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Summary: We (abstractly) generalize the ‘toy’ weak 4D-Var model in Gong, Wahba, Johnson &
Tribbia (1998) to include adaptive tuning of a variety of parameters throughout the 4D-Var varia-
tional problem, and note issues of sensitivity and identifiability. We discuss ‘models’ for model errors
which include systematic, short memory and long memory errors. Finally we remark on the role of
the theory of representers in reproducing kernel Hilbert spaces in the weak 4D-Var setting.

1 INTRODUCTION

We first consider the general setup in the experiment in Gong et al. (1998), which is a toy weak
4D-Var model (actually one time and one space variable) with five unknown smoothing, weighting
and distributed parameters, which were simultaneously adaptively tuned using generalized cross
validation (GCV) calculated via the randomized trace technique. In that setup ‘model error’ was
generated as the difference between a ‘nature’ model and the ‘computer’ model, but white noise
model errors were assumed in the weak 4D-Var variational problem. In this paper we then (i) review
the use of model errors as dual variables, (ii) review the GCV and generalized maximum likelihood
(GML) tuning methods, and pinpoint sensitivity issues as tunable parameters are sprinkled liberally
throughout the weak 4D-Var problem, noting that they can be studied in the influence matrix (or
influence operator in the nonlinear case). Then (iii) we describe some simple models for correlated
model errors and the simultaneous consideration of systematic (bias), short memory and long memory
correlation. We end with (iv) a summary of some representer theory in reproducing kernel Hilbert
space (RKHS) relevant to the weak 4D-Var setting.

Let £ = 1,-.-,T denote discrete time and let ¥4, = 1,-.--T be a sequence of state vectors
representing (some part of) nature that evolves according to '
‘I’t+1=Mt‘I’t+I‘It+€t, t=1,---T-—1, e , (1)

where M; is the model evolution operator, N; is a forcing function, and the £; represent model errors,
which we will discuss in more detail later. Here ¥, is the forecast for ¢ = 1 assumed to satisfy

with €, ~ N (0, UJ%Q*). M; = M¢(0m), Ny = N;(6pm) are assumed to contain some tunable distributed
parameters Oy. The observations are :

Vi =Ki¥:+ e, teEA, (3)

with € ~ N(0,52S;). K; is a map from state vector space to observation space at time ¢ € A, and
K: = K¢(fk) may also contain some tunable parameters for example calibration coefficients or bias
corrections. Here A is the set of observation times, which are assumed to be a subset of the model
update times t=1,---,T.
In Gong et al. (1998) a toy weak 4D-Var problem was formulated as: Find ¥ = (¥/,..., &Y,
to minimize ’ ‘ .
T-1

1
Z lye— Kt‘I't||s—1+ > H‘I’t+1—Mt(GM)‘I’t—Nt(GM)”Q—l’!' 2||‘I’ o 1P +‘||‘I’T”J (4)
5 ien O =1
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Here ||v[|Z = v/Cv for C a non-negative definite matrix. This formulation corresponds to & ~
N(0,02,Q;), independent from time to time, and a prior belief that [ @72 is ‘small’ where J is
a quadratic penalty representing a toy version of e. g. a penalty for lack of balance. Letting
v=o02/ UJ%, a=0c2/02 and n = 02/b, then the minimizer of (4) is the same as the minimizer of

-1
Do lye - Kt‘I’tHQt—l +ad ([ Tryn — My(O1) ¥ — NtWM)Hét—l + 9% = ®aR + ] T3
teA t=1 :

= ot dm+ o+ T, | (5)

say. The J terms have there usual meaning as observation, model, forecast and constraint except
that the coeflicients in front have been scaled relative to observations. The major tuning parameters
{v,e,n} and a two coeflicient distributed parameter 6y in the model were simultaneously tuned
by the GCV method, using the randomized trace technique, which allows the computation of the
cross-validation function to be carried out by rerunning the model with perturbed data. ‘Nature’
was simulated using the barotropic vorticity equation on a latitude circle, solved with a high order
method on a fine time and space grid, and noisy observations were generated from nature using a
random number generator. S; was taken as | both in generating the data and in analyzing it via
(5), and e, was generated as a zero mean random Gaussian vector with covariance a multiple of Q,.
“The model’ was based on a cruder integration of the barotropic vorticity equation, so that ‘model
error’ may be thought of as the difference between ‘nature’ and ‘the model’. In this case, as in
nature, model error is not readily describable in terms of means and covariances, nevertheless, they
may be a convenient, although crude way of dealing with model error that is not well understood.
In the experiment Q; was taken as the identity matrix. The five tuning parameters were selected
for adaptive tuning via the GCV method because it was believed, as a result of some preliminary
experiments, (plus guesswork) that the solution and the ‘predicted’ observations computed from the
solution, were sensitive to them. It turned out that the predictive mean square error, based on
Yirue — Y fitted » Where Yirye is what would have been observed if there were no errors anywhere,
(known only in a simulation, of course), was sensitive to all five parameters, but, on comparable
scales, «, the parameter relating observational to model error, had a much broader, flat minimum.
One possible explanation is that the ‘white noise’ assumption for model error was not a very good
representation for model error. Although the sensitivity to o was not great, the weak constraint
estimate gave better results than the strong constraint (@ — 00). Dealing with model error is an
open scientific issue, according to Courtier (1997) and others. Before going on to some speculative
discussion of approaches to model error in the weak 4D-Var problem, we note that it was clear in the
experiments in Gong et al. (1998) that the five parameters being tuned interacted with one another.
For example the optimal value of one of the physical parameters in Ay was systematically larger than
the ‘true’ or ‘nature’ value but it depended on the choice of (v, a, 7).

With regard to fn, in the present study, 6y contributed essentially two degrees of freedom to
the fit. In practice, Oy may be widely distributed. If it contributes many degrees of freedom, then
in general it will be appropriate to include a (tunable) penalty term, say 6]|fw||3 to the variational
problem, see Wahba (1990a), O’Sullivan (1991), Navon (1998), Evensen, Dee & Schroter (1998).

2 DUAL VARIABLES, NONLINEAR FORWARD OPERATORS AND MODELS,
CORRELATED MODEL ERRORS

Following Bennett (1997), Courtier (1997), notice that, assuming that ¥, and the N; known, that
¥y, .-+, ¥ are determined by €, and £ = (£],---,6r—1)" and vice versa. Thus one may change
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variables from ¥y, -, ¥y in (5) t0 (e, &) to get
| T-1
> llye — Ke®y(en, )31 +a Z ||§tHQ—1 +lledlgor + (e, )13, (6)
teA

and solve the variational problem for ex and € instead of for ¥. To take a closer look at this problem,
let K¢ = Ky®y, x = (€},€')', and redesign J; so that it is is quadratic in x, letting J,(x) = [|x||2,
J = J(6.;). Concatenate the y;, Rt, S¢ and Q; in an obvious way, and allow more tuning parameters
to get K(fk), S = S(6,) and Q = Q(), and let Q, = Q.(6;). Furthermore, we specifically do not
want to restrict Q to be block diagonal, so that we can allow for model errors correlated from time
to time. Let A™'Z = A~1¥(fs) be a quadratic form standing in collectively for aQ,vQ, and.nJ. The
result is the variational problem

(y — Kx)'S™1(y — Kx) + ' 71k, (7

with tuning parameters 8§ = (0k, 0\, 05,0z, 05,0:). We note that (7)is not changed if the K; and M;
are nonlinear; in that case K is a nonlinear map from x to y, but under the assumption about J,,
the second term is quadratic.

If K = K, meaning K is linear, then the minimizer x of (7) is2

x) = (K'ST'K + A1) 7'K'S™ y~ZK’(KzK'+,\s ly =Y e, (8)

where 7; is the ith column of TK’, and, letting ¢ = (cy,- -+, ¢)’, (KEK' + AS)¢ = y. This is a trivial
example of representer theory (implemented , for example in PSAS, Cohn, daSilva, Guo, Sienkiewicz
& Lamich (1998)), where a system of size the dlmensmn of y is to be solved even 1f the dimension of
x, is much blgger than the dimension of y.

3 TUNING METHODS

With the dimension of x orders of magnitude greater than the dimension of y, it is clear that the
number of tunable parameters in K,S and ¥ is limited by the amount of information in y, and
by the possibility of aliasing/identifiability. (Of course to the extent that desirable values of these
parameters do not vary over long periods of time, historical information may be collected). In any
case, it is neither possible, nor even desirable to have models for the model error covariance matrix
Q, the forecast error matrix Q. or the constraint functional J, to have an overabundance of free
parameters. Furthermore, the solution should be sensitive to any parameters considered for adaptive
tuning.
Equation (7) may be interpreted as the variational problem associated with the statistical as-
sumptions
y =Kx+e, €~N(0,028), x~AN(0,bL),\=02/b. (9)

The influence matrix A(A, ), which maps S—1/2%y into S~1/2Kx, 3 is given by

A=STVKK'STIK+ AT TIKS T2 = BB + )7 ~ (10)

2This formula assumes that the quadratic form x'¥ " !x is of full rank. If it is not, see Klmeldorf & Wahba (1971),
Wahba (19905). Having already abused motation, replace x'T~'x by x'Px.. For (7) to have a unique minimizer in
the linear case it is necessary and sufficient that x'Px = 0 and Kx = 0 imply that x = 0. In practice users should
make sure that the null space of P is not too big!

%In the nonlinear case use this to define the influence operator.
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where B = B(),0) = %S_I/QKZK’S"I/Z. Its clear that B must be sensitive to a component of € in
order for estimation of that component to make sense and aliasing of parameters inside B is to be
avoided *. The GML estimate for A, # is the minimizer of

y'ST2(1— AN, 0))S 2y
[detS—1]/n[det(l — A(X, 6))]1/

and the GML estimate for o2 is %y’ S—1/2(1 — A)S~*/2?y. The GML estimate has certain optimality
properties when the stochastic model (9) is correct up to the unknown parameters. Little is known
concerning its robustness to this assumption, see Wahba (1985). Note that there are other forms of
maximum likelihood estimates , depending on which unknowns are included and how they enter into
the formulas. The GCV estimate is the minimizer of

_ 0 =AST 2y lly — KxaE-s
(2trace(l— A))2 — (Ltrace(l — A))2’

In theory it may not be suitable for estimating sensitive parameters inside S (i.e. 6,), since it is
theoretically based on assuming that the problem is being scaled so that S~%/2¢ ~ A (0,081), where S
is assumed reasonably correct. Subsets of observations where this is not true, (for example radiance
data), may be excluded from V by partial GCV, see Wahba, Johnson, Gao & Gong (1994), there
(I — A) is replaced by E(l — A) where E is a possibly weighted indicator matrix for the observations
to be included. However the GCV estimate is robust to various assumptions about K, ¥ and x. We
remark that both the GCV and GML estimate can be defined when K is nonlinear. In either the
linear or nonlinear case the trace of A may be estimated by the randomized trace method without
having A explicitly, given a ‘black box’ which produces Kx, given 7, see Wahba, Johnson, Gao &
Gong (1995). Dee & daSilva (1998) and Dee, Gaspari, Redder, Rukhovets & daSilva (1998) have
used maximum likelihood methods to estimate parameters in forecast error covariances in several
practical examples, and have compared some of the results with GCV estimates, obtaining generally
similar results in the examples tried. It may be possible to combine the strengths of both methods
by iterating back and forth, using likelihood methods for parameters in S and GCV for parameters
in K and X, this is speculative at { = moment. The ordinary cross-validation ‘warhorse’ of leaving
out a subset of the observations may also be used (with care).

M(A,0) =

(11)

V(A,0)

(12)

4 MODELS FOR MODEL ERROR, DISCRETE TIME CASE

We outline some classes of models for time dependent model error, ¢ = 1,---,T. Let g be a generic
index, g = (lat, long, z, type) where type indexes the analysis variables, i. e. type = surface
temperature, type = vorticity, etc. See Wahba (1992) for more on generic indices. We list some
stochastic models for £;(g) which remove the restriction that Ef; = 0, E€[& = 0,s # t. A fairly
general class of models is

60) = () + 3 2O e O Bi (o) (13)
k=1

where p(g) = 22, d,F,(t,g) is a mean function (bias term) specified except for a modest number
of coeflicients d,,v = 1,---, M, to be found, the A; and @, are specified up to some parameters f¢,
and Ez;(t) = 0, Ez,(s)2(t) = r(s,t). Then

couls(9)€c(h) = D rra(s,t)y/ Ak (8)y/ M) B (9) B (R). : (14)
¥

%e. g. In principle at least, the Hessian of B with respect to (),#) should be well conditioned.
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The simplest generalization over model error independent from time to time is the tensor product
case, r(s,t) = 0,k # l,rgx = r(s,t), independent of k, and Ax(s) = Ay independent of s, which
gives

E&(9)6i(h) = r(s,)R(g,h), (15)
where R(g,h) = i A ®£(g9)®(h). This gives the penalty term for model error as
: T-1 . , v
Yo (€ — ) R7HE — ), - (16)
s,t=1 o ) '

where r*! is the (s, t)th entry of the inverse of the matrix with (s, ) entry r(s,t). Here the coefficients
in u: become part of the variational problem. Simple examples include z(-) an autoregressive scheme
or moving average where the correlation structure of the z(-) process can be defined as short or long
memory. A model like

ey (g Zra s,)Ralgyh) | an)

would allow for dlﬁ'erent time scales in the rq. Luo, Wahba & Johnson (1998) consider (15) in a
simple situation with g on the sphere, R an isotropic covariance on the sphere and z(-) a second order
difference scheme forced by white noise. They used this model to estimate the linear time trend as
a function of space given historical data irregular in time and space, by using the fact that the time
trend is obtained as an orthogonal projection of ‘the fit onto the relevant subspace of the implied
RKHS. It may be possible to use similar techniques to diagnose model error. Griffith & Nichols
(1998) have recently examined some simplified dynamical models for model error.

5 ELEMENTS OF REPRESENTER THEORY

In this section, time is continuous, ¢ € [0, 1], and some components of g (e. g space variables) are

also to be thought of as contlnuous Continuous time representer theory in RKHS has recently been
A apphed in a number of places, see Bennett (1992) Bennett (1997), Bennett, Chua & Leslie (1996),
Eknes & Evensen (1997) Evensen et al. (1998), Amodei (1997), Wahba (1992). We remind the
reader that for every positive definite function R on 7 ® 7, where 7 is an abstract index set, there
exists a unique RKHS and vice versa (The Moore-Aronszam Theorem) There also exists a well
deﬁned zero mean Gaussian stochastlc process Wlth R as its covariance, however, sample functions of
the stochastic process are not, with probability 1 in the RKHS if the RKHS is infinite dlmensmnal
~See. Wahba (19900), Weinert (1982) for more on reproducmg kernel Hllbert spaces.

Let . :

Gl =89 +&e, 8
where | '

LE)(g) =0, BEi(g) =0, - (19)
where L is a (linear) evolution operator, and B are initial/boundary conditions which serve to make
the solution of differential equation unique, so that ‘

49 =80+ [Cugloutady @)

for some u(") where @ is the Green’s function for £ and B. If u is treated as though is is a zero mean
Gaussian stochastic process with covariance Ry (s, g;t, h) then '

Etl(g //G (s, 9;5,53)G(t, h; T, h) Ry (5, §; 1, h)dsdgdidh = R'(s,g;t,h), [say). (21)
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Let : - _ : S
E£)(9)¢0 (h) = R%(s,git,h), (22)
and suppose that £ and ¢! are mdependent then

E¢,(9)&:(h) = R(s,g;t,h) = R"(s, g;t,h) + R (s, git, h) ‘ R, (s,g;t,h) + Rg, (s, g;,h).  (23)

Under general circumstances LR(s, g;,,-) = 0, where £ is applied to RO considered as a function of
(,-) for each fixed (s,g). Furthermore, the RKHS Hg with reproducing kernel (RK) given by R =
RY+ R! of (23) consists of the direct sum of the orthogonal subspaces Hr = Hgo ® Hg:1, respectively
containing solutions of the homogeneous equation and solutions to the differential equation satisfying
homogeneous boundary conditions. Changing notation from &;(g) to fi(g) to indicate that we are
now letting f be an element of Hz, we have that if f' € Hp, then ”f1”’2H L = ”['fIH’QHR where
- ”’HR is the square norm in Hp,. If u had instead been taken as ‘white noise’ then R, would not
appear in (21) and the Hg, norm would be replaced with the usual Ly norm. Decomposing f into
f%and f* analogous to (18,19) gives (the obvious) ||f|3,, = HfOH»HRO +|If* ”'HRI

Let Ly, -+, L, be n bounded linear functionals on Hg. Basic representer theory (see Kimeldorf

& Wahba (1971) Wahba (19908)) in RKHS tells us that the solution to the problem: find f € Hg

to minimize o

S (i — Lif)? + Ml f i3, (29
1=1
is in the span of the n representers 7; of L; in H g, where

7i(s,9) = LisyR(s, 931, ), o (25)

where L1(t r) means L; applied to what follows considered as a function of (¢,h). We may replace
”f”’HR in (24)by e. g. ||f°l|“ a0 +w||f1||H oy the new problem is in theory solved with the aid of the
RK R%(s,g;t,h) + 'w’lRl(s g;t,h); w— o0 corresponds to the ‘perfect model’ assumption. Simple
prototypes appear in Kimeldorf & Wahba (1971) and Wahba (1990b) where a semmorm penalty is
also allowed.

Tuning for model error may have potential to provide diagnostic information concerning model
error. Tony Weaver (personal communication) has remarked on the necessity of considering extrap-
olating (forecasting) the correlated part of any fit to model error. Most desirable, of course is to
eliminate model error to the extent possible.

Recently Lin, Wahba, Xiang, Gao, Klein & Klein (1998), in a different (and much simpler)
context, but with a relatively large, irregularly spaced data set, solved the variational problem under
consideration in the span of a selected subset of the representers 7;,7 = 1,--,n, with excellent
results. '
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