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Abstract

Conventional parametrisation schemes in weather and climate prediction models describe the
effects of sub-grid scale processes by deterministic bulk formulae which depend on local resolved-
scale variables and a number of adjustable parameters. Despite the unquestionable success of
such models for weather and climate prediction, it is impossible to justify the use of such
formulae from first principles. Using low-order dynamical-systems models, and elementary
results from dynamical-systems and turbulence theory, it is shown that even if unresolved scales
only describe a small fraction of the total variance of the system, neglecting their variability
can, in some circumstances, lead to gross errors in the climatology of the dominant scales.
It is suggested that some of the remaining errors in weather and climate prediction models
may have their origin in the neglect of sub-grid scale variability, and that such variability
should be parametrised by nonlocal dynamically-based stochastic parametrisation schemes.
Results from existing schemes are described, and meteorologically- based mechanisms which
might account for the impact of random parametrisation error on planetary-scale motions are
discussed. Proposals for the development of stochastic-dynamic parametrisation schemes are
outlined, based on potential vorticity diagnosis, singular vector analysis and a simple stochastic
cellular automaton model. o
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For want of a nail the shoe was lost

For want of a shoe the horse was lost
For want of a horse the rider was lost
For want of a rider the battle was lost
For want of a battle the kingdom was lost
And all for the want of a horseshoe nail!

(Anon.)

1 Introduction

What has been the single-most important development in the atmospheric sciences over the
last 50 years? There cannot be any disagreement that high on the list, if not at the very
top, is the numerical model of the global climate system. Global atmospheric models have
transformed the daily weather forecast, and, coupled to global ocean models, are now used
routinely to make seasonal predictions, and climate change projections. As a result, 7-day
forecasts are as skilful as 2-day forecasts 30-years ago (eg Bengtsson; 1999); the onset of El
Nino and its impact on global weather patterns have been successfully predicted 6 months
in advance (eg WMO, 1999); and quantitative projections of anthropogenic climate change
provide the principal scientific basis for major international protocols on reducing the burning
of fossil fuels (eg IPCC, 1996). The success of global weather and climate models derives not
only from the mind-boggling development of computers over the last 50 years, but also to the
ingenuity of scientists in devising accurate and efficient computational representations of the
equations that govern climate.

And yet, today, these models are far from perfect representations of reality. In the short and
medium-range, model error is not a negligible source of forecast error (Harrison et al, 1998), and
the effects of model error must somehow be included in ensemble prediction systems to prevent
forecast ensembles becoming systematically under-dispersive in the late medium range. Whilst
mean systematic error is quite small in the medium range, it is interesting to note that the pat-
tern of mean systematic error has hardly changed over the last couple of decades (C.Brankovic,
personal communication). On longer timescales, systematic model error is a dominant source
of forecast inaccuracy. For example, based on the European Union project PROVOST studying
verifiable short-range climate variability using some of the major global climate models in Eu-
rope, seasonal-mean systematic error in simulating mid-tropospheric circulation patterns with
observed sea suface temperature (SST) is comparable in magnitude with observed interannual
variability (Brankovic and Palmer, 2000; Palmer et al, 2000). An example is illustrated in Fig
1, showing such systematic errors to be associated with an erroneous strengthening of the zonal
flow and a weakening of planetary-wave activity. Similarly, with interactive oceans, the mag-
nitude of the systematic error in tropical East Pacific SST is comparable with the magnitude
of typical El Nifio SST anomalies (Stockdale et al, 1998).
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Figure 1: Day 31-120 mean 500hPa height systematic error during northern winter from a 14-
winter set of seasonal integrations of the ECMWF atmosphere model with observed prescribed sea
surface temperature, made as part of the PROVOST project data set (see Brankovic and Palmer,
2000; Palmer et al, 1999). Contour interval 2 dam.

The standard approach to modelling is based on the use of the explicit equations of motion
truncated at some prescribed scale, and on the representation of scales below this by a number of
deterministic bulk formulae which depend on the resolved flow and some adjustable parameters.
Why are model errors still an important issue in weather and climate prediction? Perhaps the
right parametrisations have yet to be formulated. Perhaps the right combination of existing
parametrisations hasn’t yet been found. Perhaps, with current parameter settings, substantial
reduction of systematic error is just around the corner when global models can be run with
increased resolution. However, there is a another possibility; perhaps the very methodology
used to approximate the equations of motion for climate and weather prediction models is
itself a source of large-scale systematic error. This possibility is not commonly discussed in the
climate modelling community (though see, for example, Schertzer and Lovejoy, 1993; Mapes,
1996; Lander and Hoskins, 1997).

The practical difficulty in modelling climate lies in the fact that the governing equations de-
scribe a nonlinear coupling of scales of motion that potentially range from tens of thousands
of kilometres to the viscous dissipation scale. The role of nonlinearity in generating scale-
invariant geometries is vividly illustrated through the Mandelbrot set (eg Gulick, 1992). The
nursery rhyme above captures the flavour of scale invariance as seen in the Mandelbrot set: if
losing a kingdom is a tragedy, then losing a nail can also be. Any approximate scale invariance
exists in the real climate is decisively broken in a conventional climate model. Does this mat-
ter? Are conventional parametrisations good enough, or are we missing important nails in the
formulation of our weather and climate models?
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'The purpose of this paper is to make a case that explicit representation of sub-grid variability
should be considered as part of the parametrisation process. More generally, it is proposed that
the effects of unresolved scales should be represented by relatively-simple stochastic dynamical
systems coupled to the resolved system over a range of scales, rather than by deterministic
bulk formulae slave to the resolved dynamics at precisely the truncation scale. In section
2 we discuss the concept of parametrisation in the context of chaotic low-order dynamical
systems models whose properties are known exactly. An example is shown (based on the
Lorenz, 1963, system) of how the neglect of even an energetically-unimportant component of a
dynamical system’s state vector (a nail!) can lead to a major systematic error in the dominant
component of the state vector (a kingdom!), and of how a simple stochastic representation of
the energetically-weak component substantially improves the representation of the dominant
component. An approach to the likely existence of an accurate parametrisation is discussed from
a dynamical system’s perspective, using geometric embedding theorems. With this approach,
and using elementary scaling ideas from turbulence theory, it is suggested in section 3 that
stochastic parametrisation may be needed in climate and weather prediction models, even
taking foreseeable increases in model resolution into account. In section 4, simple existing
stochastic parametrisations for weather and climate models are described, and their impact
on weather and climate simulations discussed. Meteorologically-based mechanisms describing
potential upscale cascades of error from the sub-grid scale to planetary scales are discussed in
section 5. Two sets of mechanisms are discussed; the historical tendency for models to over-
populate the more stable high zonal index circulation regimes, and the possible link between
organised convection in the warm pool, the Madden-Julian oscillation (MJO), El Nifio, and
global-mean temperature. In section 6, a potential vorticity (PV) perspective on the stochastic
representation of unresolved mesoscale organisation associated with convective and orographic
systems is put forward; based on this two possible dynamically-based approaches to stochastic
parametrisation are outlined in section 7; the first is based on an extension of the singular
vector methodology used in medium-range ensemble prediction, the second is based on a simple
cellular- automaton model.

2 Parametrisation and low-dimensional
dynamical systems

For the purposes of this paper, a model is a finite representation of a set of partial differential
equations which govern the climate system, or the atmosphere in particular, in a form which can
be integrated numerically. Let us write the unapproximated equations for climate schematically
as '

k-f® (1)
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where X is (effectively) infinite dimensional, and F is some nonlinear functional. A climate or
weather prediction model is conventionally constructed by performing some Galerkin decom-
position on equation 1 to produce a set of N deterministic ordinary differential equations

X = FIX]+ PLX; a(X)] | (2)

where F[X] represents terms retained in the Galerkin decomposition, and P[X; «] represents
some parametrised or bulk representation of the effects of the unresolved components X; of
X (i > N). Conceptually, a parametrisation is based on the notion that there exists a sta-
tistical ensemble of unresolved sub-grid scale processes within a grid box z;, in some secular
equilibrium with the grid-box mean flow. For example, borrowing ideas from statistical me-
chanics, many familiar parametrisations involve the diffusive approximation, where o would
be a diffusion coefficient, possibly dependent on the Richardson number of the resolved flow
X. Two other examples, relevant to the discussion below, are mentioned. If the resolved-scale
vertical temperature gradient associated with X is convectively unstable at z;, then over some
prescribed timescale (given by «) P would represent the effect of an ensemble of sub-grid con-
vective plumes which operate to relax X back to stability at z; (Betts and Miller, 1986) . For
flow over unresolved topography, P could represent an ensemble of sub- grid orographic gravity
waves, propagating vertically, and breaking at some height above the surface, leading to a drag
on the resolved flow associated with X, at these heights (eg Palmer et al, 1986). In these and
most other commonly-used parametrisations, the bulk representation of small-scale processes
within z; is assumed to be a local deterministic function of X at z; ie

X; = Fj[X] + P[X;; o(X;)] | (3)
where X; and F; represent projection into a subspace associated with z;.

Despite weather and climate models being formulated in this way, it is generally agreed that
the notion of unresolved scales in secular equilibrium with resolved scales is not rigorously justi-
fiable; there is no known gap in spatio-temporal spectra of atmospheric circulations. However,
it might be argued that by truncating the equations on a sufficiently small scale, the sub-grid
motions will be so energetically weak compared with the large-scale circulations (in which we
are primarily interested) that it should be possible to describe the effect of small scales, to
reasonable accuracy, by conventional parametrisations. Is this a reasonable argument? Is it
sufficient to say that just because a particular scale of motion only explains a small amount of
variance, its effect can be represented in a truncated model where that scale is not explicitly
represented, by a local bulk formula?

The following example shows that this idea is manifestly false. Consider the Lorenz (1963)
model ‘

X = —oX+oY
Y = - XZ+7rX-Y
Z = XY -bzZ (4)
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The familiar Lorenz attractor is illustrated in Fig 2a, using Lorenz’s original choice of param-
eters (o = 10, b = 8/3, r = 28,). Based on this parameter setting, the governing equations can
be written in terms of the three empirical orthogonal functions (EOFs) of the Lorenz model
(@1, Gg, @3), so that equation 4 is transformed to (Selten, 1995)

a, = 2.34; —6.2d3 — 0.49G,dy — 0.57d2d,
Gy = —62— 2.7a + 0.49a% — 0.49a2 + 0.144,a;
a; = —0.63d; — 13ds 4 0.43ddy + 0.49d,ds (5)

The 37¢ EOF 6hly explains 4% of the total variance of the system. Hence we might consider
that a reasonable approximation to the full model could be obtained by truncating the system
to 2 EOFs, ie '

dl = 2.3(11 - 0.490,10,2
a; = —62— 2.7ay + 0.49a2 (6)

Such a truncated model is a reasonable short-range forecast model, in the sense that, the initial
tendencies ¢; and ay in equations 5 and 6 agree well with @; and a, (respectively) for points
on the Lorenz attractor. However, (for reasons discussed immediately below) the climatology
of equation 6 bears no relation to the climatology of the full model. In particular, instead of
exhibiting chaotic variability, the truncated model evolves, from any initial state, to one of two
fixed points (corresponding to the two regime centroids shown in Fig 2a). The climatology
of this truncated model has gross systematic errors in both its mean state, and its internal
variability.

We might naively consider, instead of neglecting the 3rd EOF, parametrising it in terms of the
1st 2 EOF's ie ~

dl = 2.30,1 - 6.20,3 — 0.4961,10,2 e 0.57&2@3
ag = —62—2.7a3 + 0.49a3 — 0.49a2 + 0.14a,a;
a3 = f(a1,a2) (7)

Whilst an astute choice of parametrisation f might well improve the skill of this model as
a short-range forecast model (producing trajectories which shadow the full system for short
periods of time), equation 7, like equation 6, is climatologically doomed to failure! The reason
we can be sure about this is (eg Gulick, 1992)

14



PaiMER, T.N.: A NONLINEAR DYNAMICAL PERSPECTIVE ON MODEL ERROR:

The Poincaré-Bendixzon Theorem
Consider a 2D autonomous system

and a tmjectbry which starts at some point p and is confined to some bounded region of phase
space. Then the trajectory must either: a) terminate at a fized point b) return to p, or c)
approach a limit cycle

Because of the Poincaré-Bendixon Theorem, 2-D autonomous systems of ODEs cannot be
chaotic. In the Lorenz (1963) system, the mean state is intrinsically linked with the stability
properties of the attractor. The Poincaré-Bendixon theorem provides a counterexample to the
claim that good short-range forecasting models necessarily make good climate models. (A
different argument for the failure of models with severe EOF truncation can be made using
generalised stability theory; Farrell and Ioannou, 1996, 1999a,b).

Let us return to the truncated Lorenz (1963) system. Suppose the dynamical equation for the
3rd EOF is unknown. From the discussion above, it cannot be parametrised as a determinis-
tic function of the dominant EOFs; we need to represent its varlablhty somehow. Consider,
therefore, the representation

le = 2.3&1 — 6.20,3 - 0.490,1&2 — O.57CLQCL3
Gy = —62—2.7ay + 0.49a? — 0.49a3 + 0.14a,a;
a3 = p (8)

where ((t) is a stochastic variable randomly drawn from a gaussian probability density function
(pdf) whose whose variance is equal to the explained variance associated with as. As such a
stochastic model is not autonomous, it would not be constrained by the Poincaré-Bendixon
theorem.

Fig 2b, ¢ shows the impact of such a stochastic parametrisation (F. Selten, personal communi-
cation). Fig 2b shows results using the parametrised model (represented by equation 8 where
the stochastic forcing is updated every 0.05 nondimensional Lorenz time units. The state vector
oscillates irregularly about one of the regime centroids with unimodal pdf. Hence, both the
mean and the variance in the space Sgor of the dominant EOFs from this stochastic model
are still seriously in error (though clearly the error in the variance is not as dire as with no
stochastic parametrisation). On the other hand, Fig 2c shows the climate of the model when
the stochastic variable is updated every 0.1 Lorenz time units. Now the model pdf is clearly
bimodal similar to the exact Lorenz attractor (though the state vector tends to reside in a par-
ticular regime too long; see additional remarks in section 5). Hence, through a simple stochastic
representation of the energetically-weak 3rd EOF, we have been able to fundamentally reduce
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Figure 2: a) Lorenz attractor, b) Truncated Lorenz equations (cf equation 8) using stochastic
forcing with random forcing updated every 0.05 Lorenz time units, c) truncated Lorenz equations
using random forcing updated every 0.1 Lorenz time units. F.Selten, personal communication

the time-mean systematic error in Sgop. This result depends fundamentally on the nonlinearity
of the underlying system in Sgor. (In fact, the use of multiplicative noise is not necessary to
produce a bimodal pdf, the result illustrated in Fig 2¢ can be qualitatively replicated merely by
adding noise terms to the right hand sides of equation 6 F. Selten, personal communication.)

A more general way of looking at this problem is provided by a classic theorem in differential
geometry (eg Dodson and Poston, 1979)

The Whatney Embedding Theorem
Consider an m-dimensional manifold M. Then M can be embedded in R® providing n > 2m.
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This theorem has been generalised by Takens (1981) so that M includes chaotic attractors (see
also Sauer et al, 1991). Note that n > 2m is a sufficient condition for embedding; a necessary
condition is that n > m.

For the case of Lorenz (1963) the attractor dimension is greater than 2; hence the attractor
cannot be embedded in the space spanned by the two dominant EOFs. However, there are
dynamical models where these embedding ideas can point to the likelihood of an accurate
parametrisation. Consider for example the hierarchical Lorenz (1996) system

: N
~ ~ ~ ~ ~ ~ C -
Xi = X2 X+ X Xin - X+ F - EZ%L (9)
=1
2 ~ ~ ~ - ~ C s
Zjg = —CbTjr1iTjres + bTjriljir — i+ X (10)

where the X; are large-scale variables, and the Z,,; are small-scale variables. For N = 8, the
attractor of the Lorenz (1996) system has dimension ~ 4 (Orrell, 1999; Smith, 2000). The
variables X, Xy, ..., Xg span R3; hence, by the Whitney/Takens theorem, an embedding of the
attractor into the space of large-scale variables, and hence an accurate parametrised model

X; = —XioaXi1+ XioXepn —Xs+F+ B
_P,,; == B(Xl,XQ, ..... XN) (11)

is certainly possible. In fact, Orrell (1999) has studied the local linear parametrisation
Pi = Qg + CYl‘XVi (12)

where the parameters o and ¢; are determined by linear regression. Fig 3 shows a spectral
bifurcation diagram for the exact system (Fig 3a) and for the linearly parametrised model
(Fig3b). (The spectral bifurcation diagram gives a power spectrum for the X; variable, for
different values of F.) For small values of F', both the exact system and the parametrised
model show most of the power on a set of discrete frequencies; conversely for large F' the power
is distributed over a continuum of frequencies for both the exact system and the parametrised
model. In general the model compares well with the system. However, there are values of
F where the parametrised model fails. For example, near F' = 7, the model’s spectrum is
dominated by power on discrete frequencies; in the exact system the power is distributed more
uniformly with frequency. Orrell (personal communication) has found parametrisations P¥*
which fit the exact system better than the parametrisation in equation 12. However, these
PNL are nonlocal in the sense that the parametrised tendency for Xi, say, is a function not
only of X;, but also of the other large-scale variables Xs... etc. Note that the Whitney/Takens
embedding theorem does not require the parametrisations to be local (P; = F;i(X;)) in any
way. This latter point is relevant when we consider stochastic parametrisation in weather and

climate models.
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Figure 3: Power spectrum bifurcation diagram for the X; variable in Lorenz (1996) system. a)
exact system (equation 9). b) parametrised system (equations 11 and 12). From Orrell, 1999.

18



PaiMER, T.N.: A NONLINEAR DYNAMICAL PERSPECTIVE ON MODEL ERROR:

3 Parametrisation and high-dimensional
dynamical systems

In the previous section, the concept of parametrisation was discussed, not from the conventional
notion of secular equilibrium, but from a dynamical-systems perspective. If the dimension of
a system’s attractor is small compared with the size N of a model truncation the system, then
conventional parametrisation of unresolved scales may be possible.

Chaotic atmospheric behaviour can be simulated in low-order models (eg Ghil and Childress,
1987). The attractor dimension, O(10), of such models is therefore much less that the num-
ber of resolved variables in a typical weather or climate prediction model. However, with an
intermediate-resolution quasigeostrophic model with O(1000) degrees of freedom, the dimension
of the simulated attractor appears to increase to O(100) (Palmer, 1997). One can therefore ask
the question: how does the dimension of the simulated climate attractor increase as the number
of resolved variables increases to values typical of weather and climate prediction models?

As discussed above, the dimension of the attractor cannot be assessed from the number of
dominant EOFs of the flow. By the arguments in section 2 above, it may be that 100 EOFs
describe 99% of the variance of the flow; however, both the variability and the mean state of the -
system within the space Sgor of dominant EOFs may depend fundamentally on the remaining
1% of explained variance.

If we consider the whole range of atmospheric motions, then the atmosphere could be viewed
as a high Reynolds-number turbulent fluid. A simple representation of such a high-dimension
system is given by the hierarchical Gledzer, Ohkitani and Yamada (GOY) shell system (eg
Bohr et al, 1999) - '

. . * * J * * 1—9¢ * *
Uy + an2 = 'Lkn(u n+1U 42 — —2-U n—1U ny1 — 4 U p—1U n—Z) + fn (13)

where n =1, 2...N and k, = 2"ky and u,, is a complex variable. For § < 1 the GOY model has
both energy and helicity-like invariance. For such a system, the Lyapunov dimension D of the
attractor increases proportionally with the truncation shell NV (Bohr et al, 1999). Such a system
cannot therefore be described as ‘low-order’ in the limit of high Reynolds number (N — oo).
Hence the discussion above suggests it will be impossible to find an accurate parametrised model
of the shell system with truncation scale N < N. On the other hand, it could be imagined
that the systematic effects of parametrisation error on the mean and variance of the large-scale
(n ~ 1) flow might be small enough if N >> 1, even if N <« N. However, the scaling argument
below suggests that this cannot be guaranteed.

A fundamental characteristic of error growth in climate and weather prediction is the upscale

transformation of error, from small scale to large scale. This characterises the essential element
of the ‘butterfly effect’ paradigm, as much as does amplitude growth.
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The evolution of a small-amplitude initial perturbation dz(#) to an initial state X is determined
by linearising equation 3 about some nonlinear (‘basic state’) solution. This can be written as

where M is the tangent propagator (or tangent-linear model) associated with equation 3. The
initial perturbations with largest amplitude at time ¢ are the dominant singular vectors of M
(eg Farrell and Ioannou, 1996). For atmospheric flows, the dominant energy-norm singular
vectors of M often describe an upscale transformation from sub- cyclone scales to cyclone and
planetary scales (eg Molteni and Palmer, 1993; Buizza and Palmer, 1995). This non-modal
behaviour arises because of the non-normality of M.

The ‘butterfly effect’ can describe not only small-scale error in the intial state, but also model
error in representing sub-gridscale activity by bulk formulae. For example, consider equation 3
with an additional weak imposed forcing f(t), representing random errors in the bulk formula
P. The influence of f on the resolved scale over some finite interval At = [ty, ] can be written
(cf equation 14) as

t

dz(t) = | M@, t')f({")dt (15)

to
If f was constant over At, then forcing perturbations with largest impact on the the flow at
time ¢ would be given by the dominant singular vectors of

t . .

M(t,to) = | M, t)dt. (16)
to :

As with initial perturbations, the non-normality of this operator means that variability in f

could efficiently force variability in the large-scale components X of the resolved flow.

'To take this argument futher, consider the following well-known scaling argument for error
propagation in homogeneous isotropic turbulence. Consider a model of such a system with
truncation wavenumber ky within the inertial subrange, and let f denote truncation error
at ky. Let E(k) denote the energy kinetic energy per unit wavenumber of the atmosphere
at wavenumber k. Following Lorenz (1969) and Lilly (1973), let us assume that the time it
takes error at wavenumber 2k to infect wavenumber k (ie to propagate one ‘octave’) to be
proportional to the ‘eddy turn-over time’ 7(k) = k=3/2[E(k)]~/2. Hence the time Q(ky) taken
for uncertainty to propagate N, octaves from wavenumber ky to some large scale k;, of interest
is given by

No—1

k) = 3 7(2ks) (17)

n=0

In the case of a two-dimensional turbulence in the enstrophy-cascading inertial subrange be-
tween some large-scale (eg baroclinic) forcing scale and dissipation scale, then E(k) ~ k3, 7
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is independent of &, and Q(ky) ~ N, which diverges as ky — oco. By contrast if E(k) ~ k—5/3
so that 7 ~ k=2/3 then Q(ky) tends to a finite limit

as ky — o0.

From a physical point of view, this analysis suggests that for £7%/3 flow the effect of neglecting
unresolved-scale variance on the (mean and variance of the) large-scale flow cannot necessarily
be made arbitrarily small by resolving more of the inertial subrange. (Mathematically, Q™ is
related to the dominant singular value of M, where the norm on the right singular vector space
involves a projection onto wavenumber ky, and the norm on the left singular vector space
maximises growth onto wavenumber k. By contrast, T_l(/{)N) is associated with the domi-
nant Lyapunov timescale of the system. This demonstrates a fundamental difference between
Lyapunov and singular vectors in a multi-scale system.)

Whilst the atmosphere has a k3 spectrum on cyclone scales, there is evidence for a k%3 spec-
trum on scales up to a few hundred kilometres (Nastrom and Gage, 1985; Gage and Nastrom,
1986; Cho et al, 1999). Lilly (1983) has suggested that this at least partly associated, not with
3-D motion, but with upscale energy transformations forced by organised mesoscale activity
(including mesoscale convective complexes, MCCs). More recently, in addition to the inverse
cascade process of 2-D turbulence, Lilly et al (1998) suggest a ‘PVs-spreading’ mechanism for
upscale transformations, associated with a direct effect of mass outflow from MCCs (see section
6 below). The truncation scale of typical global climate and weather prediction models is gen-
erally within this range of observed k=% activity. The ECMWF model, even with truncation
scales of tens of kilometres, shows little sign of the shallower k=53 spectum (M.Hortal, personal
communication), and there is evidence that this behaviour is typical amongst weather and cli-
mate prediction models (Koshyk et al, 1999a). This could be taken as evidence of an inability
of global weather and climate prediction models to simulate mesoscale variability. According to
the scaling argument above, such a shortcoming could have an impact on the variability (and
mean value) associated with scales ky within the k73 range.

On the other hand, one particular climate model (the GFDL SKYHI model) has shown unam-
biguous evidence of k~%3 variability near its truncation scale (Koshyk et al, 1999b), though such
a model cannot be expected to simulate mesoscale organisation (eg associated with MCCs).
Recent diagnosis (Koshyk et al, 2000) suggests that the shallow mesoscale regime in this model
is not associated with an inverse energy cascade, and much of the energy is contained in gravity-
wave components near the truncation scale, consistent with VanZandt’s (1982) analysis of the
observations. As such, it would appear that there is still some ambiguity.in the interpretation
of the existence of the observed k—5/3 spectra, and the mere existence of this shallow spectrum
cannot be taken as unambiguous evidence of an inverse cascade. If the behaviour of the SK'YHI
model is realistic, then misrepresentation of mesoscale organisation in weather and climate
models may not have a substantial effect on large-scale variability. On the other hand, if we
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assume that some form of inverse cascade associated with mesoscale organisation really does
exist, then the results of Koshyk et al (2000) warn that the injection of unbalanced stochastic
noise at the truncation scale of a climate model cannot be guaranteed to efficiently propagate
energy upscale. In section 5 it is proposed to project the stochastic forcing onto those balanced
PV structures which ensure upscale propagation. ‘

4 Stochastic parametrisation in climate and weather pre-
diction models

The use of stochastic noise to represent unpredictable small-scale variability is familiar in a
number of geophysical models (eg Hasselmann, 1976; Farrell and Ioannou, 1993; DelSole and
Farrell, 1995; Penland, 1996, Newman et al, 1996; Moore and Kleeman, 1996). Moreover,
following Leith (1990), a stochastic representation of sub-grid scale stress variations has also
been used in comprehensive models of three-dimensional turbulent flow, leading to improvement
in the simulation of the resolved flow near rigid surfaces, and to a more accurate logarithmic
flow profile in particular (Mason and Thompson, 1992).

A version of this stochastic parametrisations (‘stochastic backscatter’) has been applied to
the UK Meteorological Office’s global weather prediction model (Evans et al, 1998). The
parametrisation was adapted to produce quasi non-divergent horizontal velocity increments
with fixed amplitude, at all grid points, and at one model level in the lower troposphere.
It was shown that an ensemble of integrations with different realisations of the stochastic
parametrisation could produce significantly different cyclone- and planetary-scale variability
by the late medium range. The effect of this scheme on model systematic error has not yet
been quantified.

A somewhat different stochastic formulation was proposed by Buizza et al (1999), linking
stochastic forcing to regions in the atmosphere where conventional sub-grid parametrisation is
active, specifically:

X; = Fj[X] + BP[X;; a(X;)] (19)

where 3 is a stochastic variable drawn from a uniform distribution in [0.5,1.5]. The random
drawings were constant over a time range of 6 hours, and a spatial domain of 10° x 10° lati-
tude/longitude. As with the stochastic forcing in the truncated Lorenz (1963) model above, the
choice of spatio-temporal autocorrelations strongly influence the performance of the scheme.

A dramatic effect of this stochastic representation (distinct to the impact of intial singular

vector perturbations) was found in the simulation of isolated atmospheric vortices (Puri et al,
2000). An example is given in Fig 4 which shows sea-level pressure over part of Australia
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Figure 4: Four 2-day integrations of the ECMWF model from identical starting conditions but
different realisations of the stochastic parametrisation scheme represented by equation 19 with
parameter settings as given in Buizza et al (1999). The field shown is sea-level pressure over parts
of Australia and the west Pacific. The depressions in the pressure field represent potential tropical
cyclones. K.Puri, personal communication. '

and the west Pacific from four 2-day integrations of the ECMWF model. The integrations
have identical starting conditions, but different realisations of 8. The figure shows two tropical
cyclones. The intensity of the cyclones can be seen to be very sensitive to the realisation of
the stochastic parametrisation. This example clearly shows the difficulty in predicting tropical
cyclone development, and its sensitivity to model parametrisation. More importantly, it shows
how the variability of resolved circulation features, particularly in the tropics, is influenced
by the stochastic representation. This fact is used to discuss further possible influences on
large-scale systematic error (see section 5).

Such a stochastic parametrisation also has a profound effect on the skill of probabilistic forecasts
of rainfall, as given by the ECMWF' ensemble prediction system (Palmer et al, 1993; Molteni et
al, 1995; Buizza et al, 1999). Fig 5 shows a probabilistic measure of forecast skill (area under
the relative operating characteristic curve) for the dichotomous event: 12hour accumulated
precipitation is greater than 20mm, taken over individual grid points in the NH. It can be seen
that there is a fairly substantial improvement in skill in both the summer and wintertime, when
the stochastic physics parametrisation is included.

A full assessment of the impact of the stochastic physics parametrisation on the systematic error
of the ECMWEF coupled model (Stockdale et al, 1998) is currently in progress. Preliminary
results showing the impact of stochastic physics on 6-month mean tropical SST is shown in
Fig 6, based two ensembles of 30 6-month coupled-model integrations (F. Vitart, personal
communication). The shaded region indicates areas where the impact on stochastic physics is
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Figure 5: Area under the relative operating characteristic curve for the event: 12hr accumulated
precipitation greater than 20mm. Based on 50-member ensemble integrations of the ECMWF
ensemble prediction system. Without stochastic physics (solid) and with stochastic physics (dashed)
for the period 16-22 December 1997. Without stochastic physics (dotted) and with stochastic
physics (chain-dashed) for the period 16-22 December 1997. From Buizza et al, 1999
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Figure 6: The impact of stochastic physics on the systematic error of SST in the ECMWF coupled
model. Based on 30 pairs of 6-month integrations started one day apart in the spring of 1997.
Contour interval 0.1K. Regions where the impact is statistically significant at the 95% level are
shown shaded. F.Vitart, personal communication.

statistically significant at the 95% level. Across the western Pacific and western Atlantic, the
impact is such as to reduce the systematic error in SST (a general cold bias) without stochastic
physics.

It should be noted that whilst the scheme given in equation 19 has shown some positive im-
pact on the skill of short and medium-range forecasts, and on systematic error, it is not en-
ergetically consistent with associated surface fluxes of heat and momentum. Indeed, if the
surface fluxes were perturbed in such a way as to be consistent with stochastic perturbations
to the parametrised tendencies, the impact on SST could be larger than that shown in Fig 6.
The problem of energetic consistency could be addressed straightforwardly if, instead of the
parametrisation tendency, the parametrisation input fields were stochastically perturbed, ie

X; = Fj[X]+ P[X; + B a(X;)] | (20)

Experimentation with such a scheme is in preparation.

Indeed there is much scope for development of such schemes, and equations 19 and 20 are
both simplistic. Suggestions for more dynamically-based stochastic parametrisations are out-
lined in section 7. However, before concluding this section, it should be noted that there is
another commonly-used technique for representing model uncertainty in ensemble predictions:
‘the multi-model ensemble . This is achieved by incorporating within the ensemble a number
of quasi-independent weather or climate prediction models. Results suggest that probabilistic
skill scores for the multi-model ensemble can exceed the skill of individual-model ensembles
(Harrison et al, 1999; Palmer et al, 1999). A variant on the multi-model technique has been
proposed by Houtekhamer et al (1996) where ensemble members are integrated within a com-
mon numerical framework, but with different parametrisations P or different values of the
parameters . This is similar to the multi-model technique insofar as the parametrisations and
parameters are held fixed within a particular integration. These techniques are conceptually
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distinct from the type of stochastic physics scheme described schematically in equations 19 and
20. In multi-model ensembles, the effective model perturbations account for the fact that, even
in circumstance where secular equilibrium might be a reasonable assumption, the expectation
value of the pdf of sub-grid processes is not itself well known. By contrast, the schemes de-
scribed in equations 19 and 20 are attempts to account for the fact that in circumstances of
mesoscale organisation, the pdf of sub-grid processes, even if it was well known, would not be
sharp around the mean.

5 Possible scenarios for an upscale cascade of model er-
ror

In studying the truncated Lorenz (1963) models in section 2, it was shown that the neglect
of variability of energetically-weak components of a dynamical system can have a systematic
impact on the mean state in the space Sgor of dominant EOFs. Is there any evidence that this
argument applies to climate dyamics? It was noted in section 4 that despite a positive impact
on model performance, the schemes developed so far are simplistic and somewhat energetically
inconsistent. Moreover, as discussed in section 6 below, they arguably do not explicitly perturb
the most dynamically-relevant variables. As such there is a need for further development of
such schemes before extensive integrations and detailed diagnostic analysis are performed (see
section 7 below). Nevertheless, it is perhaps worth speculating on possible meteorological
mechanisms in the real climate system whereby stochastic physics can influence the largest
scales.

Consider first the extratropics. As discussed in many papers (see eg references in Palmer, 1993;
Corti et al, 1999), there is evidence that in the northern extratropics, the pdf of Sgor has
non-gaussian, and possibly multi-modal properties. Let us assume that a climate model can
correctly simulate the circulation regimes as diagnosed by Corti et al (1999) from operational
analyses, but with inadequate small-scale variability to trigger regime transitions. In such a
model, a plausible scenario (first suggested by Molteni and Tibaldi, 1990) is that the more sta-
ble circulation regimes will become overly-populated. Fig 7 (from Molteni and Tibaldi, 1990)
illustrates this effect. Fig 7a shows a hypothetical double potential well; Fig 7b shows two bi-
modal pdfs computed using a Fokker-Planck equation for white- noise stochastic perturbations
evolving in the double potential well. The dashed-line results are based on a stochastic variance
which has been reduced by a factor of 2 compared with the solid-line results. With reduced
stochastic variance, the mean state shifts towards the more stable and populated regime. Ac-
cording to the analysis in Corti et al (1999), the most populated regime in the real atmosphere
in the recent past (‘cluster A’; see Fig 8) corresponds to a relatively zonal flow with weak
planetary waves (and is equivalent to the ‘cold ocean/warm land pattern; COWL’ pattern of
Wallace et al, 1996. In the Pacific/ North American sector, this circulation regime projects onto
the positive phase of the Pacific/North American pattern (Wallace and Gutzler, 1981) which is
known to be a relatively stable pattern (Palmer, 1988). In this nonlinear perspective, therefore,
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Figure 7: a) Potential-well function. b) PDFs obtained using a) and given white noise stochastic
forcing, based on a solution of the Fokker-Planck equation. The white noise for the dashed line
solution is half that for the solid line solution. Relative to the solid-line solution, the mean state for
the dashed-line solution is biased towards the more populated regime. From Molteni and Tibaldi,

1990

the systematic error of a climate model without stochastic physics would tend to correlate with
the cluster A anomaly field. Comparing Fig 1 with Fig 8 in the northern hemisphere, one can
clearly see a correlation between the ECMWEF model systematic error and the most densely
populated cluster from the recent past.

It is also possible that a systematic misrepresentation of mesoscale variability can have a sys-
tematic effect on larger-scale climatic variability in the tropics. Wang and Schlesinger (1999)
have shown that a climate model’s ability to simulate the MJO is sensitive to certain thresh-
olds in the convection scheme, particularly the value of theshold relative humidity, below which
the convection scheme will not trigger. Similar experiments confirming this sensitivity have
been performed at ECMWTF using convective available potential energy (CAPE) to define the
threshold (L. Ferranti, D. Gregory, C. Jakob, personal communication). Specifically, with small
threshold CAPE, the ECMWF has a rather poor simulation of the MJO. With convection trig-
gering only when CAPE exceeds 600J/kg, the simulation of the MJO is much improved.

Diagnosis of these integrations (not illustrated) shows that large-scale rain dominates over con-
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Figure 8: Geographical patterns of the most populated hemispheric circulation regime in the period
1971-1994, based on a regime analysis of Corti et al, 1999. Based on 500hPa height. Contour
interval 10m. Compare with the systematic error field in Fig 1.

vective rain in the tropics with the 600J/kg CAPE threshold. Hence, the explicit dynamics
is playing a significant role in releasing the convective instability and generating kinetic en-
ergy when the convection parametrisation scheme is suppressed. Indeed diagnosis of these
results shows that excessive divergent kinetic energy is aliased onto the model grid, creating
~an overly strong Hadley circulation, for example. Conversely when the threshold for trigger-
ing the convective parametrisation is low, convective rain dominates over large-scale rain, and
the parametrisation adjusts the convectively-unstable temperature profiles back to neutrality
without any explicit production of kinetic energy. One could speculate that if, instead of rely-
ing on the CAPE threshold to generate convectively-forced balanced kinetic energy, the model
was stochastically-forced (in particular with stochastic PV-dipole forcing, see section 6 below)
especially in the warm-pool region where MCCs are common, a more satisfactory simulation
of both the time-mean flow and MJO variability would ensue.

One can readily speculate about further possible upscale effects. For example, as suggested
by Moore and Kleeman (1999), the (initial-time) singular vectors of the El Nifio/ Southern
Oscillation event (ENSO) have a strong projection onto the MJO, suggesting that models
with a poor representation of the MJO may also have an excessively weak and/or regular El
Nifio climatotogy. Again, because El Nifio itself is a nonlinear phenomenon (Miinnich et al
1991), an excessively weak or overly-periodic ENSO may give rise to a systematic error in
tropical Pacific SST. Finally, note that extratropical hemispheric-mean surface temperature
is dependent on tropical Pacific SSTs (eg Palmer, 1996). The dynamical coupling of this
speculative but plausible upscale error cascade is reminiscent of the poem at the beginning of
the paper; the nail represents stochastic parametrisation, the shoe is the MCC, the horse is the
MJO, the rider is ENSO, the battle is global-mean temperature, the kingdom our credibility!
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6 Potential-vorticity and stochastic
parametrisation

The specific representations, as given in equations 19 and 20 are of a rather restricted form,
where only the tendencies associated with conventional parametrisations are perturbed. Is this
a physically-justified restriction?

Consider for example the MCC. A characteristic of such systems is the balanced mesoscale
circulation field which exist on scales much larger than the component cumulonimbi. These
circulations can be conveniently described in terms of PV: cold upper level anticyclonic per-
turbations associated with a region of near-zero PV, and warm mid-level convergent cyclonic
perturbations associated with a significant positive PV anomaly (Shutts and Gray, 1994). The
existence of such PV anomalies is in part a consequence of the generation of balanced kinetic
energy associated with horizontal variations in convective heating. On the basis of high res-
olution modelling in which 3-D convection is explicitly simulated, Shutts (1997) finds that if
the mass convected in an MCC is equal to M., then the balanced energy generated in the
MCC is proportional to M5/3. Hence, for a given mass M, being convected in a grid box of
say 100km square, the ratio of balanced energy produced by a single MCC, to the balanced
energy produced by an ensemble of say 100 convecting elements , is of the order of 102. On the
basis that conventional parametrisation schemes are designed to describe the latter situation
(where the convective kinetic energy is implicitly assumed to be dissipated within a grid box),
such schemes may misrepresent situations of mesoscale organisation, missing an potentially
important PV-source of upscale-cascading kinetic energy.

Gray (1999) has attempted to quantify the impact of such MCC PV forcing in a series of forecast
experiments with the UK Meteorological Office weather prediction model. A control forecast is
run using the operational weather prediction model, and a second forecast is run using an initial
analysis which has been modified to include PV anomalies associated with MCCs diagnosed
from satellite imagery. The PV anomalies were determined by idealised conceptual models and
observational studies. Results were either significantly positive in terms of reducing forecast
error, or at worst neutral. :

Sensitivity studies reported by Gray (1999) suggest that the mid-level positive PV anomaly
has a larger impact on forecast evolution than the upper-level negative PV anomaly. This
is consistent with the singular vector analysis of Molteni and Palmer (1993) and Buizza and
Palmer (1995) who show that the large-scale extratropical flow is sensitive to perturbations
near the baroclinic steering level. Such perturbations can propagate vertically and lead to
rapid energy growth in the upper tropospheric. Although the dominant singular vectors can
have strong baroclinic tilt, Badger and Hoskins (1999) have shown that a monopole low-level
PV perturbation which itself has no such tilt, can nevertheless have sufficient projection onto
these rapidly-growing strucures to give impressive growth characteristics.
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Figure 9: A schematic illustration of flow around topography with mesoscale structure but coherence
across model grid boxes (shown dashed). Gravity-wave orographic parametrisation would diagnose
sub-grid orographic variance in boxes 1, 2 and 3, but erroneously apply a drag to the grid box mean
flow in boxes 1 and 3. A nonlocal and possibly stochastic parametrisation based on a horizontal PV
dipole forcing might generate a more realistic response. From Palmer, 1997.

Non-local PV forcing may also be relevant to the problem of partially-resolved orography in
global weather and climate models (consider Greenland, for example). Fig 9 shows, schemat-
ically, two dimensional flow around a poorly-resolved obstacle. With inviscid flow, a dipole
pair of vortex sheets is created at the fluid boundary on either side of the obstacle. With
viscosity, the vorticity perturbations can advect and diffuse outwards in the wake behind the
cylinder (specific examples in the case of Greenland are shown in Doyle and Shapiro, 1999).
If the obstacle is only partially resolved, as in Fig 9, then this PV dipole will be represented,
both by the explicit dynamics, and by the sub-grid orographic parametrisations. For example,
orographic gravity-wave drag (in which sub-grid scale orographic variance exists in all three
grid boxes) will apply a negative tendency to the grid-box mean flow in all three grid boxes
(eg Palmer et al, 1986). However, in reality the flow in grid boxes 1 and 3 is enhanced (com-
pared with an unperturbed flow) as it moves past the obstacle (‘tip jets’, as discussed in Doyle
and Shapiro, 1999). Similar to the convective case, the effect of such mesoscale topographic
organisation might be best represented by some nonlocal PV dipole forcing, but oriented in the
horizontal rather than the vertical. In the case of orography, it is not obvious that such PV
dipoles should be represented stochastically; unlike convection, the orography itself is precisely
known. Nevertheless, it is well known that the response to mesoscale orography can depend
extremely sensitively on the direction of the large-scale upstream flow. In these circumstances,
the strength of the imposed PV dipole might indeed be only representable as a pdf.

The downstream spreading of PV anomalies associated with localised orographic forcing and
ambient downstream wind shear, is a process which can generate an upscale transformation
of PV and associated wind field. Similar downstream and upscale spreading effects associated
with convectively-forced PV have been suggested by Lilly et al (1998) as contributing to the
observed k~5/% spectrum as discussed in section 3.
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7 Dynamical approaches to stochastic
parametrisation

From a dynamical systems perspective, one can imagine the scales above and below the trun-
cation scale as represented by two coupled dynamical nonlinear systems, Scy and Ssy. The
system S<y is given by the finite-N Galerkin representation of equation 1. Based on the dis-
cussion above, it is proposed to represent Ss y as a simple dynamically-based stochastic system
coupled to S<y over a range of scales, rather than as a ‘lifeless’ bulk formula depending on
S<n only at the truncation scale. The weakness of coupling the parametrised processes to the
resolved dynamics at precisely the truncation scale has already been exposed by Lander and
Hoskins, 1997. Based on the PV perspective outlined above, we consider two complementary
approaches which make more explicit use of the underlying dynamics in the formulation of
Ssn. The first follows the approach used at ECMWF to initialise medium-range ensembles,
the second utilises a cellular automaton approach to parametrisation. Consistent with the
comments made in section 2 regarding the Whitney/Takens theorem, these stochastic-dynamic
parametrisations are necessarily nonlocal.

7.1 Stochastic forcing in singular-vector space

As discussed in section 2, a number of geophysical phenomena have been modelled using a
background stochastic forcing to excite the singular vectors of a stable but non-normal linearised
operator. This raises the possibility that the stochastic forcing could be directly computed from
the relevant singular vectors. This idea is closely related to philosophy used in the ECMWF
ensemble prediction system (Palmer 1993; Molteni et al, 1986) to generate initial perturbations.

It is worth recalling the philosophy used to justify the singular vector strategy for generating
initial EPS perturbations (see also Palmer, 1999). In principle, an unbiased ensemble of initial
states should ideally be created by randomly sampling the initial pdf p;(X,¢ = 0) which de-
termines the probability that the true state lies in some neighbourhood of a point X in phase
space. There are two related problems that complicate such a procedure. Firstly, p; is not well
known; there are many assumptions in data assimilation (eg in quality control, representativity
of observations, the tangent approximation, the role of model error in the data assimilation
process and so on) whose contribution to p; is not well quantified. Secondly, for a contempo-
rary weather prediction model, if p;(X,¢ = 0) is Gaussian, then O(0'*) numbers are needed
to specify it, orders of magnitude more than the maximum available sample size. In practice,
a poorly-known and inadequately sampled pdf can lead to an underdispersive ensemble and
overconfident probability forecasts.

A similar problem arises for the problem of stochastic forcing. A pdf pm(X ,t) can be defined

giving the probability that the actual grid-box tendency lies within some neighbourhood of the
model tendency X. We have argued, for example, that this pdf should be relatively broad in
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circumstances where mesoscale organisation is likely to occur. However, this hardly fixes the
actual pdf in any precise sense. Hence, like the initial pdf p;, the sub-grid pdf p,, is not well
known.

It is in principle straightforward to define a strategy for determining a stochastic sampling
of p, in the space of dominant singular vectors of M (see equation 16) where At is the
autocorrelation time associated with meso-scale sub-grid processes. A metric can be used to
constrain the (right) singular vectors to regions where the parametrised tendencies are large
(in the same way that the initial ensemble perturbations are weighted towards regions where
observation errors are likely to be large), and to scales close to the truncation scale. For each
At, the stochastic forcing perturbation can be taken as a random linear combination of these
singular vectors. Since the forcing singular vectors have direct projection onto all the model
variables, including vorticity and temperature, they are broadly consistent with the PV-thinking
approach discusssed in section 6. (For example, as noted above, there is evidence that the lower
tropospheric component of the PV dipole associated with extratropical MCCs may well have
significant projection onto baroclinic energy-metric singular vectors.)

7.2 A cellular automaton model

An alternative approach to the singular vector method discussed above, would be to try to
model p,, more explicitly. One possible type of dynamical system on which to base p,, is the
cellular automaton (CA) from which coherent structures (like tesselating hexagons reminiscent
of organised Rayleigh-Bénard convection) can be readily produced (see eg Adamatsky, 1996).
The CA model, first applied by von Neumann to biological problems, is a dynamical system
with a state vector which takes on a number of discrete (often just two) states. This CA
state vector is defined on a discrete grid of points in space and time. There is a rule (either
deterministic or stochastic) which determines the state at some space point, as a function of
the state of the CA at surrounding points, and at the concurrent and earlier times.

It is possible that a stochastic CA model could form the basis of a simple representation of the
MCC; indeed such an approach has already been suggested by Randall and Huffman (1980).
Fig 10 is a snapshot of an example of an extremely simple CA representation of mesoscale
organisation (Palmer 1997). The dashed-line grid is presumed to be equivalent to the grid of
a climate or weather prediction model. The CA grid is much finer than the climate model
grid, and the CA is presumed to have bivalent states, black representing a convecting (or ‘on’)
‘state, and white representing a non-convecting state. The CA grid could possibly be initialised
from high resolution satellite imagery, otherwise by some random seed. A rule is needed to
determine whether the CA is ‘on’ or ‘off” at the next CA timestep, much shorter than the GCM
timestep. In Fig 10, the probability of the CA being ‘on’ depends both on the large-scale CAPE
(interpolated to a particular CA grid point) and the number of adjacent CAs which were ‘on’
at the previous timestep. For given CAPE, isolated ‘on’ cells represent individual cumulonimbi
and have relatively short lifetimes, whilst the aggregates of ‘on’ cells, representing MCCs, have
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Figure 10: A snapshot of a cellular automaton model of organised convection. The dashed-line grid
is presumed to be equivalent to the grid of a climate or weather prediction model. The probability
of a cell remaining ‘on’ (shown black) would depend on the large-scale CAPE, and the number
of adjacent ‘on’ cells. The CAs would feed PV back to the resolved-scale flow. The strength of
a PV-dipole forcing would depend nonlinearly on the number of adjacent ‘on’ cells. From Palmer
1997

relatively long lifetimes. In addition to the evolution rules described above, the CA cells can
be made to advect (across model grid-box boundaries) with the resolved-scale wind, and the
ability to organise could be made dependent on the resolved- scale wind shear.

The feedback of the CA onto the large-scale flow could be based on the nonlinear formula of
Shutts (1997) discussed in section 6. If we imagine that each ‘on’ state is convecting a mass
M, then the ‘blobs’ with N connected elements represent an organised MCC convecting a mass
NM. From the discussion in section 6, this determines a specific PV forcing onto the large-scale
flow (proportional to (NM)*3). The total PV forcing field can be put through PV inversion
software to determine the wind and temperature forcing at each GCM gridpoint (as was done
by Gray, 1999). ‘

Similar ideas could be applied to the orography problem. For example, let h be the mean height
of the orography within a CA cell. The probability of a CA element being in an ‘on’ or blocked
state would depend on Nh/U, where N and U are resolved-scale values of static stability and
wind speed, interpolated to a CA grid point. A PV forcing dipole would be centred on the
centroid of aggregates of ‘on’ CAs, representing mesoscale orography. The strength of the PV
dipole would depend on the number of connected ‘on’ cells of an aggregated cellular automata,
its width would depend on the dimensions of the aggregate ‘on’ blob, and the dipole would be
oriented relative to the large-scale flow.
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8 Discussion

On the odd occasions when meteorologists and economists get together, prediction techniques
used in the two discliplines are often compared. At some stage, the meteorologists will raise
the fact that whilst the governing equations of climate are known from underlying theoretical
principles, the equations which describe the economy are only known from empirical analysis.

Whilst this may well be an excellent debating ploy, there is some dishonesty in making too much
of this point. Whilst we know Newton’s laws of motion extremely well, there is no unique pre-
scription for representing the governing equations of climate computationally, since the process
of parametrisation is not a rigourously (or even heuristically) justifiable procedure in regions
of mesoscale organisation. Obviously uncertainties in parametrisation in no way invalidate me-
teorological prediction, after all global weather and climate models over the last 50 years have
been one of the most important and fruitful products of our field of research. However, these
uncertainties may impede future development, unless they are recognised explicitly.

On the other hand, it could be argued that once models have sufficient resolution, then the effect
of such uncertainties on scales of interest will be minimal. However, arguments presented in this
paper suggest that under-representation of subgrid variability could have an impact on large-
scale systematic error, for any foreseeable resolution. (In any case, climate and weather forecasts
must include estimates of uncertainty, and this requires significant utilisation of computer time
for producing forecast ensembles. This requirement will limit the extent to which very high
resolution climate integrations are possible.)

The real problem is that climate is a complex nonlinear system with many interacting scales.
The generic procedure of truncating the equations to some ‘hard’ limit, and parametrising the
unresolved scales as local deterministic bulk formulae depending on the resolved scales (at the
truncation limit) may well be an underlying factor for why some model systematic errors (see
Fig 1) have so stubbornly resisted upgrades in model resolution and parametrisation complexity.
A case has been put for the generalisation of parametrisation schemes from local deterministic
systems, slave to the large scale flow at precisely the truncation scale, to stochastic nonlocal
nonlinear dynamical systems, weakly coupled to the large-scale flow over a range of scales.
Such systems would not ‘die’ if the variability from the large-scale flow is held fixed; they have
internal variability of their own. The weakness of coupling the parametrised processes to the
resolved dynamics at precisely the truncation scale has already been exposed by Lander and
Hoskins, 1997. The migration away from a purely deterministic approach to modelling, puts
further emphasis on the importance of recognising that all meteorological prediction problems,
from weather forecasting to climate-change projection, are essentially probabilistic.
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