on figure 5, corroborates the results concerning the OLR.

4.3 Impact of the temporal resolution of the radiative computations

One of the main motivations in the development of NeuroFlux has been the interest in
fast codes that could resolve the diurnal cycle better than the existing codes. As an example,
in the ECMWF model, the full radiation code is called every three hours whereas the “time-
step” for the rest of the model varies from 20 minutes for the operational model to one hour
for the seasonal simulations. Morcrette (1999) showed that the main impact of this reduced
computation frequency is a decrease of the convection and therefore of the high level cloudiness
in the tropics. Climate simulations yet incorporate this artificial signal, even though this missing
cloudiness tends to warm the stratosphere and cool the troposphere, and therefore degrades
the climate sensitivity studies.

The question arises if the accuracy of Neuroflux is enough to restore the right climatic
signal if Neuroflux is called more often in the simulations. In order to assess this question, the
following experiment has been conducted. The ensemble simulations using either NeuroFlux
or EC-OPE have been repeated with a time-step of 60 minutes for the radiation instead of
three hours. Because NeuroFlux is seven times faster than EC-OPE, even this configuration
using NeuroFlux is cheaper than the current configuration with EC-OPE and a three-hour time
step. Figure 6 shows some differences between the configurations: when only the time-step is
changed, with either NeuroFlux (figure 6a) or EC-OPE (figure 6b). As said before, the main
signal induced by the time-step change is the high level cloudiness in the ITCZ. This signal
is correctly captured by NeuroFlux. The uncertainty introduced by NeuroFlux in the cloud
cover simulations is far smaller than that one induced by the reduced frequency of radiative
computation in the climate simulations.

5 Impact of NeuroFlux on forecast accuracy

The evaluation of the quality of the simulations using NeuroFlux has also been evaluated by
comparison with analyses of the atmosphere, expressed into objective scores. Two ensembles
of twelve ten-day forecasts, starting on the 15th of each month from 15 April 1997 to 15 March
1998, have been gathered. The LW model, either NeuroFlux or EC-OPE, is the only difference
between the sets. The horizontal resolution corresponds to a T213 truncature. Figure 7 presents
the scores for the Northern hemisphere, defined as the region between 20°N and 90°N. Similar
results have been obtained for the tropical band, and the Southern hemisphere. The impact of
NeuroFlux appears to be negligible on the 500 A Pa and 1000 hPa geopotentials, as well as on
the temperature at 850 hPa, 500 hPa, 200 hPa and 50 hPa. For instance, the mean differences
for the temperature are of the order of a hundredth of degree without exhibiting any significant
trend.

Because the instantaneous error of NeuroFlux is higher in the lower layer (figure 1), a
special attention has been paid to the quality of the 2-meter temperature forecast. This study
is illustrated here with the 10-day forecast for the 25th of January 1998. Figures 8 and 9
display the difference between the two forecasts and the corresponding observations over Europe
at 12 UTC. Biases, around 1.4 K, and standard deviation, around 3.5 K, are similar for

[rd
{
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the two forecasts. In this particular case, NeuroFlux even performs slightly better. This

result illustrates that the uncertainty introduced by NeuroFlux in the GCM simulation, of the

order of 1 K or less for the 10-day forecast of the 2-meter temperature, does not make the

simulation diverge from the real atmosphere, as far as the 2-meter temperature is concerned. It

- corroborates from a different point of view the study of the scores, that relies on zonal means
and on a statistical ensemble '

6 Conclusions

. The structure of the ECMWF operational LW radiative transfer code, based on the work
of Morcrette (1984, 1991), has proven to be suitable for incorporating recent important devel-
opments in radiative transfer, such as those on water vapour continuum (Zhong and Haigh,
1995) and cloudiness (Raisénen, 1998). However, like the other radiative transfer models used
in GCMs, because of computational costs, it is still necessary to apply both a spatial and a tem-
poral sampling in the usual climate simulations. This code has been parameterized through
the neural network-based approach developed by Chéruy et al. (1996) and Chevallier et al.
(1998b). This new radiative transfer code, called NeuroFlux, was shown to be seven times
faster than the original code. The evaluation of the error introduced in the climate simulations
by this approach, compared to the original code, is a painstaking work because of the numerous
possible points of view for its validation. This paper illustrates the chosen validation method-
ology. Firstly, code-by-code comparisons have quantified the instantaneous error of NeuroFlux.
Then the impact of this error on climate simulation has been estimated through four-month
simulations, with emphasis on longwave boundary fluxes and cloudiness. Finally, the qualita-
tive estimation of this error has been made by comparisons of ten-day forecasts with ECMWF
analyses of geopotential and atmospheric temperature on the one side, and surface observa-
tions of 2-meter temperature on the other one. Through these various studies, the accuracy of
NeuroFlux appears to be comparable to the accuracy of the original scheme, with a negligible
impact on the simulations. The use of NeuroFlux in a 6-day forecast-assimilation process has
confirmed the various results reported here: the departure of the background forecasts as well
as of the analyses from the observations appear to be the same with NeuroFlux than with the
operational configuration (result not shown).

The potential of the neural network-based approach has not yet been fully used at ECMWF'.
In particular, as shown by Chevallier et al. (1998b), the use of a more accurate radiative transfer
code in the learning phase, like a line-by-line model or RRTM for instance (Mlawer et al., 1997),
would reduce the current biases of EC-OPE in the clear sky contribution to the fluxes, while
keeping the same reduced computational burden. The various tests that we performed tend to
show that the standard deviations of NeuroFlux compared to the original code, whatever it is,
can not be further reduced. Though, they do not appear to affect the simulations. The cloud
parameterization, that is classically formulated in NeuroFlux (Washington and Williamson,
1977), obviously brings much more uncertainty to the code, although quantifying this is rather
difficult, due to the lack of observations of radiative cooling rates.

Even without any further improvement, NeuroFlux appears to be suitable for two main
applications in atmospheric studies. The first one is the reduction of the cost of the radia-
tive computations in atmospheric models, like those used in ensemble predictions, coupled
atmosphere-ocean simulations, or four dimensional variational assimilation, for extended use of
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these. The second application is the improvement of the climate simulations if the computa-
tional savings are used to increase the radiative computation frequency in the GCMs. Indeed,
we showed that the uncertainty introduced by NeuroFlux in the simulations is negligible com-
pared to the effect of an increase of the radiation time-step in the GCMs, as studied by Wilson
and Mitchell (1988) and Morcrette (1999).

Acknowledgements

Authors wish to thank M. Miller and A. Beljaars for careful review of the manuscript.

Technical Memorandum No. 276 9



- 90~ Neural network-based radiative transfer model at ECMWF

References

Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding
' coupled patterns in climate data. J. Climate, 5, 541-560.

Chéruy, F., F. Chevallier, J.-J. Morcrette, N.A. Scott, and A. Chédin, 1996 : Une méthode utilisant
les techmques neuronales pour le calcul rapide de la distribution verticale du bilan radlatlf
thermique terrestre. C. R. Acad. Sci. Paris, 322:1Tb, 665-672, in French. . '

Chevallier, F., A. Chédin, F. Chéruy, J.-J. Morcrette, and N. A. Scott, 1999: A TIGR-like atmo-
spheric profile database for accurate radiative flux computation. Submitted to Quart. J. Roy.
Meteor. Soc..

Chevallier, F., F. Chéruy, Z. X. Li, and N. A. Scott, 1998a: A fast and accurate neural network-based
computation of longwave radiative budget: application in a GCM. In Proc. of the Am. Meteor.
Soc., Paris, France, in press.

Chevallier, F., F. Chéruy, N. A. Scott, and A. Chédin, 1998b: A neural network approach for a fast
and accurate computation of longwave radiative budget. J. Appl. Meteor., 37:11, 1385-1397,
1998.

Clough, S. A., M. J. Iacono, and J.-L.. Moncet, 1992: Line-by-line calculations of atmospheric fluxes
and cooling rates : application to water vapor. J. Geophys. Res., 97:D14, 15761-15785.

Ebert, E. E., and J. A. Curry, 1992: A parametrisation of ice cloud optical properties for climate
models, J. Geophys. Res., 97D, 3831-3836.

Fortuin, J. P. F. and Langematz, U., 1994: An update on the global ozone climatology and on
concurrent ozone and temperature trends. Proceedings SPIFE, 2311, 207-216.

Fouquart, Y. and B. Bonnel, 1980: Computation of solar heating of the Earth’s atmosphere: a new
parameterization. Beitr. Phys. Atmosph., 53, 35-62.

Geleyn, J. F. and T. Hollingsworth, 1979: An economical and analytical method for the computation
of the interaction between scattering and line absorption of radiation. Beitr. Phys. Atmosph.,
52, 1-16.

Goody, R. M. and Y. L. Yung, 1989: Atmospheric radiation. Theoretical basis. Oxford Unversity
Press, 519 p.

Gregory, D., J.-J. Morcrette, C. Jakob, and A. Beljaars, 1998: Introduction of revised radiation, con-
vection, cloud and vertical diffusion schemes into Cy18r3 of the ECMWF integrated forecasting
system. ECMWF Technical Memorandum No. 254 [available from ECMWF, Shinfield Park,
Reading, Berks. RG2 9AX, UK].

Harshvardhan, D., Randall, A., Corsetti, T.G., 1987 : A fast radiation parameterization for atmo-
spheric circulation models. J. Geophys. Res., 92, 1009-1016.

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Tacono, and S. A. Clough, 1997: Radiative transfer
for inhomogeneous atmospheres : RRTM, a validated correlated-k model for the longwave. J.
Geophys. Res., 102, 16663-16682.

10 - Technical Memorandum No. 276



Neural network-based radiative transfer model at ECMWF S

Moncet, J.-L. and S. A. Clough, 1997: Accelerated monochromatic radiative transfer for scattering
atmospheres: application of a new model to spectral radiance observations. J. Geophys. Res.,
102:D18, 21,853-21,866.

Morcrette, J.-J., 1984 : Sur la paramétrisation du rayonnement dans les modéles de circulation
générale atmosphérique. Ph.D. Thesis, University of Lille.

Morcrette, J.-J., 1991 : Radiation and Cloud Radiative Properties in the European Centre for
Medium Range Weather Forecasts forecasting system. J. Geophys. Res., 96:D5, 121-9132.

Morcrette, J.-J., S. A. Clough, E. J. Mlawer, and M. J. Iacono, 1998: Impact of a validated radiative
transfer scheme, RRTM, on the ECMWF model climate and 10-day forecasts. ECMWF Tech-
nical Memorandum No. 252 [available from ECMWF, Shinfield Park, Reading, Berks. RG2
9AX, UK].

Morcrette, J.-J., 1999: On the Effects of the Temporal and Spatial Sampling of Radiation Fields on
the ECMWF Forecasts and Analyses. Mon. Wea. Rev., submitted.

Raisdnen, P., 1998: Effective longwave cloud fraction and maximum-random overlap clouds - a
problem and a solution. Accepted for publication in the Mon. Wea. Rev.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986 : Learning internal representations by error
propagation, Parallel distributed processing: Explorations in the macrostructure of cognition 1,
Rumelhart and McClelland eds, MIT Press.

Sadourny, R. and Laval, K., 1984 : January and July performances of the LMD general circulation
model. New perspectives in climate modelling, Berger and Nicolis Eds., Elsevier, 173-198.

Sinha, A., and J. E., Harries, 1997: The Earth’s clear-sky radiation budget and water vapor absorp-
tion in the far infrared. J. Clim., 10, 1601-1614.

Sundquist, H., 1981: Parameterization of condensation and associated clouds in models for weather
prediction and general circulation simulation. Tellus, 33, 344-355.

Tibaldi, S., T. N. Palmer, C. Brankovié, F. Molteni, and U. Cubasch, 1990: Extended-range predic-
tions with ECMWTF models: influence of horizontal resolution on systematic errors and forecast
skill. operational model integrations. Quart. J. Roy. Meteor. Soc., 116, 835-866.

Washington, W.M. and D.L. Williamson, 1977 : A description of the NCAR GCM’s in General
circulation models of the atmosphere. Method in Computational Physics, J. Chang. Ed., 17,
Academic Press, 111-172.

Wilson, C. A. and Mitchell, J. F. B., 1986 : Diurnal variation and cloud in General Circulation
Model. Quart. J. Roy. Meteor. Soc., 112, 347-369.

Zhong, W., and J. D. Haigh, 1995: Improved broadband emisivity parameterization for water vapor
cooling rate calculations. J. Atmos. Sci., 52:1, 124-138.

Technical Memorandum No. 276 11



$

(a)

polar mid-latitude tropical
m o M m o M m a M
NeuroFlux - EC-OPE || 0.28 0.85 4.84 | -0.06 0.77 4.85|-0.16 0.89 -7.17

(b)

polar mid-latitude tropical
m o M m o M m o M
NeuroFlux - EC-OPE | 0.76 1.72 8.07| 0.16 - 1.06 6.83|-0.12 0.88 9.34

Table 1: Mean (m), standard deviation (o) and absolute maximum difference (M) of the com-
parisons between NeuroFlux and EC-OPE for the computation of the OLR (a), and the net
flux at the surface (b) (fluxes from NeuroFlux minus fluxes from EC-OPE). ECMWF 6-hour
forecasts, L31 T319. 1% June 1998, 00, 06, 12 and 18 UTC. Fluxes in W.m 2. Results are
shown in three latitude classes. '
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Figure 1: Comparison between the computations of NeuroFlux and those of EC-OPE: cooling
rates from NeuroFlux minus cooling rates from EC-OPE, in K.d~'. ECMWF 6-hour forecasts,
L31 T319. 1% June 1998, 00, 06, 12 and 18 UTC. Results are shown in three latitude classes.
Figures (a) and (b) respectively show the biases and standard deviations in each latitude class.
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The maximum absolute differences are plotted on figure (c).
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Neural network-based radiative transfer model at ECMWF

0

Figure 2: Top panel is the difference between the clear sky OLR averaged over ten simulations
and over three months, with the ECMWF GCM using either NeuroFlux or EC-OPE (simula-
tions using NeuroFlux minus simulations using EC-OPE). The OLR is in W.m~2. Contours
every 2 W.m™2. Negative values less than -2 W.m™2 are dark-shaded, positive values greater

than 2 W.m™? are light-shaded. The values for EC-OPE are shown on the lower panel. Contours

every 20 W.m™2.
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Figure 3: As in Figure 3, but for the full sky OLR, in W.m™2.
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Figure 4: As in Figure 3, but for the vertical distribution of the zonally averaged cloud cover,
in %. Top panel: contours every 2%; negative values less than -1% are dark-shaded, positive
values greater than 1% are light-shaded. Bottom panel: contours every 5%.

16 Technical Memorandum No. 276
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0

Figure 5: As in Figure 3, but for the net flux at the surface, in W.m~
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Neural network-based radiative transfer model at ECMWF

Pressure Level (hPa) - .. .

0.
Latitude

Pressure Level - (hPa) = =

90. 75. - . " BO, 45. -3 : .1‘5. b

Latitude

>-1"s: A - s 60, 75 . .

Figure 6: Impact of the radiation time-step on cloudiness. Top panel is the difference between
the vertical distribution of the zonally averaged cloud cover, in %, with the ECMWEF GCM
using NeuroFlux and a radiation time-step of either three hours or one hour (version with three
hours minus version with one hour). Contours every 1%; negative values less than -0.5% are
dark-shaded, positive values greater than 0.5% are light-shaded.
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Figure 7: T213 L31 simulations: forecast verification for Northern Hemisphere’s geopotential

(a,b) and temperature (c,d,e,f). Mean over 12 cases.
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BIAS 2 m Temperature [ deg C] EC-OPE
FC-PERIOD: 980115 -980115 STEP:240 VALID AT: 12 UTC
"~ N= 1047 BIAS= 1.53 STDEV= 3.55 MAE= 3.08 .
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Figure 8: 10-day forecast for 25/01/95 using EC-OPE. Validation of the 2-meter temperature
forecast with observations. ' ' ' ‘
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Figure 9: As on figure 8, but with NeuroFlux.
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