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A sampled atmospheric profile database from ECMWEF short-range forecasts

Abstract

The availability of representative (adequately sampled) collections of atmospheric ther-
modynamic properties is essential, as pertinent a priori information, to the modelling of
relevant processes. In practice, the sampling of associated variables (temperature, mois-
ture, ...) is made difficult by the high dimension of the model space. This paper analyses
different topological methods for sampling vertical profiles of heterogeneous variables,
like atmospheric temperature and water vapour concentration, in connection with the
approaches developed for the successive Thermodynamic Initial Guess Retrieval (TIGR)
databases at LMD. The most recent is chosen and applied to select a 6,000 atmospheric
profile dataset by the sampling of a much larger (1,350,000 profiles) dataset from the
ECMWF short-range forecasts. The sampled dataset is then used for training a neural -
network-based radiative flux profile computation model (NeuroFlux).

1 Introducti(jn

The importance of the role played by radiation in climate research results in a growing inter-
est for accurate modelling of forward or inverse radiative transfer problems. A key for increased
accuracy is an improved use of pertinent and representative (adequately sampled) a priori infor-
mation on the systems considered. A major attempt to sample this kind of a priori information
on global scales has been the constitution of successive versions of the Thermodynamzc Initial
Guess Retrieval database (TIGR: Chédin et al., 1985 ; Achard, 1991 ; Escobar—Nunoz 1993 ;
Chevallier et al., 1998a) from Laboratoire de Meteorologle Dynamlque (LMD). Each version
groups together hundreds of soundings sampled from larger databanks of observation of the
atmosphere: radiosonde reports and, for the latest version (TIGR-3) only, satellite- retneved
atmospheric profiles. Providing initial guess solutions and a priori information (covanance ma-
trices) for the weakly non-linear problem of the retrieval of atmospheric temperature proﬁles
from observations of TIROS-N Operational Vertical Sounder (TOVS) on-board the National
Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites, has been the main
purpose of the TIGR databases. This approach has been developed in the framework of the
Improved Initialization Inversion (3I: Chédin et al., 1985; Scott et al., 1999). For stronger
non-linear problems, like the retrieval of water vapor from TOVS or the design of fast forward
radiative transfer models, TIGR has been used for training artificial neural networks (e.g.,
Escobar-Munoz et al., 1993; Chéruy et al., 1996; Rieu et al., 1996; Chaboureau et al., 1998).

In practice, the high dimensionality of the atmospheric variable space makes the sampling
problem delicate. From one TIGR version to the next, important choices have been made
and improved, so as to fit with the applications of the database. New. apphca.tlons of the
neural network-based techniques, like the computation of longwave (LW) flux profiles in General
Circulation Models (GCMS) have led to further improvements of the sampling strategy.

This paper summarizes the characteristics of the TIGR sampling methods, ‘and discusses
these prospects. Section 2 describes the TIGR database and reviews its three versions. Section
3 analyses the characteristics of the TIGR, sampling methods on the basis of a simple but rep-
resentative problem. An extension of the most recent TIGR sampling method is presented. Its
application for the sampling of atmospheric situations from the ECMWF short-range forecasts
is shown in section 4. The qualities of this new sampled database have been estimated in the
framework of a neural network-based LW radiative flux profile computation model (NeuroFlux:
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Chéruy et al., 1996 ; Chevallier et al., 1998a). The results are discussed in section 5, followed
by conclusions in section 6.

2 The TIGR database

2.1 General description

The TIGR database consists of several subgroups, to serve as a database upon which several
direct and inverse radiative transfer models rely. Each subgroup describes a particular aspect
of the archived atmospheric soundings.

The subgroup of the geophysical parameters is the kernel of the database. To each sounding
are associated a vertical temperature profile, a vertical water vapour concentration profile and a
vertical ozone concentration profile. The vertical discretization refers to 40 levels between 0.05
and 1013 hPa, as reported in table 1. It has been chosen in the context of TOVS retrievals:
for instance, the relatively coarse resolution in the lower troposphere is coherent with the
instrument specifications. All soundings come from observations: the geographic location and
the date of these are also archived. Unlike the temperature and water vapour proﬁles the ozone
profiles come from climatologies. :

Various radiative characteristics of these soundings have been computed. Initially, only
TOVS-related quantities were archived: the theoretical radiances for different satellite viewing
angles and surface pressures, together with the corresponding atmospheric transmission profiles.
With the new generation of vertical sounders, similar quantities have also been computed with
reference to the Special Sensor Microwave/ Temperature (SSM/T) (Rieu et al., 1996), to the
Advanced Microwave Sounding Unit (AMSU) (Cabrera-Mercader and Staelin, 1995), and to
the Infrared Atmospheric Sounder Interferometer (IASI) (Aires et al., 1998). LW radiative flux
proﬁles have also be'en added to the database for its use in a fast model for the computation of
atmospheric LW ﬂux profiles (NeuroFlux: Chevallier ef al., 1998a).

For practical use, the database is also currently classified into five statistically homogeneous
air-mass classes: tropical, mid-latitude 1, mid-latitude 2, polar 1 and polar 2 (Achard, 1991).

2.2 Three successive versions

Up to now, there has been three different versions of the TIGR database. The first one,
TIGR-1, groups together 1207 soundings (Moulinier, 1983). The initial database from which
they were sampled was limited to 6600 radiosondings, which was shown not to be enough for
the use of TIGR in the framework of the 3I scheme (Flobert et al., 1991). It has been followed
by TIGR-2: the updated database contains 1761 situations sampled from a much larger set
of 80,000 radiosoundings (Achard, 1991; Escobar-Munoz, 1993). The sampling methods for
TIGR-1 and TIGR-2 are similar and rely on a temperature criterion. They are described in
section 3.2. The necessity of an improved representativity of water vapour concentration led to
the improvement of the method, and to the second update of the database (TIGR-3: Chevallier
et al., 1998a). The method is described in section 3.2. TIGR-3 gathers 2311 soundings and has
been successfully used within the frame of the NOAA/ National Aeronautics and Space Agency
(NASA) Pathfinder programme, for the re-analysis of the 20 years of TOVS observations (Scott
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et al, 1999).

2.3 Application to the computation of longwave flux profiles

TIGR-3 has been used as a training database for the neural network-based LW radiative
transfer model NeuroFlux. NeuroFlux is a highly parameterized scheme that has been designed
for computing LW flux profiles significantly more rapidly than the presently existing wide band
models. It relies on a series of artificial neural networks, as defined by Rumelhart et al. (1986)
(Multi-Layer Perceptrons). Directly from the geophysical parameters (TOVS retrievals or GCM
soundings), they compute the contribution of clear sky radiation and of every cloudy layer to
the fluxes. This design is at the basis of such a fast code: a gain of about one order of
magnitude compared to the current ECMWF operational scheme (Morcrette, 1991 ; Zhong
and Haigh, 1995) has been observed. One training database per neural network is needed:
each one is issued from the same database, namely TIGR-3, and differs from the other ones
by the pressure level of a black cloud layer. Due to the multilayer grey body algorithm (e.g.,
Washington and Williamson, 1977; Réaisanen, 1998) used in NeuroFlux in conjunction with
the artificial neural networks, the fluxes computed by the model take into account clouds as
semi-tranparent grey bodies, and not as black bodies. For a complete description of NeuroFlux,
the reader is referred to Chevallier et al. (1998a). '

For the application of NeuroFlux in GCMs (Chevallier ef al., 1998b), difficulties arose mainly
due to the insufficient description of the boundary layer in the vertical pressure grid on which the
soundings are archived in TIGR-3 (see table 1). This induced systematic errors by NeuroFlux
in the lower troposphere and therefore non negligible uncertainties in the GCM simulations
using NeuroFlux to compute the LW radiative budget. As a consequence, it appeared that for
that kind of application, the training database of NeuroFlux had to be redefined. The next
section focusses at the TIGR sampling technique, in order to define an updated methodology
for sampling the Earth’s atmospheric profiles. ‘

3 Choice of a sampling technique

3.1 The TIGR approaches

The successive TIGR databases were set up with similar two-step methods. The first step
consists in filtering the infinity of possible profiles in the atmosphere, by gathering a high but
representative of them. For example, 80,000 radiosonde reports have been used for TIGR-
2. Let us call S this initial database. The sampling of S with a topological approach is the
second step of the method. It relies on an index I, that measures the dissimilarity between two
atmospheric situations. The process is iterative. At step one, a first atmospheric situation from
S is randomly drawn and archived in a new set E. At step n, a n*® atmospheric situation is
randomly drawn and archived in E if it is different enough from the already selected situations,
relatively to criterion J. With that approach, the distribution of E over the space of the various
atmospheric variables is smoother than that of S. In practice, restriction to some variables had
to be made: for TIGR-1 and TIGR-2, index I only takes into account the information about
vertical temperature, whereas the improvements in TIGR-3 mostly came from the combined
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use of vertical temperature and water vapour concentration profiles.

3.2 Tests on a two dimensional problem

Assessing the quality of a sampling technique is rather difficult when dealing with a high
dimensional space. In order to visualize the qualities of the TIGR sampling methods, a sim-
plified problem has been studied. 450,000 tropical soundings have been used as initial set S:
they had been originally gathered for the setting up of TIGR-3. Instead of processing all the
geophysical variables, only the mean temperature and the water vapour content of the layer
850 - 1013 hPa have been kept. Let us call z the first variable and y the second one. z goes
from 265 to 310 K, and y from weak values up to 4.5 mm.

Four sampling experiments are carried out on this reduced set, using four different topologi-
cal sampling methods. The results are evaluated with regards to the histograms of the sampled
datasets. Indeed, with the aim of gathering a databank for regression parameter estimation,
the histograms should be as regular as possible. Other applications of the sampling may lead
to a different criterion, but this is not discussed here.

The first experiment reproduces the approach used for TIGR-1 and TIGR-2: only the
information about temperature is taken into account. It will be referred to as Al. A1 uses the
simple distance:

Di(si; 55) = (@i — 2;)" . (1)
where s; and s; represent two soundings ¢ andj of the database S.

The Al dissimilarity index is the following: to be archived in F, a situation (different from
the initial one) has to verify: :
]\/[ins]-EEDl(si, Sj) > d k - (2)

where d is an arbitrary parameter. Choosing d is equivalent to choosing n, the number of
situations in the final database. In the following, n = 100.

Figure 1 shows the 100-class histograms of z and y in F after the sampling. An ideal method
would have led to regular histograms: every class among the 100 would contain one and only
one situation. This is nearly the case for z: 12 classes only are empty. y is far more irregularly
distributed with 55 empty classes, and includes no situation w1th layered water vapour content,
in excess of 3 mm.

The second experiment, A2, is inspired from the unsuccessful attempt from Escobar-Munoz
(1993) to introduce the information about the water vapour concentration in the selection. The
algorithm is the same than in A1, but D is replaced by Ds:

$i—$j

 Dy(siysy) = (B Tiyzy (B Viy2 | | 3)

where o, (tesp. oy) is the standard deviation of the variable x (resp. y), computed in the
TIGR-2 database. With this normalization, the quantities of equation (3) are of the same order
of magnitude.

Figure 2 shows the resulting histograms for z and y corresponding to the 100 selected
situations. Compared to Al, A2 improves to repartition of y, with only 37 empty classes and
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a coverage of the highést values, but clearly degrades that of z with also 37 empty classes.
Although the two quantities %—w—mﬂ and |y‘0—_fl] are normalized, their respective variability is
too different to allow a satisfactory dissimilarity index to be obtained from their sum (i.e. Dy).

Thus, in a third approach, A3, the proximity recognition in the z space is separated from
the one in the y space. This is the method used for TIGR-3 (Chevallier, 1998). For each
situation s; in selection phase, the two non Euclidian distances are defined:

D™s, B) = Mingen ("L”U—Z"’)2 (4)
T

. Yi —Y;
D™si, E) = Mingep,/( p 12 (5)

In each spaée, this algorithm looks for the nearest neighbour, by computing the minimum
distance of the considered situation to the ones already archived in F, D' and Dj?. Then
the two minimum distances, separately computed, are added and the criterion of the minimum
distance is applied to the sum: :

D*(si, B) + D*(s:, E) > d (6)

This criterion is more selective than the previous one, A2, because the sum of the minima
is always smaller than the minimum sum of the distances. It enables to select a situation s;
in three cases: - if x; is different enough from the z,’s already archived, - or if y; is different
enough from the y;’s already archived, - or if z; and y; are different enough from those already
archived, even though none of the two differences is outstanding,.

100 situations have been selected with A3. The histograms are shown in figure 3. 22 classes
are empty for z and 27 for y. This shows improvements compared to A2, with a more regular
spread of the two variables.

Finally, a last criterion has been tried: A4. It uses two separate proximity recognitions, as
in A3, and a combined use of  and vy, as in A2. A4 uses the two distances:

D' = DI(D+DM) | : (7)
2 m m m
D* = D™(D™+ DI | (8)

For clarity, the dependence of D', D2, D™ and D7 as a function of 5; and E has not

T
been written (see equations (4) and (5)). D' (respectively D?) is highly conditioned by D™
(respectively D7), but also takes D* (respectively D) into account.

The A4 selection criterion is:

D¥(s, E) >d (10)

If both are satisfied, s; is selected, otherwise it is rejected.

This algorithm has been used to set up a 100 situation database, from the 450,000. The
histograms (figure 4) are comparable to those from A3. 23 classes are empty both for z and y.
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It can be noted that A4 selects less extreme values. For example, with A3, 11 situations are
characterized by z < 275 K, only 7 with A4.

The results from A3 and A4 illustrate the non-uniqueness of the choice of a satisfactory
sampling method. A good approach results from a compromise between the regular spread
of z and that of y. The highest peak of the z histogram appears in the highest values of
z, corresponding to the highest variability of y. Similarly, both A3 and A4 tend to select
the situations in the weak values of the layered water vapour y, corresponding to the highest
variability of the temperature z. In the following, the A3 process, that had already been chosen
for TIGR-3, was preferred to A4 because of the poorer selection of extreme values noted for
Ad.

3.3 Update of the TIGR-3 sampling technique

In the previous example, only tropical-type situations have been considered. A wider range
of soundings would not significantly change the conclusions, though it is obvious that the peaks
of the histograms would be more prononced: for instance, adding polar-type situations would
increase the temperature variability in the weak values of the water vapour. In order to smooth
out the non-symetries, the initial heterogeneous database S can be divided into subgroups
that are more homogeneous, each subgroup is then sampled separately from the others. This
approach is called “stratified sampling” (e.g., Cochran, 1977). The values of the o,’s and of
the o,’s in equations (4) and (5) have to be adapted for each subset. For TIGR-3, the initial
database was divided into tropical and non-tropical situations. The classification relied on a
statistical analysis performed on TIGR-2 (Achard, 1991). Instead, as the natural variability of
water vapour is much more heterogeneous than that of the temperature, and increases with the
total water vapour content, the initial database can be divided into subgroups, with respect
to water vapour contents only. For instance, one subset may contain the lowest values of the
layered water vapour, a second one the highest values, and a third one the intermediate values.
Then the final sampled database E results from the merging of the three sampled subgroups.
Such a division enables to clearly separate between different ranges of variability of the water
vapour.

Extrapolating results from the former two-dimensional problem to a 2 x N-dimensional
problem, if NV is the number of vertical layers in the soundings, is not trivial. Extending the
A3 approach to vertical profiles, one can replace the distances given by equations (4) and (5)
by:

0i(k) — 0;(k)\”

og(k) ) (1)
wi(k) — w; (k)
() 12)

N
D?(SZ:E) = NIZ”%EE\E(
N
>
k=1

Dl'(s;, B) = ]\/[insjeE\

where 6(k) and w(k) respectively are the mean temperature and mean water vapour con-
centration in layer k. They correspond to variables z and y of equations (4) and (5).
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The criterion of the minimum distance of equation (6) can be rewritten:

Dg'(si, B} + uDy(sp, B) >4 (13)

where p is a weight.

The standard deviations o4(k) and o,(k) in equations (11) and (12) deal with the different
ranges of the variables, whereas p is introduced as a weight that takes into account the difference
in the vertical variability of temperature on the one hand, and of water vapour on the other.
In the following u = 1/9. Tests have shown that the characteristics of the sampled database do
not depend critically on the precise value of y: for example, p = 1/8 gives results comparable
to u=1/9. : :

This technique is similar to the TIGR-3 approach, except that the TIGR-3 sampling took
layered water vapour contents into account, rather than water vapour mixing ratios. This
choice was influenced by the previous definition of a water vapour distance by Flobert et al.
(1986) for pattern recognition, but induced an arbitrary screening of the information about
water vapour. ‘

4 A new database from the ECMWF model ouputs

Given a large database of samples S, covering a wide range of atmospheric water vapour
. and temperature profiles, the approach described above enables the selection of a smaller sam-
ple E, the size of which is determined by the factor d. It is used here for the sampling of
profiles generated from the ECMWF atmospheric model. In this application, S results from
the aggregation of six days of profiles from the ECMWF short-range forecasts. The six days,
namely the first day of the months of January, March, May, July, September and November
1997, include a complete description of the atmosphere on a 31-layer vertical grid from the top
of the atmosphere to the surface and an horizontal 1.125° x 1.125° grid representation every
six hours. The vertical grid is illustrated on table 2.

S is divided into seven subgroups differing by the total precipitable water vapour content
of the profiles: the first group ranges from 0 to 0.5 c¢m, the second from 0.5 to 1.5 ¢m, the
third from 1.5 to 2.5 cm, and so on, until the seventh one that goes from 5.5 ¢m up to the
highest values. Preliminary experiments revealed that the representativity of the first group
was insufficient. Therefore, data from the first day of the months of February, April, June,
August, October and December, with total water vapour contents below 0.5 cm (i.é. 150,000
data), are also added to the initial database S, that consists of 1,350,000 profiles. In each
group, the standard deviations, i.e. the op’s and the o,’s of equations (11) and (12), are
directly computed. The sampling approach described in section 3.3 is used for the extraction of
about 750 samples from each class, except for the first one, where 1500 profiles are extracted,
in consideration of the higher temperature variability: this class includes all types of situations
from polar to tropical. The whole sampled database includes about 6000 p}rbﬁles. '

Figure 5 shows the histograms of the sampled database F in layer 6, characterized by a mean
pressure of about 800 hPa when the surface pressure equals 1000 hPa. Two symmetric peaks
appear as on figure 4. As explained in section 3.2, the wing in the temperature (respectively
water vapour) histogram, between 220 and 270 K (resp. 0.002 and 0.012 g/g), illustrates the
weak variability of water vapour (respectively temperature) in this temperature (resp. water
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vapour) range in the initial set S. Since the stratified sampling forced the representation of
high water vapour contents (see section 3.3), the wing in the water vapour histogram is more
regular than that of the temperature histogram.

The following section describes the application of this new database as a training database
for NeuroFlux in replacement of TIGR-3 (see section 2.2).

5 Application to LW radiative flux modelling

5.1 The training datasets

All the input files of NeuroFlux training databases are derived from E. In addition to
the temperature and water vapour profiles in database E, other variables are required for
LW radiative flux computations: cloud and surface characteristics, ozone profiles and the mean
CO, concentration. Ozone profiles are obtained from the climatology of Fortuin and Langematz
(1994). CO, concentration, surface temperature and LW emissivity are obtained by random
sampling (within a given range of variation), ensuring regular distributions that are essential
for the neural network training. The training database of the clear sky neural network includes
the 6000 proﬁles without any cloud, whereas the other training databases include the same
6000 profiles, associated with the presence of a black body in a particular layer.

- The output files of NeuroFlux training databases are the LW fluxes from the top of the
atmosphere to the surface, that are associated to those profiles. .In the present study,. the
current ECMWF operational LW code (Morcrette, 1991 ; Zhong and Haigh, 1995) is used to
compute them. In the following, this code will be referred to as EC-OPE.

It should be noted that the variability of databases like NeuroFlux training sets, is far larger
than the expected changes of the atmospherlc variables during the next century (e g, Houghton
et al., 1990).

5.2 :Validation with code-by-code comparisons

The accuracy of NeuroFlux has been tested on various data from either the ECMWEF anal-
yses or the ECMWF forecasts, for different periods of time. Examples are given here of com-
parisons based on the re-analysis archives (Gibson et al. 1997) for the first of December 1987,
and on the short-range forecasts archives for the first of June 1998. Corresponding to these two
dates, radiative fluxes obtained either by using NeuroFlux or EC-OPE have been compared
for the whole globe. The radiative computations were for no cloud. Global data for the four
synoptic times (00, 06, 12 and 18 UTC) at an horizontal resolution of 1.125° x 1.125° for the
re-analysis archives or 0.5625° x 0.5625° for the 1998 forecasts were taken into account in the
statistics: i.e. 200,000 atmospheric situations for the re-analysis archives and 800,000 for the
forecasts. Results are presented for three latitude classes. The tropical class covers the 30°N
- 30°S region. The mid-latitude class covers the 30-60°N and 30-60°S regions. The polar class
covers North of 60°N and South of 60°S. For the three latitude classes, biases and standard devi-
ations of the differences between the radiative calculations of NeuroFlux and those of EC-OPE
were computed, as well as the maximum absolute differences. Since this version of NeuroFlux
simulates EC-OPE, the differences are expected to be as small as possible.
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Results for LW cooling rates are shown on figures 6 and 7. The two sets of comparisons
indicate a similar behaviour for NeuroFlux, even though the nature of the profiles (analyses
or forecasts), the version of the ECMWF GCM used for obtaining them (the 1995 13r4 cycle
for the analyses and the 1998 18r5 cycle for the forecasts) and the horizontal resolution differ.
The standard deviations and the biases in absolute value are less than 0.3 K.d~! and 0.4 K.d™*
respectively, except in the lowest layer where the bias reaches 0.6 K.d™! in the polar class, and
the standard deviation is around 1.6 K.d~! in the three classes. The maximum absolute error
reaches 10 K.d~! both in the middle troposphere in the tropical class and in the lowest layer in
the three classes. The higher standard deviation for the cooling rates in the lowest layer also
exists when the test is performed on the training database (result not shown). Sensitivity tests
have shown that it originates from the correlation between surface temperature and surface-air
temperature. Such a problem could be reduced with more complex neural networks, but the
code would then be computationally less efficient. '

Similar statistics are presented for the outgoing longwave radiation (OLR) and the surface
net flux in tables 3 and 4. The surface net flux is defined as the upward flux minus the
downward flux, both positively defined. Standard deviations and absolute biases are less than
2.0 W.m™2 and 2.8 W.m™2 respectively. Maximum values reach 8 W.m~2 for the OLR and
10 W.m™2 for the surface net flux. Since the cloudy sky neural networks work on restricted
parts of the atmospheric column, they have fewer inputs, fewer outputs and therefore are given
fewer neurons. This leads to faster convergence and slightly better results than those presented
here for clear sky (Chevallier, 1998): in particular the maximum errors are reduced (results not
shown).

The most erroneous cases for NeuroFlux obviously correspond to situation types that are
less represented in the initial 1,350,000 sounding database: in particular the high elevations in
the Himalayas. Further reduction of the error maxima will lead to the extension of the initial
database. ‘ ' SR

To the authors knowledge, no radiative transfer scheme has been validated with reference
computations on such a high number of profiles. In particular, the maximum errors performed
by EC-OPE, with reference to the real values, are not known. The previous version of Neu-
roFlux, using TIGR-3 in the training phase and a 19-layer vertical grid has been validated on a
1032 radiosonde database and on a 15000 sounding database from the LMD GCM: the biases
and standard deviations were comparable to those shown here (Chevallier, 1998). But here the
maximum errors are significantly reduced in the stratosphere and in the lower layers.

‘With the new sampled database, NeuroFlux has been adapted to a higher vertical resolution
than previously, while simultaneously increasing its accuracy. Compared to EC-OPE, this
version of NeuroFlux is 7 times faster. The performances of this new version in the framework
of GCM simulations is discussed in a companion paper (Chevallier et al., 1999). In particular,
the latter examines the effect of the higher error of NeuroFlux in the lowest atmospheric layer.

6 Conclusions and prospects

Collecting pertinent - i.e. properly sampled - a priori information about the atmosphere is
an essential need for atmospheric modelling. An important step has been the constitution of
the TIGR database. In this paper, the characteristics of successive versions developed at LMD

Technical Memorandurn No. 275 _ 9



'w | - A sampled atmospheric profile database from ECMWF short-range forecasts

since 1983 were summarized. The recent application to the computation of longwave radiative
flux profiles in GCMs has brought evidence that there was a need of further improvements of the
sampling strategy. Therefore a flexible sampling method was defined, based on the approach
used in the latest TIGR database, TIGR-3. Given a large database of atmospheric situations,
covering a wide range of atmospheric temperature and water vapour profiles, the technique
described enables selecting a smaller sample, defined as a regular mesh of the initial database.
An application to the sampling of atmospheric situations from the ECMWF forecast model
outputs has been presented. The sampled database has been used for inferring the parameters
of artificial neural networks, in a longwave flux profile computation model (NeuroFlux: Chéruy
‘et al., 1996, Chevallier et al., 1998a). With this new database, NeuroFlux has been extended
to a higher vertical resolution than previously, while simultaneously increasing its accuracy in
terms of code-by-code comparisons. Further results in the ECMWF GCM are presented in a
companion paper (Chevallier et al., 1999). :

The sampling method described here may be applied to the development of TIGR-type
databases adapted to applications involving a higher vertical variability than the present TIGR
database. An example is the adaptation of NeuroFlux to the forthcoming 60-level ECMWF
model, with increased vertical resolution in both the stratosphere and the boundary layer. In
the same way, other databases are needed for application to the retrieval of thermodynamic
variables from the Infrared Atmospheric Sounder Interferometer (IASI) and the Advanced In-
frared Radiometric Sounder (AIRS) instruments. They could simply be derived by mterpolatmg
the 60-level ECMWF database, once it is available, to a coarser grid.
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A sampled atmospheric profile database from ECMWF short-range forecasts

level pressure | level pressure | level pressure | level pressure
(hPa) (hPa) (hPa) (hPa)
1 0.05 11 7.43 21 131.20 31 471.86
2 0.09 12 11.11 22 161.99 32 525.00
3 0.17 13 16.60 23 200.00 33 584.80
4 0.30 14 24.73 24 222.65 34 651.04
5 0.55 15 37.04 25 247.90 35 72478
6 1.00 16 45.73 26 275.95 | 36 800.00
7 1.50 17 56.46 27 307.20 37 848.69

8 2.23 18 69.71 28 341.99 38 900.33
9 3.33 19 86.07 29 380.73 39 955.12
10 4.98 20 106.27 30 423.86 40  1013.00

Table 1: The vertical grid on which the TIGR databases are archived.
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level pressure | level pressure | level pressure | level pressure
- (hPa) (hPa) : (hPa) (hPa)
1 0.00 11 222.93 21 610.47 31 1005.18
2 20.00 12 253.69 22 656.28 32 1013.00
3 40.00 13 286.57 23 702.57
4 60.00 14 321.46 24 748.95
5 80.00 15 358.23 25 794.90
6 100.16 16 396.75 26 839.75
7 121.16 17 436.87 27 882.58
8 143.63 18 478.45 28 922.23
9 167.95 19 521.35 29 957.21
10 194.35 20 565.42 30 985.63

Table 2: Boundary pressures of the 31 layer-vertical grid of the ECMWF model, when the
surface pressure equals 1013 ~APa. The general formulation depends on surface pressure.
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A sampled atmospheric profile database from ECMWF short-range forecasts St
(a)
polar mid-latitude tropical
m o M m o M m o M

NeuroFlux - EC-OPE || -0.92 1.56 748 0.34 -1.21 6.11 |-0.75 1.20 &.05

(b)

polar mid-latitude : tropical
m o M m o M m o M
NeuroFlux - EC-OPE | -0.74 2.73 8.78 | -0.61 1.58 6.98|-0.25 1.08 6.84

Table 3: Mean (m), standard deviation (o) and maximum absolute error (M) of the comparisons
between NeuroFlux and EC-OPE for the computation-of the OLR (a), and the net flux at the .
surface (b). Clouds were not taken into account in the computations. ECMWF re-analyses.
1%t December 1987, 00, 06, 12 and 18 UTC. 1.125° x 1.125° horizontal resolution. Fluxes in
W.m™2. Results are shown by latitude class. ’
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A sampled atmospheric profile database from ECMWF short-range forecasts

(a)

polar mid-latitude tropical
m o M | m o M m o M
NeuroFlux - EC-OPE || 0.35 1.07 494 | 0.00 1.14 5.38|-0.44 1.16 7.17
(b)
polar mid-latitude tropical
m o M m o M m o M
NeuroFlux - EC-OPE | -0.40 1.86 8.07|-0.64 1.36 6.73| 0.06 1.15 9.34

Table 4: Mean (m), standard deviation (o) and maximum absolute error (M) of the comparisons
between NeuroFlux and EC-OPE for the computation of the OLR. (a), and the net flux at the
surface (b). Clouds were not taken into account in the computations. ECMWEF 6-hour forecasts.
15t June 1998, 00, 06, 12 and 18 UTC. 0.5625° x 0.5625° horizontal resolution. Fluxes in W.m 2.
Results are shown by latitude class.
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A sampled atmospheric profile database from ECMWF short-range forecasts

Figure 1: Histograms (100 classes) of x and y after the A1 sampling. z in K, y in mm.

Figure 2: Histograms (100 classes) of z and y after the A2 sampling. z in K, y in mm.
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Figure 3: Histograms (100 classes) of z and y after the A3 sampling. z in K, y in mm.
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Figure 4: Histograms (100 classes) of = and y after the A4 sampling. z in K, y in mm.
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A sampled atmospheric profile database from ECMWF short-range forecasts
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Figure 5: Histograms (100 classes) of temperature (in /) and water vapour concentration (in
g/9) in the database sampled using criterion A3 (section 3.2) from ECMWF generated profiles.
Layer 6, characterized by a mean pressure of about 800 hPa when the surface pressure equals
1000 hPa.
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Figure 6: Comparison between the computations of NeuroFlux and those of EC-OPE: cooling
rates from NeuroFlux minus cooling rates from EC-OPE, in K.d~!. Clouds were not taken into
account in the computations. ECMWF 6-hour forecasts. 1% December 1987, 00, 06, 12 and 18
UTC. 1.125° x 1.125° horizontal resolution. Fluxes in W.m™2. Results are shown by latitude
class.
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Figure 7: Comparison between the computations of NeuroFlux and those of EC-OPE: cooling
rates from NeuroFlux minus cooling rates from EC-OPE, in K.d~!. Clouds were not taken into
account in the computations. ECMWF re-analyses. 1°* June 1998, 00, 06, 12 and 18 UTC.
0.5625° x 0.5625° horizontal resolution. Fluxes in W.m™2. Results are shown by latitude class.
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