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1. INTRODUCTION AND MOTIVATION

Preliminary results obtained with an exact low-resolution Extended Kalman Filter (EKF) based on
quasigeostrophic (QG) dynamics are described. These results concern primarily the assessment of the analysis
error covariance matrix, P®, through the EKF, as well as some implications for atmospheric predictability
and data assimilation resulting from knowledge of P.

The development of an EKF is motivated both in a predictability and in a data assimilation context. In
both contexts, P® is of primary importance. In the predictability context, knowledge of P® allows for the
computation of singular vectors (SVs), denoted Zg, as the solution of the following generalized eigenproblem:

P°M;CTCM,Z, =2Z,A  with  ZJ(P*)'Z, =1, (1.1)

where M, denotes the tangent—linear model resolvent over the optimization time 7, CTC denotes a norm
to measure the model state (at final time), A denotes the diagonal (real) eigenvalue matrix, and Z, is the
set of (initial-time) SVs. Given that the set of SVs Zg satisfies (1.1), their time-evolved counterparts (i.e.,
CM.Z,) are the eigenvectors of the (tangent-linearly approximated) forecast error covariance matrix (see,
e.g., Ehrendorfer and Tribbia 1997). Note that this property is inherently linked to knowledge of P® in the
computation (1.1); consequently, the SVs computed according to (1.1) must be considered to be of primary
importance in an ensemble prediction context (e.g., in the process of generating perturbations valid at the
initial time; see also, section 3.3, and Palmer et al. 1998).

In a data assmﬂatlon context, the short—term (e.g., 6 hours) time evolution of P®, namely, the forecast
error covariance matrix, denoted P , represents a flow—dependent formulation of the background error co-
variances, generically denoted as B, that must be specified in the variational data assimilation context. In
such va.riational assimilation schemes it is attempted to minimize a cost function J(x) expressed here in the
three-dimensional variational (3DVAR) context as:

T = 5x = X))~ x) + 5 (Hx ~ y) TR Hx ~y°), (1.2

through variation of the model state vector x. Here x” represents the background (or, first guess) fields, Hx
is the model analog for the observations y° (linear observation operator), and R represents the observational
error covariances. Note that J is the sum of a background term and an observational term. The specification
of the background error covariances B is a difficult procedure in a variational data assimilation context;
however, the flow—dependent p/ may be used in J, as indicated in (1.2) to replace B, as pf is provided in
a natural way from P* when the EKF equations are implemented.

2. IMPLEMENTATION OF THE EKF

The distinguishing feature of the EKF described here is that the second—order equations (for analysis
and forecast error covariances) of the EKF are implemented without approximations (see, Epstein 1969, for
the closely related stochastic dynamic equations). Such an exact implementation is (in view of the size of
matrices involved) only possible at a rather low model resolution. The model resolution chosen here is T21
with three (pressure) levels in the vertical (i.e., T21L3). In addition, the prediction step is carried out with
QG dynamics. Consequently, the filter is referred to as QG/EKF. For implementations of the EKF with
more comprehensive dynamics (or better resolution), but approximated EKF equations, reference is made
to Fisher (1998), Rabier et al. (1997), Houtekamer and Mitchell (1998), and Burgers et al. (1998) (see also,
Todling et al. 1998).

"The second-order EKF equation to determine the analysis error covariance matrix P® is given by (analysis
step):

U. -1
Pe(t:) = (I - K,-H,-) P (t:) = <[Pf )™ + H}‘(Ri)-lHi> , (2.1)

where the meaning of the matrices is the same as in section 1, and K; is the Kalman gain matrix (see below).
The incoming arrow in (2.1) indicates that in the computation (2.1) it is indeed the dynamically—predicted
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forecast error covariance matrix P/ that is used. In the QG/EKF, eq. (2.1) is computed within the 3SDVAR
configuration of the ECMWTF Integrated Forecasting System (IFS) through the second derivative of the cost
function J which allows one to use the operationally available observations (for details, see, Ehrendorfer and
Bouttier 1998a, b). In the prediction step, P* is evolved tangent-linearly into pf according to:

P/ (ti1) = MP*(6:)M] + Q(tira), (22)
— ‘

where, in the specific situation of the QG/EKF, M denotes the tangent-linear QG model described by
Marshall and Molteni (1993). The Q-term in (2.2) represents the effect of model error. The outgoing arrow
indicates that the result of (2.2) is used in (2.1) as input, thus closing the loop. For completeness, two
equivalent expressions for the Kalman gain are given as:

Ki = P/ (t)HT (HP! (t)HT +R.) T = Po(HT(R) ™. ey

For the detailed derivation of egs. (2.1)—(2.3), as well as the corresponding first-order equations, reference
is made to the excellent articles by Courtier (1997) and Cohn (1997) (see also, Ide et al. 1997). Details on
the 3DVAR implementation at ECMWF may be found in Courtier et al. (1998).

3. SELECTED PRELIMINARY RESULTS

Results are presented here for a continuous assimilation experiment with the QG/EKF over a period of
several days starting at 19971128/00 GMT. During this assimilation experiment, conventional observations
were used at 6-hour intervals. During the first day, the EKF prediction step was performed without model
error; however, after this initial period a simple model error formulation was used in order to prevent the
analysis error variances from approaching zero. The basic result of this expenment is a time sequence of
analysis and background error covariance matrices (in terms of vorticity), Pz and P/. Some of these matrices
are discussed in the following (basic properties; section 3.1), and diagnosed with regard to SVs (section 3.2),
ensemble integrations and predictability (section 3.3), and their structure in the IFS control variable space
(section 3.4). More details about this experiment may be found in Ehrendorfer and Bouttier (1998b).

3.1 THE ANALYSIS ERROR COVARIANCE MATRIX

Fig. 1 shows the vorticity variances of the analysis error covariance matrix P,‘;’ valid for 19971201/00
GMT, in physical space for the three model levels. The impact of observations is reflected by decreased
variances over North America, Furope, and Australia. The analysis error variances are largest in the top
model layer, decreasing downward. The total (vorticity) analysis error variance is in this situation 1.0449 x
10~ 52, distributed over the levels as 6.12 x 107! 52 at 200 hPa, 3.38 x 107! 5~2 at 500 hPa, and 0.94
x 1071 52 at 800 hPa. It is also interesting to note that the magnitude of these variance fields in physical
space is (in an overall root-mean-square sense) approximately 1071 s~2 which seems a reasonable analysis
error variance level for (relative) vorticity.

It is of interest to study the spectral decomposition of the analysis error variances. Since the QG/EKF
formulation is in spectral form (triangular truncation), it is natural to consider the quantity Q in the form:

3- N n 2

Q=3 Y ¥ Y hamta) (3.1.1)

=1 n=0 ln:ﬂ v=1

_Qn,t

where z represents numbers related to the spectral expansion of a given field. The summation indices I,
n, m, and v refer to model level, total wavenumber, zonal wavenumber, and real/imaginary part of the
coefficients, respectively. Clearly, Q,; represents the contribution of the field (at total wavenumber n, and
model level 1) to the complete sum Q. For the spectral decomposition of the total variance in P¢ (of Fig. 1)
the specification:

() = [vartug] = PO (3.1.2)

is made (z is set to the square-root of the diagonal elements of p? ¢» after proper reordering), so that Q takes

on the value of 1.0449 x 10! s=2 (see above), since Q=trace(P¢), and Qn is referred to as the spectral

decomposition of the total variance. This spectral decomposition is shown in Fig. 2. It is clearly evident from

Fig. 2 that the spectral variance decomposition is strongly scale dependent, so that this spectrum is very

different from a white spectrum. Fig. 2 may also be compared with Fig. 12 of Bouttier et al. (1997) which

indicates that the vorticity variances in the IFS background formulation are also strongly scale-dependent,
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with a peak around total wavenumber 20 to 40 (depending on model level). Additional information on P¢
(e-g., on off-diagonal elements; see also below) may be found in Ehrendorfer and Bouttier (1998b).

3.2 QG/EKF SINGULAR VECTORS

The leading SV computed with QG dynamics accordmg to eq. (1.1), on the basis of the full analysis
error covariance matrix (introduced in section 3.1) as constraint at the initial time, is shown in Fig. 3 at
initial time (for an optimization time of 48 hours). The final norm used for this computation is total energy
(TE) as appropriate for the discrete formulation of the QG model (see, Ehrendorfer 1998a). It is remarkable
that this SV is located over the large—variance region (data void) in the southern Atlantic. On the other
hand, leading SVs are found to be located preferably in regions offering the possibility for growth due to
dynamic instabilities, when total energy is used at both initial and final times (denoted TE/TE SVs). Also,
it is evident that this QG/EKF SV has much larger amplitude in the top model level than in the lowest
model level (which is related to the vertical variance distribution; see Fig. 1). Also, for this QG/EKF SV
much of its total energy is, at the initial time, found around total wavenumber 10, while for the TE/TE
SVs, total energy is found at small scales initially and larger scales at the final time.

Given that the set of SVs Z, sa,tj.isﬁes‘ eq. (1.1), it is possible to represent P® as:

P® =2z} . (3.2.1)

(see also, Ehrendorfer 1998b). Obviously, (3.2.1) represents a “square-root” decomposition of P%; the specific
form (3.2.1) will be referred to as SV decomposition, as it decomposes P* in terms of the initial-time SVs Z,.
The significance of the SV-decomposition (3.2.1) is that it is not the eigendecomposition of P?, but rather
that it evolves (under tangent-linear dynamics) into the eigendecomposition of the forecast error covariance
matrix (see also, Ehrendorfer and Tribbia 1997). In other words, if P® is, as in (3.2.1), represented in
terms of the initial SVs, and if this representation is truncated to a representation in terms of N SVs, this
truncated representation will lead, when time—-evolved, to the eigenstructure (represented by N eigenvectors)
of the forecast error covariance matrix. Obviously, for this reason, the representation (3.2.1) is an attractive
candidate for specifying a square—root of P®. Specification of such a square—root is, for example, necessary,
when a sample (i.e., initial ensemble) consistent with the P covariance information is to be generated (see
also section 3.3).

The amount of variance described by retamng the leading N SVs in the SV-decomposition (3.2.1) is
shown in a cumulative way as the solid curve in Fig. 4 for PC introduced in section 3.1. The figure also shows
the variance reconstruction through the eigenvectors of P¢ (dashed curve). Both curves are normalized by
the total variance of 1.0449 x 10~!! 52 (see above). Clearly, the eigenspectrum curve is steeper; however,
the slower SV—decomposition evolves into a similarly steep curve at the optimization time. In Fig. 4, 100
(500) initial-time SVs Zg account for 17% (65%) of the initial variance, and describe (at optimization time)
56% (91%) of the forecast error variance.

3.3 QG ENSEMBLE INTEGRATIONS BASED ON P¢

Knowledge of the analysis error covariance P® is necessary for the process of generating realistic initial
perturbations in the context of ensemble prediction, since P® contains important information about the
initial-time pdf. Specifically, perturbations may be generated that are consistent with the knowledge of the
initialtime probability density function (pdf) in terms of its first and second moments.

Given P?, as well as its decomposition (3.2.1), the possibility of generating an arbitrary number (say
M) of initial perturbations to be used in ensemble prediction given a fixed number (say N) of SVs was
studied here in the context of the QG model (i.e., the M perturbations are evolved with QG dynamics).
The time—-evolved ensemble of size M is subsequently used to estimate statistics of the time—evolved pdf.

The approach tested here is closely related to the technique for generating initial perturbations, given
a set of N SVs, as it is presently used operationally at ECMWEF (see, Molteni et al. 1996). However, the
approach described here is explicitly based on a sampling process from a multivariate normal distribution
(see also, Ehrendorfer 1998b), which is not the case for the rotational technique described by Molteni et al.
(1996). The sampling process described here, called SV-based Monte Carlo (MC) technique, is based on
the fact that a random vector x with multivariate normal pdf with mean x0 and covanance structure V is
obtained as:

x =x§ + VY%q - x ~N(x§,V), ’ (3.3.1)
where q is multivariate standard normal: : .
q~N(,0). (3.3.2)

Here V/2 denotes a square—rtoot of the covariance structure V (to be interpreted as the analysis error
covariance matrix), and the notation “~ A is used to denote “normally distributed” with parameters as
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indicated (e.g., Anderson 1958). The symbol | denotes the identity matrix, so that the random vector q is
multivariate standard—-normal.
Given (3.3.1), the SV-based MC technique exploits the SV—decomposition of P®, possibly truncated to
N SVs, to provide a square-root of P* as needed in (3.3.1), in the process of generating perturbed states x:

(P2 =z{™ | » (3.3.3)

where Z((,N) indicates the matrix containing as columns the N SVs available. Consequently, the set of M
perturbed initial states is generated, by combining (3.3.1) and (3.3.3), as:

xi=x+ZMq  i=1,2,...M = x~N(x§,(P“)(N)), (3.3.4)

where q; is a realization from N(0,!), and as indicated in (3.3.4), the resulting set x; is a sample from a
multivariate normal pdf with parameters as written in (3.3.4). Specifically, the covariance structure of these
perturbed states is consistent with the knowledge about P° as contained in the N leading SVs. It becomes
also clear that the process (3.3.4) assumes explicitly that the analysis errors are normally distributed, as the
sampling proceeds from a normal pdf. Referring to the introductory discussion in section 1, this process again
relies on the decomposition (3.2.1) that evolves into the eigendecomposition of the forecast error covariance
matrix (under linear dynamics). Since the M—member ensemble is evolved nonlinearly, it appears to be
possible to take the SV properties into the nonlinear regime. ' ‘

By arranging the deviations x; — x§ in (3.3.4) as the M columns of the matrix X (and similarly forming
the M columns of the N x M matrix @ through the vectors q;), it becomes obvious that an ensemble of size
M generated by (3.3.4) has — by construction — a sample covariance structure of:

Aa

P = %xxT - (z(()N)) (%QQT) (ZSN))T 5 (Z(()N)) (ZSN))T =P g %QQT 1 (33.5)

where the arrows indicate the limits that are approached for increasing M. Clearly, P® is (in the limit of
large M) the version of P® (see egs. (3.2.1) and (3.3.3)) that is truncated in terms of the IV available SVs,
denoted as (P*)™). Consequently, the set of perturbed states x; generated through (3.3.4) is a set of M
realizations from NV (x§ , (P*){™)). The sampling process (3.3.4) combined with the time evolution of such an
ensemble is referred to as SV-based MC method, since it combines random sampling (i.e., the MC approach)
with analysis error covariance information provided through SVs. Note again that this technique leading to
the set of perturbations X, compactly written in the form X = Z(()N)Q, bears a strong relationship to the
rotation of available SVs (see, Molteni et al. 1996) as presently performed operationally at ECMWF, since
Z((,N ) q; may obviously be interpreted as a (statistically-based) linear combination of the available SVs (note
again that the vectors q; are not specified to be standard—normal in the ECMWF rotation technique).

Clearly, in the purely linear situation, it is only necessary to evolve N SVs over time in order to obtain the
eigenstructure of the forecast error covariance matrix. However, as nonlinearities become more important,
sampling along various different directions at the initial time, as achieved by taking M > N in the SV-
based MC method, potentially allows for a more accurate representation of the time-evolving forecast error
covariance structure. Or, put differently, increasing the ensemble size M for given initial pdf information
(i-e., fixed N) should be expected to lead to a more accurate representation of the time-evolving forecast
error covariances, as soon as nonlinear effects become important. Note that the SV-based MC method allows
independent specification of M and N, and that this technique may also be interpreted as sampling from a
multivariate normal pdf, where the sampling process “sees” only that part of P® that is explained by the N
SVs available. ' S

The SV-based MC method was tested in the QG model, on the basis of the analysis error covariance
matrices Pg available from the QG/EKF. It was found that small M and N (e.g., equal to 100) are suffi-
cient for very accurate estimation of the time-evolving mean (for 96h—integrations). Similarly, for N=500
(explaining 65% of the initial variance; see above), the 96-hour evolved variances are already quite accurate
for M = 100; the differences found when M is increased to 5000, are recognizeable, but not substantial.
However, for the time-evolving correlations it -appears for N = 500 (i.e., for the “coarse—grained” analysis
error covariance description) to be beneficial if the ensemble size M is large. As illustrated in Fig. 5, a
substantial improvement in the estimated time—evolved (over 96h) correlations occurs, when M is increased
from 100 to 5000 (compare panels (a) and (b)). It can also be seen from Fig. 5 that increasing N changes
these correlations only very little, which is an indication that most of the relevant initial pdf information is
already captured when N = 500 (compare panels ((b) and (c)).

It is necessary to mention at this point that (P*)(™) (see, eq. (3.3.4)) is “variance—deficient” if the

sampling process is carried out as written in (3.3.4), in the sense that it contains only the fraction of total
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initial variance described by the first N SVs. In view of the rapid initial growth of the leading N SVs, it is
difficult to devise a general rule for the choice of an additional initial scaling paramater. In the experiments
described here, no scaling parameter has been applied (see also, Ehrendorfer 1998b). ~

- In concluding this section, Fig. 6 is included to give an indication of the error-growth propertles of
the QG model, by plotting the trace of the nonlinearly time—evolving forecast error covariance matrix. The
results of this figure have been obtained by evolving a moderately large (M = 500) ensemble, generated
on the basis of (3.3.4), over a period of approximately 15 days. Such ensembles were used to estimate the
forecast error covariance matrix at different lead times during the integration process. Here, the different
lines correspond to different choices for (P“)(N ) (with N = 1449), as they result for different days during the
QG/EKF experiment described at the begmmng of section 3. It is seen from Fig. 6, that the initially small
variances double approximately every 36 hours (the corresponding doubling time for standard deviations
is approximately 3 days), which is a reasonably realistic value when compared to error-doubling times in
operatlona.l models (e. g Smeons et al. 1995)

3.4 P/ IN THE IFS CONTROL-VARIABLE SPACE

As pointed out in section 2, the QG/EKF represents an exact implementation of the second—order EKF
equations at low resolution. It is clear that such an exact implementation is a potentially useful reference
when it is desired to assess the performance of EKF implementations with approzimated equations. Such
approximations to the EKF equations seem unavoidable in feasonably high-resolution data assimilation
systems, suitable for possible operational implementation. In this case, it is, in principle, possible to judge
the form of such approximations against the unapproximated EKF in the context of the T21L3 QG/EKF.

One such approximated form of the EKF equations, called simplified Kalman filter (SKF), has been
described by Fisher (1998). It is presently tested in a high-resolution context. Omne of the assumptions in
the SKF concerns the spectrum of the background error covariances in the so~called IFS control variable
space (i.e., the precondltloned space in which the va.natmnal minimization is ca.rrled out; see a.lso Bouttler
et al. 1997) ' : ' : e

The spectrum of flow-independent (static) background error formulations is, in thls space, equal to the
spectrum of the identity matrix. In the SKF formulation, the leading part of the background error covariance
spectrum is made different from unity by introducing 'some flow dependence.” Within the QG/EKF it was
investigated how different the spectrum of the background valid for 19971201/00GMT is from unity (this
is the background serving as input into eq. (2.1), when the analysis error covariance matrix discussed in
section 3.1 is computed). The control-variable spectrum of the background error is shown in Fig. 7a (lower
curve, labeled “spectrum inverse Hessian"). The largest eigenvalue is approximately 5.5, and it can be seen
that approxunately 20% of the eigenvalues (i.e. 320) are larger than one. Fig. 7b, shows the: correspondmg
cumulative picture, with the lower curve corresponding to the backg‘round error covariances. Taking all the
eigenvalues into account that are larger tha.n one, allows one to obtain a cumulatlve variance fraction of
approximately 60%. ‘ : ! :

Carrying out diagnostics similar to this elgenspectrum computatlon in control-variable space may be a
promising way to judge the degree of validity of certain assumptions when the EKF equations are approxi-
mated in the process of developing computationally feasible implementations:at high resolution. -

4. CONCLUDING REMARKS

The implementation of the QG/EKF at the'resolution T21/L3 allows for (i) the explicit assessment of the
analysis error covariance structures P®, as well as (ii) use and generation of time/flow—dependent background
€ITOr covariances pf (as predicted w1th the QG model). Knowledge about P? is of primary importance in a
prechctablhty context for the reahstlc generation of perturbations in ensemble prediction. On the other hand,
knowledge about P7 is a necessary to specify the so—called background term in variational data assimilation
in a realistic manner.

Several prelumnary results obtained with the QG/ EKF were discussed in the previous sectlons First,
as expected, P® and P’ reflect data-rich and data—void’ areas, and are rather different in structure from
assumed flow-independent covariances. Further, the QG/EKF SVs were found to be rather different from
SVs based on (for example) total energy at both initial and final times. In terms of reconstructing the
analysis error covariance matrix P® through the EKF SVs it was found that 100 (500) (out of 1449) SVs
account for 17% (65%) of the total initial variance (in the case studied). If a final-time projection operator is
applied, these cumulative percentages are increasing when the projected final-time variance is reconstructed.

- Ensemble integrations with sampling from P® (truncated in their representation to N SVs; see eq.
(3.2.1) and (3.3.3)), indicate that moderate ensemble sizes lead to good estimates of time—evolved mean and
variances, but that increased ensemble sizes M are improving the estimates for time—evolved correlations
considerably. The investigation of a selected QG/EKF (vorticity) background error covariance matrix in
the IFS control—variable space shows that the flow—dependent eigenspectrum is rather different from the
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unit spectrum used in the background term in the variational preconditioning: approximately 20% of the
eigenvalues are larger than one (1449 degrees of freedom).

The QG/EKF software developed should be relatively easily adaptable to the use of a different dyna.mlca.l
model, or to an upgrade of the resolution to T42. Also, it should be possible to approximate various steps
(e.g., the prediction step) along the lines of the simpliﬁed Kalman filter (see also, Fisher 1998). It will be
necessary to study in more detail the impact of observations (density and type) on, for example, the required
model error specification, and on the overall equilibrium variance levels obtained, as well as on the specific
properties of SVs constrained initially with the so-obtained P* matrices. More detailed results in this respect
will also be necessary to interface background error covariances from the QG/EKF with a higher-resolution
data assimilation scheme, and to understand at a deeper level the modifications of smgular vectors when
analysis error covariances are used to constrain them at initial time.

Acknowledgment. Most of this research was carried out during a one—year visit of the author to the European
Centre for Medium—Range Weather Forecasts (ECMWF). This visit was funded by ECMWF.

REFERENCES

Anderson, T.W., 1958: An introduction to multivariate statistical analysis. Wiley, 374 pp.

Bouttier, F., J. Derber, and M. Fisher, 1997: The 1997 revision of the J; term in 3D/4D-Var. ECMWF
Technical Memorandum No. 238, 54pp.

Burgers, G., P.J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter.
Monthly Weather Review, 126, 1719-1724.

Cohn, S.E., 1997: An introduction to estimation theory. Journal of the Meteorological Society of Japan, 75
(1B), 257-288.

Courtier, P., 1997: Variational methods. Journal of the Meteorological Society of Japan, 75 (1B), 211-218.

Courtier, P., E. Andersson, W. Heckley, J. Pailleux, D. Vasiljevi¢, M. Hamrud, A. Hollingsworth, F. Rabier,
 and M. Fisher, 1998: The ECMWF implementation of three—dimensional variational assimilation (3D-
Var). I: Formulation. Quarterly Journal of the Royal Meteorological Society, 124, 1783-1807.

Ehrendorfer, M., 1998a: Energy norms in the T21L3 Marshall/Molteni quasigeostrophic model. ECMWF
Research Department memorandum. 28pp.

Ehrendorfer, M., 1998b: Prediction of the uncertainty of numerical weather forecasts: problems and ap-
proaches. Proceedings ECMWF Workshop on Predictability, 20 — 23 October 1997, 27-101.

Ehrendorfer, M., and F. Bouttier, 1998a: An explicit low—resolution extended Kalman filter based on quasi-
geostrophic dynamics: -technical description. ECMWEF Research Department memorandum. 24pp.

Ehrendorfer, M., aﬁd F. Bouttier, 1998b: An explicit low—resolution extended Kalman filter: implementation
and preliminary experimentation. ECMWEF Technical Memorandum No. 259, 21pp.

Ehrendorfer, M., and J.J. Tribbia, 1997: Optimal prediction of forecast error covariances through singular
vectors. Journal of the Atmospheric Sciences, 54, 286-313.

Epstein, E.S., 1969: Stochastic dynamic prediction. Tellus, 21, 739-759.

Fisher, M., 1998: Development of a simplified Kalman filter. ECMWF Techmcal Memorandum No. 260,
16pp. ‘

Houtekamer, P.L., and H.L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter techmque
Monthly Weather Review, 126, 796-811.

Ide, K., P. Courtier, M, Ghll, and A.C. Lorenc, 1997: Unified notation for data assimilation: operational,
sequential and variational. Journal of the Meteorological Society of Japan, 75, 1B, 181-189.
34



EHRENDORFER, M.: KALMAN FILTERING AND ATMOSPHERIC PREDICTABILITY.

Marshall, J., and F. Molteni, 1993: Towards a dynamical understanding of planetary-scale flow regimes.
Journal of the Atmospheric Sciences, 50, 1792-1818.

Molteni, F., R. Buizza, T.N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system:
methodology a.nd validation. Qua,rterly-.]ou_rnal of the Royal Meteorological Society, 122 73-119.

Palmer, T.N., R. Gela;ro J. Barkmeijer, and R. Bmzza 1998: Smgula.r vectors, metrlcs ‘and adaptive
observatlons Joumal of the Atmospherzc Sczences 55 633—653

Rabier, F., J.-F. Mahfouf M. Fisher, et al., 1997: Recent experimentation on 4D- VAR and ﬁrst results from
a Slmphﬁed Kalman Filter. ECMWF Techmca.l Memora.ndum No. 240, 42pp.

Sunmons A.J., R. Mureau, and T. Petrohag15 1995: Error growth and estimates of predlctabxhty from the
ECMWF forecastmg system. Quarterly Journal of the Royal Meteorological Soczety, 121, 1739-1771.

Todling, R., S.E. Cohn; and N.S. Slvakuma.ran 1998: Suboptimal schemes for retrospectwe data assimilation
based on the ﬁxed—lag Ka.hna.n smoother Monthly Weather ‘Review, 126, 2274-2286.

35



EHRENDORFER, M.: KALMAN FILTERING AND ATMOSPHERIC PREDICTABILITY.

D1b3 1449 6.123291E-11 1.044930E-10 vort.var.t= 0 (200 hPa)
mi/ma/ims/x/std  4.4916E-12 4.7093E-10 1.4168E-10 1.1664E-10 8.0561E-11
1.0000E-12 1.7783E-12 3.1623E-12 5.6234E-12 1.0000E-11  1.7783E-11

D1b3 1449 3.381966E-11 1.044930E-10 vori. var.t= 0 (500 hPa)
mi/ma/ms/x/std  3.8672E-12 1.7629E-10 7.3255E-11 6.2059E-11 3.8922E-11
1.0000E-12 1.7783E-12 3.1623E-12 5.6234E-12 1.0000E-11 1.7783E-11

/ a§> : ;:’? = ~é~¢=1,..=£:§.l

D1b3 1449 9.440445E-12 1.044930E-10 vort.var.t= 0 (800 hPa)
mi/ma/ms/x/std  2.4480E-12 5.1289E-11 1.8719E-11 1.6062E-11 9.6124E-12
1.0000E-12 1.7783E-12 3.1623E-12 5.6234E-12 1.0000E-11 1.7783E-11

SO e : " u;u WW Jlize=
v [ [T — -
DAY L s~ g
o O TR S %
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Fig. 1. Vorticity variances at the three model levels (200 hPa, 500 hPa, 800 hPa; from top to bottom) in
physical space in units of s~2 for the analysis error covariance matrix P¢ valid at 19971201/00GMT. The
heavy contour denotes the value 107! s~2. The same contours and shading conventions are used in all
panels. Darker shading corresponds to larger variances, hatching to low variances. Unshaded regions within
light (dark) shading indicate high (low) variances.
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D1a3PLMAT vorticity var n-spectrumtvar=  1.044930133811746E-10 1449

0.7310" -
0.63 10" -
0.52 10"
0.42 10" -
0.31 10" A

0.2110" -~

- sttt
|nl|||||ll"

0.10 10" -

st
It

0.0010° - T T T T T T
0 3 6 9 12 15 18 21

Fig. 2. Spectral decomposition of the total vorticity variance of 1.0449 x 10~ s—2 contained in PZ (valid at
19971201/00GMT), as described in section 3.1, as a function of total wavenumber n. Solid/dashed/dotted -
lines are for top/middle/bottom model] levels. Note that analysis error vorticity variances are strongly
scale—dependent.
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D1a3 PSISVIO# 1 0.822 0.158 0.021 la= 1.078E-06 3.80 2 30.30 (200 hPa)
mi/ma/rms/x/std  -1.7776E+00 1.3599E+00 1.5047E-01 3.7496E-04 = 1.5047E-01- .
-5.0000E-01  -4.0000E-01 -3.0000E-01 -2.0000E-01 -1.0000E-01" 1.0000E-01 .

D1a3 PSISVi0# 1 0.822 0.158 0.021la= 1.078E-06 3.80 2 30.30 (500 hPa)
mi/ma/rms/x/std  -7.6047E-01 7.2251E-01 5.9129E-02 -4.1992E-04 5.9128E-02
-5.0000E-01 -4.0000E-01 -3.0000E-01 -2.0000E-01 -1.0000E-01 1.0000E-01

D1a3 PSISVi0# 1 0.822 0.158 0.021la= 1.078E-06 3.80 2 30.30 (800 hPa)
mi/ma/rms/x/std  -2.8137E-01 1.8001E-01 2.3410E-02 2.8613E-04 2.3408E-02
-5.0000E-01 -4.0000E-01 -3.0000E-01 -2.0000E-01 -1.0000E-01 1.0000E-O1

Fig. 3. The leading EKF singular vector at initial time, at the three model levels, computed with quasi-
geostrophic dynamics over the 48-hour optimization interval from 19971201/00GMT to 19971203 /00GMT.
The initial constraint is defined by Pg (see Fig. 1), the final norm is total energy. The singular vector is
scaled to total energy equal one and is plotted in terms of a streamfunction perturbation. The same contour
interval of 0.1 is used in all panels.
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(a) P_a — cumulative decompositions
1997-12-01/00 (ekf03)
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Fig. 4. Cumulative decomposition of vorticity analysis error covariance matrix Pz (valid at 19971201/
00GMT), in terms of cumulative fractions of variance (in percent), as a function of the number of vectors
used in the decomposition. The dashed curve shows the eigenspectrum of P¢, the solid curve shows its
SV-decomposition (see eq. (3.2.1)) in terms of the initial-time 48-hour optimized EKF singular vectors Z
(computed with total energy at the final time).
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G1d3 1449 2.093415E-10 5.482942E-10 vort. cor. t= 96 g=1401 il=2 (500 hPa)
mi/ma/rms/x/std -6.5438E-01 1.0000E+00 1.3693E-01 8.1452E-04 1.3693E-01
-9.0000E-01 -7.0000E-01 -5.0000E-01 -3.0000E-01 -1.0000E-01 1.0000E-01

G113 1449 2.116649E-10 5.566706E-10 vort. cor. t= 96 g=1401 il=2 (500 hPa)
mi/ma/rms/x/std -5.7333E-01  1.0000E+00 8.5865E-02 8.4092E-04 8.5860E-02
-9.0000E-01 -7.0000E-01 -5.0000E-01 -3.0000E-01 -1.0000E-01 1.0000E-01

G1f3 1449 2.275008E-10 5.996581E-10 vort. cor. t= 96 g=1401 il=2 (500 hPa)
mi/ma/rms/x/std -5.8299E-01  1.0000E+00 8.2548E-02 7.4853E-04 8.2545E-02
-9.0000E-01 -7.0000E-01 -5.0000E-O1 -3.0000E-01 -1.0000E-01  1.0000E-01

Fig. 5. Time-evolved correlation structures as estimated from time—evolved (with the QG model) ensembles
computed on the basis of the SV-based MC method. Shown is the correlation of a grid point over North
America at 500 hPa, with all other grid points at that model level. The integration interval is the 96-hour
period starting on 19971204/00GMT, where the corresponding analysis error covariance matrix P‘C' is used
in the sampling process (3.3.4). ‘The panels differ in the choice of the values N and M (see section 3.3):
(a) N=500, M=100; (b) N=500, M=5000; (c) N=1449; M=5000. Note the improvement in the estimated
correlations between (a) and (b), and the very small differences between (b) and (c). '
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EHRENDORFER, M. : KALMAN FILTERING AND ATMOSPHERIC PREDCTABEITY

. Predictability — Error Growth
QG Error Growth of Analysis Errors (t_d ~ 36 h) [sp (P_f)] (ekf03)

timet/h

Fig. 6. Predictability error growth curves in the QG model. Shown is the time evolution of the trace of the
forecast error covariance matrices, over approximately 15 days, for five different starting dates. For each
curve, an initial ensemble with M = 500 was generated on the basis of (3.3.4), with the relevant xg and P‘é
and subsequently evolved nonlinearly over time. As indicated, the variance doubhng time is approxxmately 36
hours for small variances. Note the logarithmic ordinate,
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Fig. Ta. The spectrum of the background error covariance matrix valid for 19971201/00GMT in the IFS
control-variable space (lower curve); the upper curve is the spectrum of the inverse of this covariance matrix
(i-e., the spectrum of the control-variable space background Hessian). Note that, consequently, the largest
eigenvalue of lower curve is equal to the inverse of the smallest eigenvalue of the upper curve (with analogous
inverse relationships for the other eigenvalues). Approximately 320 of the eigenvalues of the background are
greater than one (i.e., 22%).
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Fig. Tb. Cumulative spectra for the curves of Fig. 7a (upper curve Hessian; lower curve inverse Hessian).
The cumulative variance fraction accounted for by the eigenvalues larger than one is approximately 60%.
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