EXTENDING DATABASE FUNCTIONALITY THROUGH
EMPRESS PERSISTENT STORED MODULES

Serge Savchenko
Empress Software Inc.

This paper reviews the relevance of Persistent Stored Modules in the
user driven augmentation of the existing functionality in a Relational
Database Management System. The second part of the article includes a
step-by-step example of a Persistent Stored Module implementation,
which provides a solution to a real life data retrieval challenge.

1. INTRODUCTION

The explosion in digitized information, hardware capacity and computer communication has
placed significantly higher demands on database systems. While at its core database systems still
store data and provide access to information, the methodology of data retrieval has been elevated

to a new level of complexity.

There is no lack of research data available today. The Earth Observation Systems (EOS) alone
return 10"/3 bytes of data reflecting trends in the Earth atmosphere, oceans and land mass. The
ECMWF Meteorological Archival and Retrieval System (MARS) grows at the rate of 7 GB per
day. In some cases, the process of data retrieval and anélysis buckles under the rate of new data |

acquisition.

The Internet significantly increases the total pool of research data, multiplying the challenge of

data retrieval and data analysis many folds.

Empress Software has opened a new chapter in RDBMS technology by allowing users to extend

the existing capability of their database engines through the use of Persistent Stored Modules.

300

m The amount of available data is significant
E EOS satellites return 10!5/3 bytes of data per year

® MARS at ECMWF generates 7Gbytes of research
data per day

m Instantaneous access to a very large pool of
data over the Internet. |

m Database queries are issued by décision
makers who look for unexpected relationships

m Need for high level user interfaces for non-
expert ad-hoc queries

Extending DB Functionality through EMPRESS Persistent Stored Modules

This paper emphasizes the ease in development of new Persistent Stored
Modules and their inclusion into a database schema. The result is a radically
different paradigm for a database system where algorithms are placed “next” to
user data. The new model unites the executable code and user data under the

umbrella of the term “database.”

This paper is about the benefits of such a model. In order to illustrate the use of
a PSM, an example citing a data retrieval problem and a PSM based solution for

it are included in latter part of the article.

The Summary briefly discusses the main advantages of the Persistent Stored

Module implementation.

301

m ANSI/IEC 9075-5, 1999 definition: "PSM

is an executable code stored in the
database schema”

® PSM is a user-defined reusable ObJect

® PSM is an SQL-server module

® PSM is a user-defined: |

® function

® procedure

mtrigger

B operator

Extending DB Functionality through EMPRESS Persistent Stored Modules

2. PERSISTENT STORED MODULE DEFINITION

Both ANSI/IEC9075-5 ,‘ 1996 and soon to be formalized SQL-3 standards define
Persistent Stored Module (PSM) as “an executable code stored in the database
schema”. Thus by definition, PSM is a database schema object. The Module -
itself can contain one or more routines which are addressable elements. Thereby
each routine is also a schema object. Each and every schema object is managed

within the scope of the database. - -

' The routines within the PSM are also known as User-Defined Function, Stored

Triggers and Procedures or Operators.

302

m Is written in Embedded SQL and/or C
programming language

® Extended to Interactive SQL via Data
Definition Language

B Includes the definition of parameters

® Provides for the use of arguments at
invocation time

m Allows for user-defined names
® [s secure

Extending DB Functionality through EMPRESS Persistent Stored Modules

3. PERSISTENT STORED MODULE

IN EMPRESS SOFTWARE IMPLEMENTATION

Empress Software has implemented its PSM in accordance with the ANSI
standard. The main benefit of adhering to the widely recognized standard is
popularization and therefore a degree of brand name independence. Here are

other benefits of the EMPRESS PSM implementation:

303

A user can use the widespread C-programming language and/or Embedded SQL to
develop Empress schema objects (user-defined routines), therefore there is no need to
learn another proprietary programming language in order to code the routines for‘

Empress Persistent Stored Modules.

Empress Data Definition Language (DDL) was .augmented at thé Interactive SQL level;
here are the examples of the additional commands: |

CREATE MODULE,

DISPLAY MODULE,

UPDATE MODULE,

CALL
and others. All of these commands make handling of the executables objects in the

database easy and natural.

User-defined functions and procedures include the definition of parameters thus allowing
for the use of arguments at the execution time. This is a very important property if the
EMPRESS PSM implementatibn as it provides for a’dynamic mechanism, Whiéh will

process relevant user data at the time of invocation.

PSM’s are governed by the same authorization methods as user data in the database.

304

*Embedded SQL CLIENT
*C program : '

>~ SERVER

Extending DB Functionality through EMPRESS Persistent Stored Modules

4, FUNCTIONAL DIVISION OF A TYPICAL DATABASE APPLICATION

Any database driven application can be divided into four conceptual

components:

a) user data set
b) database scheme
c) database engine

d) application

305

= -Embedded SQL- - ¢1 |ENT
V «C program | - ;

>~ SERVER

Extending DB Functionality through EMPRESS Persistent Stored Modules

For the purpose of this paper the parts mentioned in a, b and ¢ are referred to as
“database server”. By the same token, the application portion is informally
referred to as “client”. This is a software definition and it should not be mixed
up with the hardware client/server paradigm, for the database server and client

can reside on the same physical machine.

The application client contains procedural logic of the database-based
application. A typical databaée application would usually contain two
conceptual parts: operational logic énd ﬁser interface. Theoretically, it would be
possible to divide such an application along this dividing line and convert the
portion with the operational logic into a PSM. Of course, a brand new PSM can

be developed without re-writing an existing application.

306

-sEmbedded SQL> CcLIENT
+C program ‘

~~

> SERVER

Extending DB Functionality through EMPRESS Persistent Stored Modules

5. THE PLACEMENT OF A PERSISTENT STORED MODULE

The inclusion of the operational logic into a PSM translates into the following

statement:

logic that pertains to data kept in the database is stored in the database itself,

below the database engine layer.

- 307

® Provides for new functionality at the
SQL level and above:
B ODBC
B HTML/XML
B JAVA
mPerl

Extending DB Functionality through EMPRESS Persistent Stored Modules

6. EXTENDING OPERATIONAL LOGIC TO OTHER USER INTERFACES

One of the major advantages of storing operational logic underneath the
database engine layer is the ability of many other applications written in
different languages to access this logic in the same manner as it would access
the data stored in the database. In other words, the functionality embedded into a

PSM now can be extended to other user interfaces

308

m New functionality is augmented by a
user, independent of a DB manufacturer
or application developer:

® function
B procedure
: E trigger
‘ B operator

Extending DB Functionality through EMPRESS Persistent Stored Modules

7. AUGMENTATION OF EXISTING FUNCTIONALITY

The ability to store executable logic in the database schema also allows the
owner of the database to easily add new user-defined functions, procedures and
operators to their database. So, if a user is in need of a certain statistical function
that is not a part of the database system distribution, this function can be
effortlessly made a part of this database. Thus, the user of the database system
gains a certain degree of independency from the manufacturer of the database

system.

309

m New functionality becomes a property
of the database, for PSM’s are:

E included in the DB schema

- massigned names
m subject to the same packaging methods

m subject to the same authorization
mechanism

E available for all database users
m reusable objects

Extending DB Functionality through EMPRESS Persistent Stored Modules

8. OPERATIONAL LOGIC BECOMES A PART OF THE DATABASE

There are many good reasons for why user data and procedural logic responsible
for processing that data should be stored in the same repository called database. ,
One entity now includes the “processing unit” and “raw material”. Each PSM is
assigned a user-defined name, which makes it unique and distinct. Data
Deﬁm'tiop Language at the Interactive SQL level provides for management of
PSM’s. PSM’s are also subject to the same authoriz‘,ation methods ﬁnpqsed on
the entire database system. Should an existing application be updated or
converted into a different end-user interface, the business logic stored in PSM’s
will be re-used by new applications thus providing greater fluidity in moving

away from obsolete applications and/or environments to new ones.

310

written in written in
SQL non-SQL
invoked External
from :
SQL PSM PSM
SQL Q
invoked | Externally | Non-SQL
outside SQL| nyoked PSM
PSM
Extendlhg DB Functionality through EMPRESS Persistent Stored Modules

9. PSM CLASSIFICATION

The ANSI standard defines four categories of PSM’s. The programming
language used for coding the user-defined routines and the method of invocation
define the category of a particular PSM. The EMPRESS implementation of

Persistent Stored Modules supports all four types.

311

TASK: Find temperature readings at
specified time

g

.

™ TIME (t_stamp)

WHERE T1 = #¥199909091030”

Extending DB Functionality through EMPRESS Persistent Stored Modules

10. EXAMPLE OF A PSM IMPLEMENTATION

Let’s examine a real life example in order to better understand the applicability

of a PSM and the method of its inclusion into an existing database.

Our Task is to find temperature readings (¢) at specified time (77) in a
chronological log stored in database table Thermolog; Thermolog is a table in

the database called db.

312

m DATA: A chronological log of
temperature measurements

TABLE:
Thermolog TIMESTAMP TEMP
t_stamp t°C
19990909100101000000 | 14
: 19990909100930000000 15
199909091030

19990909104502000000 15
19990909112301000000 16
119990909114455000000 15

Extending DB Functionality through EMPRESS Persistent Stored Modules

Table Thermolog must contain at least two attributes:
¢ _stamp representing timestamp readings in the log

(in case of EMPRESS RDBMS the timestamp data type has the resolution of a microsecond)

and ¢ representing the actual temperature measurement.

It is very likely (especially if the timestamp resolution is high) there won’t be a

precise match for the time value T1 in the chronological log.

313

Problem: No exact time stamp value in the
database.Time intervals are unequal.

Ry
-

TO T1 T2 TIME

Solution: Find two adjacent temperature readings in~
the database, ie. t readings at TO and T2

Extending DB Functionality through EMPRESS Persistent Stored Modules

There are several approaches one might take in order to solve this problem. One
approach is to find temperature readings that were taken just before and just
after time T1. In other words, two closest time stamps: TO and T2 where TO will

be less than T1 and T2 will be greater than T1.

314

THE USUAL SQL STATEMENT:

SELECT t FROM Thermolog
WHERE t_stamp > TO and t_ stamp < T2

is not going to produce the desired resuit:

a) there are no values for TO and T2

b) time stamp resolution is unknown

c) time intervals are unequal

d) is likely to return more than two values or
no values at all

Extending DB Functionality through EMPRESS Persistent Stored Modules

The seemingly fit SQL statement:

SELECT ¢ FROM Thermolog WHERE ¢ stamp > TO0 and ¢_stamp < T2 1s

unlikely to produce the desired result for:

315

1)

2)

3)

4)

the values for TO and T2 are not known, it is possible to find them, but it will take at least
two additional SQL statements and it also requires specialized date type functions which

might not be a part of the database engine;

timestamp resolution is unknown; it could be minutes, if entries made manually or

microsecond if the data was inserted by an application;

in order to cover all the bases an assumption that entries were made at irregular intervals

must be made;

even if “common sense” guesses are made as to what the values of T0 and T2 might be,

the select statement is likely to return too many values or none at all.

316

§THE NEW SOL STATEMENT SHOULD LOOK LIKE:

SELECT t_stamp, t from thermolog
WHERE t_stamp = PREVAL(7199909091030")
and

SELECT t_stamp, t from thermolog
WHERE t_stamp = NEXTVAL(%“199909091030")

PREVAL(TY)
and
NEXTVAL(TT)

are user-defined functions stored in a PSM
Extending DB Functionality through EMPRESS Persistent Stored Modules

In order to obtain the expected result each and every time a SELECT statement
is issued, we need to agree that each SQL statement must return just one value.
Since we are looking for two temperature readings at TO and T2, we require two
SELECT statements, each returning a single temperature measurement.
Therefore, the new SQL statements should be as follows:

SELECT ¢_stamp, t FROM Thermolog WHERE ¢_stamp = PREVAL("199909091 030")

SELECT ¢ _stamp, t FROM Thermolog WHERE ¢_stamp = NEXTVAL("19990909103 0”)

where PREVAL(T]) and NEXTVAL(TI) are user-defined functions stored in a PSM

317

PREVAL(TT) returns a timestamp value of
the adjacent timestamp to T1
which less than T1

and

NEXTVAL(TT) returns a timestamp value of
the adjacent timestamp to T1
which greater than T1

Extending DB Functionality through EMPRESS Persistent Stored Modules

The definitions of the user-defined functions Preval and Nextval

PREVAL(TI) returns a timestamp value of the adj acent timéstamp to T1,which

is less or equal than T1

and

NEXTVAL(TI) returns a timestamp value of the adjacent timestamp to T1,

which is greater or equal than T1

318

PREVAL(TT)
PSEUDO CODE:

1) Open file Thermolog

2) Fetch a record

3) Compare t_stamp to T1

4) if t_stamp is greater or equal to T1 then
return t_stamp of the previous record

else goto step 2

Extending DB Functionality through EMPRESS Persistent Stored Modules

The Algorithm for the User-defined Function Preval()
Since both fimctions PREVAL() and NEXTVAL() are similar in nature, we will

focus on one of them — PREVAL().

319

Here’s the pseudo code for the function PREVAL:
(Table Thermolog is ordered in chronological order)

Open file 7hermolog (point the log file)
Fetch next record (read in time stamp)
Compare t_stamp to T1 (compare time stamp to “199909091030")
if ¢ stamp is greater or equal to T1 thén
return t_stamp of previous record
else
record t_stamp of this record

go to “Fetch next record”

(Continue until the condition is met or end-of-file)

320

Here’s the source code for the user-defined function PREVAL. The function is written in C and
Embedded SQL.

GLOBAIL _SHARED FUNC char *preval (char *timestamp)
{
char *pretmp;
pretmp = (char*) mspsm_malloc (32);
pretmp[0] = \0';
EXEC SQL INIT;
EXEC SQL DATABASE IS "./db"; check ("DATABASE");
EXEC SQL DECLARE log_entry CURSOR FOR
SELECT t_stamp FROM Thermolog order by timestamp;
check("declare cursor");
EXEC SQL OPEN log_entry;
check("open cursor");
while (SQLCODE !=100){
EXEC SQL FETCH log_entry t stamp INTO :str;
if (SQLCODE == 100) break; check("fetch ");
if(stremp(str, t_stamp) >=0)
{
EXEC SQL CLOSE log_entry;
EXEC SQL CLOSE_TABLE "Thermolog";
return pretmp;
}
strepy (pretmp, str);
}
EXEC SQL CLOSE log_entry;
EXEC SQL CLOSE_TABLE "Thermology™";
return pretmp; ‘

321

INCLUSION of funcéion PREVAL (T7)
info daftabase

1) Compile the function

2) Create module (first time only)

3) Include the function into the module
4) Re-link the module

the new function is ready to be used

Extending DB Functionality through EMPRESS Persistent Stored Modules

11. THE INCLUSION OF THE USER-DEFINED FUNCTION PREVAL
Compile the function

empesq|l preval.c

(*prepare Embedded SQL statement, stored in mpout.c*)

emppsmcc —inplace —O —o preval.dll mpout.c $MSPATH

(*compiles the C program mpout.c and produces Dynamically loadable

executable stored in preval.dil*)

322

Create module (first time only)

CREATE MODULE TIMING FUNCTION PREVAL (Generic char) RETURNS GENERIC
Char EXTERNAL NAME PREVAL; END MODULE; (*Create a PSM called TIMING,

which includes the user-defined function PREVAL(T1)*)

Include the function into the module

CREATE MODULE TIMING FUNCTION PREVAL {Generic char) RETURNS GENERIC
Char EXTERNAL NAME PREVAL; FUNCTION NEXTVAL (Generic char) RETURNS
GENERIC Char EXTERNAL NAME NEXTVAL; END MODULE; (*add the user-defined

function NEXTVAL(T1) to MODULE TIMING¥)

Re-link the module

UPDATE MODULE TIMING FROM “preval.dll”;

Now a new PSM called TIMING is created and stored in the schema of the database db. This
module becomes a schema object of the database server, and as such will be dynamically loaded
and executed at the run time. TIMING includes two user-defined functions PREVAL(TI) and
NEXTVAL (T1) which are now also database schema objects. Any user who has access to the
table Thermolog also gains access to the two functions and therefore can query the table using the
functions PREVAL() and NEXTVAL(). These functions can be called upon by the user working at
any of the following interface levels: Interactive SQL, Embedded SQL, Microsoft Query (MS-
Access, MS-EXCEL), any ODBC compatible client, as well as Per]l DBI, HTML/XML, JAVA. In
other words, user data stored in the table Thermolég and the executable code stored in the
routines PREVAL() and NEXTVAL() had become parts of one entity (database db) and therefore

are meant for “public consumption”.

323

returns a boolean value (T/F) after it checks
whether two objects intersect in a given time period

AY

AREA
OF
INTEREST

\ 4

Extending DB Functionality through EMPRESS Persistent Stored Modules

12. ANOTHER EXAMPLE OF A PSM APPLICATION

The executable logic stored in user-defined routines can be of greéter
complexity. ‘Our next example includes a sophisticated algoﬁthm, WhichAdeals;
with geometrical figures defined on a plane of coordinates. The user-defined
function rectangle_circle_intersect(X1,Y1,X2,Y2, X3,Y3, R) returns a Boolean

value of True or False if finds that the two figures intersect.

The rectangle is defined by two points on the plane of coordinates: the first
point X1, Y1 and the second point diagonally opposed to the first is denoted by

X2,Y2. The circle is defined by the centre X3,Y3 and the length of the radius R.

The source code for this routine can be found in the Appendix A.

324

ArTRIBUTES

Coordinates

199511220606 ABC X1,Y1 R1

199703020711 - DEF X2,Y2 R2

199808121433 RST X3,Y3 R3

199910151820 GHI X4,Y4 R4

Extending DB Functionality through EMPRESS Persistent Stored Modules

Once the function rectangle circle_intersect(X1,Y1,X2,Y2, X3,Y3,R) is
compiled, it becomes possible to perform a spatial operation “intersect” over a

set of data with physical dimensions and addressable coordinates.

Let’s take a look at the table of storms where the attributes include: timestamp,

the storm name, coordinates and the dimension of the storm.

325

! TASK: Check if two objects intersect
A Y

v
X

Extending DB Functionality through EMPRESS Persistent Stored Modules

The rectangle can be defined by a user as the area of special interest, then the
table Storm can be traversed using the function rectangle_circle_intersect() in

order to identify the storm that had touched at the area of interest.

It is obvious how this or similar functions can be added to an existing database
containing current or historical data and achieve rudimentary functionality of a

Geographical Information System without acquiring one.

326

1 Augment your research tools by vourself

ecreate your own
*borrow from shareware
2 Share your new tools in a systematic way
ceasy to delegate
copen up to whole world
3 Traverse more data in less time
*define your own terms
«explore peculiar relationships
set up intelligent searches

Extending DB Functionality through EMPRESS Persistent Stored Modules

THE SUMMARY
In conclusion,
The main benefits of the PSM technology are:

The faculty to augment the existing functionality of a database engine through
the inclusion of executable logic as database schema objects is extended to the
database user level.

The new functionality is stored using the same methods as data, therefore
equating the simplicity in accessing data kept in the database to that of using the
new functionality.

The combination the new functionality and the ease of use allow for the
construction of intelligent database mining while searching for “unusual”
relationships.

The PSM implementation by Empress Software empowers users to step above
the strict constrains of a relational database and take steps in the direction of the
object-oriented technology.

327

Reference:

Date, C.J. with Hugh Darwen, 1997: A Guide To The SQL Standard.

Fourth Edition. Addison-Wesley, Don Mill, Ontario Appendix E.

Fortier, Dr. Paul J., 1999: SQL-3 Implementing the Object-Relational Database.

McGraw-Hill, Toronto pp. 305-322

Raoult, Baudouin, 1997: Architecture of the new MARS server.
Sixth Workshop on Meteorological Operational Systems, 17-21 November, 1997,

ECMWF, Reading, UK, p.90

Silberschatz, Avi, Stonebreaker, Mike, Ullman, Jeff, editors, 1996: Database Research:
Achievements and Opportunities Into the 21% Century.
SIGMOD Record, Vol. 25, No.1, March 1996.

The Association of Computing Machinery, New York, NY, USA pp. 52-58

328

APPENDIX A.
USER-DEFINED FUNCTION rectangle_circle_intersect
(The function name box_circle_intersection is used in this example)

#include <usrfns.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define EARTH_CIRCUMFERENCE 40075.0
typedef struct {

double x;

double v;
} Point;

typedef struct {
Point centre;
double radius;
} Circle;

/* This function will return the key that fits where a box that is describe 4 points. A point is
intersection of longitude and a latitude.)
* (longl, latl) * (long2, latl)
| |
|
|

|
(longl, lat2) * (long2, l1at2)*/

|
|
!

static msbool Check point (
double boundary longitude,
double boundary latitude,
double current longitude,
double current_latitude,
msbool west);

static msbool west = true;

static msbool east = false;

/*

* Imports:

* parl: longitude of current record

* par2: latitude of current record

* par3: longitude of Northwest Corner
* pard: latitude of Northwest Corner
* par5: longitude of Southeast Corner
* par6: latitude of Southeast Corner

*

* Exports:

* returns true if within region

*

*/

329

GLOBAL_SHARED FUNC msbool box_point_intersection (
double longitude,
double latitude,
double longl,
double latl,
double long2,
double lat2)

double x_offset;
double y_offset;

if (longl < 0.0)

y_offset = fabs (long1l);
if (latl <0.0)

x_offset = fabs (latl);

/* Check the north west corner */
if (!Check_point (
longl +y_offset,
latl +x_offset,
longitude + y_offset,
latitude + x_offset,
west))
return false;

_offset = x_offset = 0.0;
if (long2 < 0.0)
y_offset = fabs (long2);
if (1at2 < 0.0)
x_offset = fabs (lat2);
if (! Check_point (
long2 +y offset,
lat2 +x_offset,
longitude + y_offset,
latitude + x_offset,
east))
return false;
return true;

static msbool Check_point (
double boundary_longitude,
double boundary_latitude,
double current longitude,
double current latitude,
msbool west)

/* Check the East longitude line */
if (Iwest) '

{

330

}

static

if (current_longitude > boundary longitude)
{

return false;

/* Check the latitude line */
if (current_latitude > boundary latitude)

{
return false;
}
}
else
{
/* Check the West longitude line */
if (current_longitude < boundary longitude)
{
return false;
}
/* Check the South latitude line */
if (current_latitude < boundary latitude)
{
return false;
}
}
return true;
msbool intersection (
Point p1,
Point p2,
Circle ¢)
double dx;
double dy;
double dr2;
double determinant;
double discriminant;
Point i1;
Point 12; /* intersection points */

double intermediate; /* intermediate step in equation */
/* distances for the 3 colinear points */

double di;

double d2;

double d3;

msbool ret;

pl.x -=c.centre.x; /* move system so circle is on origin */

p2.x -= c.cenire.x;
pl.y -=c.centre.y;

331

p2.y = c.centire.y;

/* step one, If the discriminant is >0 then there are intersections */
dx =p2x-plx;

dy =p2y -ply;

dr2 = dx*dx + dy*dy;

determinant = p1.x*p2.y - p2.x*pl.y;

discriminant = ((c.radius * c.radius) * dr2) -

(determinant * determinant);

/* two point intersection of line ... We have an intersection */
ret = false;
if (discriminant >= 0.0)

{

/* step two, find the intersection points */
intermediate = dx * sqrt(discriminant);

/* significant of dy */
if(dy<0)
{

intermediate *=-1.0;

}

if (dr2 > 0.0)

{
il.x=((determinant * dy) + intermediate) / dr2;
i2.x=((determinant * dy) - intermediate) / dr2;

}
else
{
/* False value in, false value out....
This happens only if the line segment is zero
length, so it is going to return false.*/
return false;
}
if(dy<0)
/* absolute of dy */
dy*=-1.0;
} ‘

intermediate = dy * sqrt(discriminant);
il.y = ((-1.0 * determinant) * dx + intermediate) / dr2;
i2.y = ((-1.0 * determinant) * dx - intermediate) / dr2;

/* step 3, check if one of the points is between pl and p2 */
/* d1 = length of line segment */

/* 32 = distance from p1 to intersection point*/

/* d3 = distance from p2 to intersection point */

332

/* check both intersection points. here's intersection 1 */
dl = sqrt(((pl.x-p2.x)*(pl.x-p2.x))+
((pl.y-p2.y)*(pl.y-p2.y)));
d2 = sqrt(((pl.x-i11.x)*(pl.x-i1.x))+
((p1.y-i1.y)*(pl.y-i1.y)));
d3 = sqrt(((p2.x-11.x)*(p2.x-11.x))
H(p2.y-il.y)*(p2.y-il.y)));
if(d2 + d3 - d1<0.0001) /* some tolerance for rounding errors */
ret=true;

/* and intersection 2 */

dl=sqrt(((pl x-p2.x)*(p1.x-p2.x))
H(pLl.y-p2.y)*(pl.y-p2.y)));

d2=sqrt(((p1l.x-12.x)*(pl.x-12.x))
H(pl.y-12.y)*(pl.y-i2.y)));

d3=sqrt(((p2.x-12.x)*(p2.x-12 X))

H(p2.y-12.y)*(p2.y-12.)));
if(d2+d3-d1<0.0001) /* some tolerance for rounding errors */
ret=true;
}
return(ret);

}

/* This function will return true is the storm intersects the square
a box that is describe 4 points. A point is intersection of

longitude and a latitude.
* (longl, latl) * (long2, 1atl)
! l
| |
I |
l |
* (longl, lat2) * (long2, 1at2)

*/

/*

* Imports:

* parl: longitude of current record

* par2: -latitude of current record

* par3: radius of storm system

* pard: longitude of Northwest Corner

* par5: latitude of Northwest Corner

* par6: longitude of Southeast Corner

* par7: latitude of Southeast Corner

%

* Exports:

* returns true if within region

* .

*/

GLOBAL SHARED FUNC msbool box_circle_intersection (

333

double longitude,
double latitude,
double radius,
double longl,
double latl,
double long2,
double 1at2)

/* Calculate if the distance */
Circle Storm;

Point Northwest;

Point Southwest;

Point Northeast;

Point Southeast;

/* 1s the storm point within the box */
if (box_point_intersection (longitude, latitude, longl, latl,long?2, 1at2))
return true;

Storm.radius = radius * (360.0/EARTH_CIRCUMFERENCE);
Storm.cenire.x = latitude;
Storm.centre.y = longitude;

/* We make the assumption that we are working only near the
equator and that the earth is flat.
Therefore we won't have to get into any heavy duty
scaling function for distances that a degree represents. */

Northwest.y = longl,

Northwest.x = latl;

Southwest.y = long1;

Southwest.x = lat2;

if (intersection (Northwest, Southwest, Storm))
return true;

Northeast.y = long2;

Northeast.x = latl;

Southeast.y = long2;

Southeast.x = lat2;

if (intersection (Northeast, Southeast, Storm))
return true;

/* It needs to check the latitude intersections */
if (intersection (Northwest, Northeast, Storm))
return true;

if (intersection (Southwest, Southeast, Storm))
return true;

return false;

334

