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Summary

A three-time-level semi-Lagrangian global spectral model was introduced operationally at ECMWF in 1991. This paper first
documents some later refinements to the three-time-level scheme, and then describes its conversion to a two-time-level scheme.
Experimental results are presented to show that the two-time-level scheme maintains the accuracy of its three-time-level predecessor,
while being considerably more computationally efficient.
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1. Introduction

Semi-Lagrangian semi-implicit integration schemes, first proposed by Robert (1981,1982), are now well-
established in numerical weather prediction models. At the European Centre for Medium-Range Weather
Forecasts (ECMWF), a three-time-level semi-Lagrangian version of the forecast model was implemented
operationally in 1991. Ritchie et al. (1995, henceforth R95) documented the semi-Lagrangian formulation of
this model, and demonstrated that it was several times more efficient than its Eulerian counterpart.

In principle, a two-time-level semi-Lagrangian scheme 'providcs a further doubling of efficiency, through a
procedure which is usually referred to as “doubling the timestep”. This is slightly misleading, as in a three-
time-level leapfrog scheme the length of each timestep in the usual notation is 2At, but successive timesteps
overlap by Ar. More precisely, the two-time-level scheme doubles the efficiency by eliminating this
overlapping, so that only half the number of timesteps is needed to complete the forecast. Viewed in this light,
it is clear that the time truncation error can be the same for a three-time-level scheme and for the
corresponding two-time-level scheme with a “doubled” timestep. For a two-time-level scheme to be accurate
as well as efficient, it is important that second-order accuracy in time be maintained in the trajectory
calculations. A simple way to achieve this was independently suggested by McDonald and Bates (1987) and
Temperton and Staniforth (1987), and formed the basis for later developments.

McDonald and Haugen (1992, 1993) described a two-time-level semi-Lagrangian limited-area model;
subsequently, Gustafsson and McDonald (1996) presented a comparison between spectral and finite-
difference versions of this model. Recent applications of two-time-level semi-Lagrangian schemes to global
finite-difference medium-range forecast models have been described by Chen and Bates (1996) and Moorthi
(1997). Coté et al. (1998a, 1998b) describe a multi-purpose variable-resolution global finite-element model
based on a two-time-level semi-Lagrangian scheme, while Qian et al. (1998) incorporate a two-time-level
scheme in a global nonhydrostatic model.

In this paper, a two-time-level reformulation of the semi-Lagrangian global spectral model documented in R95
is presented. This two-time-level scheme was used in the operational ECMWF forecast model from December
1996 until April 1998. First, Section 2 describes some modifications to the three-time-level scheme which
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were implemented during its operational lifetime. The conversion to a two-time-level scheme is then
described in Section 3. Experimental results are presented in Section 4, followed by concluding remarks in
Section 5. A new version of the two-time-level scheme, which was introduced operationally in 1998, is
described elsewhere (Hortal 1999).

2. Modifications to the three-time-level scheme

2.1 General

As mentioned in R95, if the spectral variable is chosen to be virtual temperature T’ rather than temperature
T, then in a semi-Lagrangian model there is never any need to transform the moisture field g to spectral
space. This “gridpoint g option was implemented, and horizontal diffusion of moisture (formerly done in
spectral space) was switched off.

In the reduced Gaussian grid (Hortal and Simmons 1991), the numbers of points in latitude rows close to the
poles were increased following the recommendations of Courtier and Naughton (1994).

2.2 Interpolation and averaging

Two versions of the three-timc—level scheme were described in R95, differing in their treatment of vertical
advection. The original “fully interpolating” version (operational from 1991 to 1992) used a complete three-
dimensional semi-Lagrangian treatment of advection. Following problems of excessive eddy kinetic energy
and disappointing forecast scores, this scheme was replaced by a “vertically non-interpolating” version
(operational from 1992 to 1995) in which the treatment of vertical advection is in practice Eulerian except in
regions of strong vertical velocity.

Subsequent developments permitted a return to the fully interpolating version. First, all “right-hand-side”
terms in the dynamical equations were averaged along the trajectory as recommended by Tanguay et al.
(1992); previously this had been done only for the momentum equations. ‘Second, these right-hand-side terms
were interpolated to the departure point of the trajectory using /inear (instead of cubic) interpolation. For the
interpolation of the advected variables themselves to the departure point it is important to retain cubic
interpblation, but this was suppleménted by a quasi-monotone limiter based on the ideas of Bermejo and
Staniforth (1992). The limiter is applied in all three dimensions for the moisture field, but only in the two
horizontal dimensions for the other variables. In practice, the limiter is applied in each dimension in turn as
the cubic interpolation algorithm proceeds, rather than in two or three dimensions simultaneously.

With these three modifications, a fully-interpolating three-time-level semi-Lagrangian scheme was
reintroduced operationally in April 1995 and used until December 1996, when it was replaced by the two-
time-level scheme described in Section 3.

At this point, it is convenient to summarize the three-time-level semi-Lagrangian discretization. If the right-
hand-side terms are averaged along the trajectory as described above, and if the “semi-implicit correction”
terms are discretized as in Eq. (3.4) of R95 with the semi-implicit parameter 3 set to its usual value of 1, then
the linear contributions to the right-hand side at the central time-level ¢ cancel exactly. Each of the discretized
model equatidns can then be written compactly as:

e
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Xa—Xp _ Loz vty + 2% + N (1)
2At 23D TAZ T QVTD A
where
X;: = X(x, t + At) is the value at the “arrival” gridpoint at (z + At);

X, = X(x-2q,t— At) is the value interpolated at the “departure” point at (¢ — Af);

L 4 and L;) are the linear terms defined similarly;

0 . . .
N~ = N(t) are the nonlinear terms, evaluated at time ¢ and averaged between the arrival and departure

points.

The departure point (X — ZQL) is found by iterative solution of the (three-dimensional) displacement equation

200 = 2AtV(x—o.1) @)
where V is the three-dimensional wind field. The first-guess solution for Eq. (2) is given by
20¥ = 241V(x, 1) e
while subsequent iterations arc,‘ given by

= 2A1V (x - o). 4)

Interpolations are performed using a (simplified) Lagrange cubic scheme including quasi-monotone limiters
for the advected quantities XZ) , but linearly for all other terms.

In the formulation documented in R95, X represented any of the basic variables v, (horizontal wind vector),
T (temperature), ¢ (moisture) and In p, (log of surface pressure). Below, more recent developments are
described which have modified all but the moisture equation.

2.3 Modified semi-Lagrangian equations

(a) Momentum equations

The momentum equations are treated in vector form as in R95. Following Rochas (1990) and Temperton
(1997), the Coriolis terms can be incorporated in the semi-Lagrangian advection. Thus, the advected variable
becomes Y, +2Q X 1 where Q) is the earth’s rotation and r is the radial position vector, while the Coriolis
terms are dropped from the right-hand side. As described by Temperton (1997), this reformulation is
beneficial provided that the spherical geometry is treated accurately in determining the departure point and in
rotating the vectors to account for the change in the orientation of the coordinate system as the particle follows
the trajectory.

Technical Memorandum No.283 3



w‘ 9 A two-time-level semi-Lagrangian global spectral model

The discretization of the momentum equations in the notation of Eq. (1) is then:

X =y +2QX%r
L=-Y(YT,+R,T Inp);

N=-(Vo+R,T Vinp)-L

where R, is the gas constant for dry air, T, is a reference temperature, ¢ is geopotential and 7Y is the
linearized hydrostatic integration matrix defined in Eq. (2.32) of R95.

In component form, 2 X r is just (2Qaco0s0,0) where a is the earth’s radius and 6 is latitude. Since the
latitude of the departure point is known, the term 2£) X r in the advected variable X is computed analytically
rather than interpolated. An alternative semi-implicit treatment of the Coriolis terms has also been developed
(Temperton 1997).

(b) Continuity equation

Modelling flow over mountains with a semi-Lagrangian integration scheme can lead to problems in the form
of a spurious resonant response to steady orographic forcing. The mechanism was clarified by Rivest et al.
(1994). Strictly speaking, the problem has little to do with the semi-Lagrangian scheme itself; rather, it is a
result of the long timesteps permitted by the scheme, such that the Courant number becomes greater than 1.
Recently, Ritchie and Tanguay (1996) proposed a modification to the semi-Lagrangian scheme which
alleviates the problem. It turned out that their suggestion was easy to implement in the ECMWF model, and
had additional benefits besides improving the forecast of flow over orography.

Although Ritchie and Tanguay start by introducing a change of variables in the semi-implicit time

discretization, this is not necessary and a slightly different derivation is presented here. The continuity
equation is written in the form

d
(lnp,) = [RHS] ®)

where [RHS] represents right-hand-side terms. The total derivative on the left-hand side is discretized in a

semi-Lagrangian fashion, and the final form of the discretized equation involves a vertical summation [see Eq.
(3.23) of R95].

Now split Inp, into two parts:
Inp, = I*+1 ‘ ©)

where the time-independent part [* depends on the underlying orography ¢, :

¥ = (=0,)/(R,T) M
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and T is a reference temperature. The choice in (7) gives

Vo, +R,TVI* = 0

so that I* is (to within an additive constant) the value of Inp_ appropriate for an isothermal state at rest with
underlying orography.

Using (6) and (7),

d dl 1
Lnpy = E-(Loyyove,). o

The second term on the right-hand side of (8) is now seen as a kinematic forcing. Since the orography is not
advected, a semi-Lagrangian discretization is inappropriate. Instead, this term is computed in an Eulerian
manner and transferred to the right-hand side of the continuity equation (5), which becomes

dl

| 1
— = [RHS1+——=vy Vo, . | ©)
dt.. ~ R,T :

In (9), only the advection of ' is treated in a semi-Lagrangian fashion. The extra forcing term is averaged
along the trajectory like the other right-hand-side terms.

In' Ritchie and Tangﬂay (1996) there is a corresponding modification of the thermodynamic equation, in the
original form of which they use a semi-Lagrangian discretization of ®(=dp/dt). In the ECMWEF model this
modification is not required, as an Eulerian discretization of @ is already used [see Section 3(e) of R95 for a
discussion of this point].

Since the above derivation is independent of the semi-implicit scheme, the reference temperature T in (7)
does not have to be the same as the semi-implicit reference temperature T',. Experiments showed that the
results are insensitive to the exact choice. To avoid an unnecessary dependence on the choice made for the
stability of the semi-implicit scheme (see Section 3.2), we use an ICAO standard atmosphere value of
288.15K for T .

In the notation of Eq. (1), thé final fofm for the modified continuity equation is

NLEV
Xy = Y AB{Xp+AuLp+Ly+ NY+NY}
j=1

where NLEYV is the number of model levels, the constants AB j (from the discrete formulation of the hybrid
vertical coordinate) are defined in R95,

X = lnps+¢s/(RdT) ’
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0

lNLEV
r
Psj=1
_dX
N = §+YHVX_L .

Here the p; are reference pressures, p: is a reference surface pressure, D is divergence and 0X/
dt=0d(Inp,) /0t is defined by Eq. (2.14) of R95.

As also noted recently by Moorthi (1997), the modification of the continuity equation proposed by Ritchie and
Tanguay (1996) improves the mass conservation properties of the semi-Lagrangian scheme. This may be
attributed to the fact that the new advected variable is much smoother than the original In D, since the
influence of the underlying orography has been subtracted out; hence, the semi-Lagrangian advection is
presumably more: accurate. To- quantify this effect, two sets of 12 10-day forecasts were run at horizontal
resolution T106 with 31 levels and a timestep of 30 minutes. In the set of forecasts with the original form of
the continuity equation, the average absolute change in the global mean surface pressure after 10 days was
0.59 hPa (maximum 0.95 hPa). In the set with the modified continuity equation, the average absolute change
was less than 0.02 hPa (maximum 0.04 hPa).

(c) Thermodynamic equation

As mentioned above, the semi-Lagrangian treatment of the continuity equation is improved by changing the
advected variable to a smoother quantity which is essentially independent of the underlying orography. A
similar modification has been implemented in the thermodynamic equation, borrowing an idea from the
treatment of horizontal diffusion. To approximate horizontal diffusion on pressure surfaces, thereby avoiding
spurious warming over mountain tops in sigma or hybrid vertical coordinates, the diffused quantity is
(T-T,), with -

_(, T
Tc - (psapsap)reflnps

where ‘ref ’ denotes a reference value which is a function only of model level. For the purposes of the semi-
Lagrangian advection Inp . is replaced by a time-independent value as in Eq. (7) above, to define a
“temperature” T, which depends only on the model level and the underlying orography:

op oT -
T, = —(p ——) -0 /(R,T) . (10)
b ) D, ) p ref s d
The semi-Lagrangian advection is now applied to the quantity (T ~ T, ), while 2 compensating expression

oT,
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appears on the right-hand side of the equation and is computed in an Eulerian fashion (note that this time it
includes a vertical advection term). In the treatment of horizontal diffusion, T c is set (abruptly) to zero above
a certain level. In the definition of T,, this transition is smoothed in order to maintain vertical
differentiability.

In the notation of Eq. (1), the thermodynamic equation can be expressed as:

X=T-T,,
L=-1D,
N kT ,® vr 0T, L
‘[1+(8—1)q]p’(y”' 2T

where T, is given by (10), the matrix T is defined in Eq. (2.33) of R95 and the discretization of the first term
in the expression for N is defined in Eq. (2.25) of R95.

This modified treatment of the thermodynamic equation, coupled with that of the continuity equation, has
resulted in a more realistic (and less noisy) appearance of the flow over mountains.

(d) Moisture equation

There has been no change in the moisture equation. In the notation of Eq. (1) we have simply X = ¢,
L=0,N=0.

2.4 Changes to the physics

In addition to the modifications to the dynamics as decribed above, several major changes to the physical
parametrizations were implemented. In April 1995 a prognostic cloud scheme (Tiedtke 1993) was introduced,
based on equations for the time evolution of cloud liquid water, cloud ice and cloud fraction. These equations
include (optiohally) the effects of advection, which are handled by a semi-Lagrangian treatment like that for
moisture.

Also in April 1995, a new pa:ametrization of orographic blocking effects (Lott and Miller 1997) was
introduced in conjunction with a return from “envelope” to “mean” orography.

In September 1996, a representation of soil moisture freezing was implemented (Viterbo et al. 1998).

3. Formulation of a two-time-level scheme -
3.1 Basic formulation

Formally, the two-time-level scheme may be written in the notation of Eq. (1) as:

Technical Memorandum No.283 7



0

A two-time-level semi-Lagrangian global spectral model

B + —

| 1 . .* *
= i(LD+Lj;)+§(ND+NA) | (in

X, = X(x,t+ Ar) is the value at the “arrival” gridpoint at (¢ + Az);

et
]
[

X(x — q.,t) is the value interpolated at the “departure” point at time ¢}
L, and L, are the linear terms defined similarly;

N are the nonlinear terms, obtained by extrapolation in time to (t + iAt) :

* 3 1
= - —— — A .
N 2N(t) 2N(t 1) (12)
The displacement equation (2) becomes

* 1 1
o= AtV ()”C_ig’ﬂ- iAt) (13)

where the three-dimensional wind field Y* is also extrapolated in time:
* 3 1
V = iY(t)—QY(t—At)- (14)

The iterative scheme and first-guess for solving (13) are exactly analogous to those for solving (2).

The choices for the variables X and for the interpolation schemes remain exactly as for the three-time-level
scheme. '

The semi-implicit equations to be solved in spectral space have the same form as for the three-time-level
scheme, except that At is replaced by At/2.

In principle a two-time-level scheme should have no 2At computational mode, and the time-filtering
procedure described in Section 2(f) of R95 is no longer needed.

The rest of this section discusses a number of issues which had to be addressed in order to implement this
two-time-level scheme in practice.

3.2 Choice of reference T and p, for the semi-implicit scheme

Preliminary experiments with the two-time-level scheme showed that, for stability, a higher reference
temperature Tr (350K) and higher reference surface pressure p; (1000 hPa) were required than in the
corresponding three-time-level scheme (300K and 800 hPa respectively). This was subsequently confirmed by
a stability analysis (Simmons and Temperton 1997).
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Simmons and Temperton also suggested a “second-order accurate decentering” of the linear terms which (at
least for the 31-level model with the highest level at 10 hPa) allows the reference temperature to be restored to
300K, the same as for the three-time-level scheme. In this variant, the linear terms on the right-hand side of
(11) are replaced by

S+ E)(Lp+ L)~ 5E(Lp+ L) 03

where the L' values are extrapolated in time to (t + %At) :

3 1
L = iL(t)—iL(t—At). (16)

As far as the time discretization is concerned, (15) is equivalent to the second-order decentering proposed by
Rivest et al. (1994) and generalized by Cét¢ et al. (1995). However the spatial discretization in (15) is much
more economical, since there is no need to compute an additional departure point at (f — At) , and no extra
interpolations are required.

The discretization (15) was adopted for the two-time-level scheme in the 31-level version of the model, with a
coefficient of £=0.05 together with 7', =300K and p;=1000 hPa. Some experimental results concerning the
choice of the value for € are presented in Section 4.

3.3 Modified treatment of the Coriolis terms

One motivation for introducing the “advective” treatment of the Coriolis terms, described in Section 2.3
above, was that this approach carries over immediately to a two-time-level scheme and avoids the
complication (especially in the case of a rotated coordinate system) of treating these terms semi-implicitly. On
the basis of preliminary experiments at T213 with timesteps of up to 30 minutes, Temperton (1997) found that
incorporating the Coriolis terms in the advection in a two-time-level scheme was stable, even though the
advection is based on a time-extrapolated wind field.

Later experiments at T106 with timesteps of up to 60 minutes revealed that there was, after all, a mild
instability. In fact, it can easily be shown that on an f-plane the proposed scheme is exactly equivalent to
leaving the Coriolis terms on the right-hand side and extrapolating them in time, which is just what the
scheme was designed to avoid. Extending this result to a 3 -plane, the stability analysis of Bates et al. (1995)
becomes relevant (even though the quantity advected here is twice the angular velocity rather than the
planetary vorticity as in Bates et al.).

Bates et al. (1995) cured the instability by advecting the planetary vorticity with a wind averaged between
time ¢ and time (f+ At), instead of the time-extrapolated wind. Since this leads once again to a more
complicated semi-implicit scheme, a simpler predictor-corrector approach has been taken here. A provisional
value of all the variables (including v 5) at time (¢ + At) is already provided by using Eq. (11) with the
unknown quantities L; replaced by L; = L(x,t); this is done in order to furnish the parametrization
schemes with “provisional” dynamical tendencies. A new horizontal displacement can then be computed via
one iteration of Eq. (13) with the time-extrapolated wind at the midpoint of the trajectory replaced by the
average of y;{ at the previously computed departure point and the provisional value of y; at the arrival
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gridpoint. A new departure point, based on this time-averaged wind, is thus found. Since the latitudes of the
original and the new departure points are now known, it is a simple matter to recompute the contributions of
the Coriolis terms to the momentum equations; no additional interpolations are needed. Further details and
experimental results illustrating the benefit of this modification are presented elsewhere (Temperton et al.,
1999).

3.4 Modified displacement equation

The final modification to the two-time-level scheme represented yet another “advantage of spatial averaging”
(Tanguay et al. 1992). It was found that noise problems were reduced if the midpoint wind in the displacement
equation was replaced by an average along the trajectory: thus, (13) becomes

o = Lar V*(x— ot + 1At)+ V*(x t+ 1At)
2 2 ~ il oy 2 |4 A 2 . .
A similar modification could be made to the corresponding three-time-level displacement equation (2).

3.5 Time-stepping procedure

The time-stepping procedure for the two-time-level scheme is very similar to that for the three-time-level
scheme described in R95. The only significant difference lies in the contents of the “gridpoint work files” used
to pass data from one timestep to the next. In the case of the three-time-level scheme the work file contained
the basic variables at time (¢ — At), together with the (£ — Af) contributions to the semi—implicit*correction
terms. In the two-time-level scheme the vykork files contain winds at (¢ — At) for computing V' via (14),
nonlinear terms at (¢ — At) to compute N via (12), and in the case of “second-order accurate decentering”,
linear terms at (£ — At) to compute L via (16). The quantity of information passed from one timestep to the
next is in fact greater for the two-time-level scheme than for the three-time-level, invalidating the hope that a
two-time-level scheme would require less memory.

The number of Legendre and Fourier transforms is unchanged in the conversion from the three-time-level
scheme to its two-time-level counterpart. In the semi-implicit equations to be solved in spectral space, the
only change is to replace 2At by At. As already mentioned in Section 3.1, the time-filtering procedure
described in R95 is no longer required.

3.6 Efficiency

The computational work per timestep is almost identical for the three- and two-time-level schemes. However,
the promised doubling of efficiency is not fully achieved in the forecast model since there are some expensive
calculations in the radiation scheme which are performed once every three hours whatever the choice of
integration procedure. Also, the amount of computation involved in postprocessing the results remains the
same.
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4. Experimental results

This section presents the results of sets of experiments designed to compare the two-time-level scheme
described in Section 3 with the three-time-level scheme, and to test the impact of various parameter choices
for the two-time-level scheme. Unless stated otherwise each set of experiments consists of 24 10-day
forecasts, run at horizontal resolution T213 with 31 levels. Initial conditions are taken from the operational
ECMWEF analyses at 12UTC on the 1st and 15th of each month from December 1995 to November 1996
inclusive. Forecasts are verified against the corresponding operational analyses.

Fig. 1 compares verification scores for the 500 hPa height field over the extratropical Northern Hemisphere
(north of 20° N.). The three-time-level version was run with Af=15 min, and the two-time-level with Ar=30
min. Scores are presented here in terms of both the anomaly correlation coefficient and the root mean square
error. Since the two measures were always found to give the same signal in these experiments, subsequent
figures will show only the anomaly correlation coefficient (or the correlation itself in the case of vector wind
scores). In this example, the two versions of the model yield essentially identical scores.

Fig. 2(a) shows the corresponding scores for the 1000 hPa height field over Europe. Here the three-time-level
scheme shows a very slight advantage around Days 4-5, while the position is reversed after Day 6. In view of
the smaller verification area involved, these differences may be simply due to sampling. Fig. 2(b) shows the
scores for the 850 hPa temperature over the extratropical Northern Hemisphere, and Fig. 2(c) the scores for
the 850 hPa vector wind field over the Tropics. In these examples, the scores are again virtually identical.

Fig. 3 again presents scores for the 500 hPa height field over the extratropical Northern Hemisphere. Here two
versions of the two-time-level scheme (A?=30 min) are compared against the three-time-level scheme
(At =15 min). One version has the default values of the semi-implicit reference temperature (7', =300K) and
the second-order decentering coefficient (§=0.05) [see Section 3.2]. The other version has T,=350K and
§=0, i.e., it uses a warmer reference temperature instead of decentering (Simmons and Temperton 1997). As
can be seen in Fig. 3, the choice between these two variants of the two-time-level scheme has no impact in
terms of verification scores.

Fig. 4 demonstrates that the exact choice of the second-order decentering parameter & is not critical. Again
the scores are presented for the 500 hPa height field over the extratropical Northern Hemisphere, but for a
smaller sample of 12 cases (from the 15th of each month). The forecasts were all run with Tr =300K, but with
€ chosen to be 0.025, 0.05 or 0.1.

Finally, Fig. 5 illustrates the results of a set of experiments carried out at lower horizontal resolution (T106).
Here the three-time-level scheme was run with Af=30 min, while the two-time-level scheme was run with
both A#=30 min and At=60 min. The scores for the two-time-level version with A#=60 min are similar to
those for the three-time-level version with 30 minutes. With the timestep reduced to 30 minutes in the two-
time-level version (so that the cost of the two- and three-time-level versions becomes the same) an
improvement is seen in the scores beyond Day 4, resulting from the reduced temporal truncation error (in both
the dynamics and the physics).

Technical Memorandum No.283 11
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5. Concluding remarks

In this paper, several modifications to the three-time-level semi-Lagrangian global spectral model documented
by Ritchie et al. (1995) have been presented, together with the subsequent conversion to a two-time-level
version. Experimental results were shown to demonstrate that forecast accuracy was maintained with the
“doubled” timestep of the two-time-level scheme, and hence with a considerable improvement in efficiency.

The two-time-level scheme was implemented in the operational T213 model at ECMWF in December 1996
with a timestep of Af=30 minutes, replacing the previous three-time-level scheme which used Az=15
minutes. The enhanced efficiency was at the same time exploited to upgrade the ensemble prediction system
from 33 members at T63 with 19 levels (Eulerian) to 51 members at T159 with 31 levels (Buizza et al. 1998).

The T159 model used in the ensemble prediction system was the first operational implementation at ECMWF
of an idea proposed by Cété and Staniforth (1988), whereby a semi-Lagrangian scheme in a spectral model
can be coupled with a “linear” grid rather than the “quadratic” grid needed to eliminate aliasing due to the
advection terms in an Eulerian model. Thus, the T159 model used the same computational grid as had
previously been employed in an Eulerian T106 model.

Despite the successful results obtained in pre-operational testing, the T213 model suffered during the
subsequent winter from occasional noise problems linked to the two-time-level scheme, and in order to
alleviate these the timestep was later reduced to 15 minutes. These problems led eventually to a reformulation
of the two-time-level scheme which is described elsewhere (Hortal 1999), and which in turn permitted the
successful implementation in April 1998 of an operational T319 model, again using a “linear” grid as
described above.

This represented the culmination of a sequence of algorithmic improvements implemented since 1991, when
the then operational full-grid Eulerian spectral model (T106, 19 levels) was replaced at ECMWE. Combining
the reduced Gaussian grid (Hortal and Simmons, 1991), the semi-Lagrangian integration scheme (Ritchie et
al., 1995), the two-time-level version (this paper)-and the linear grid (Cété and Staniforth, 1988; Hortal,
1999) leads to a gain in efficiency on the order of a factor of 50. This gain has been of paramount importance
in improving the overall capability of the operational assimilation/forecast system.
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Figure 1  Verification scores for the 500 hPa height field"over the extratropical Northern Hemisphere, comparing the
three-time-level scheme with At = 15 min (solid) and the two-time-level scheme with At = 30 min (dashed): (a)
anomaly correlation; (b) root mean square error.
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Figure 2 Verification scores, comparing the three-time-level scheme with Ar = 15 min (solid) and the two-time-level
scheme with Ar = 30 min (dashed): (a) 1000 hPa height field over Europe; (b) 850 hPa temperature field over
the extratropical Northern Hemisphere; (c) 850 hPa wind field over the Tropics.
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Figure 3  Verification scores for the 500 hPa height field over the extratropical Northern Hemisphere, comparing the
three-time-level scheme with Ar = 15 min (solid) and the two-time-level scheme with Ar = 30 min: T, = 300K,
£ = 0.05 (dashed) and T, = 350K, £ = 0 (dotted).
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Figure 4 Verification scores for the 500 hPa height field over the extratropical Northern Hemisphere, for the two-time-
level scheme with Ar = 30 min and 7, = 300K: £ = 0.05 (solid), £ = 0.1 (dashed), § = 0.025 (dotted).
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Figure 5 Verification scores for the 500 hPa height field over the extratropical Northern Hemisphere at 7106, comparing
the three-time-level scheme with At = 30 min (solid) and the two-time-level scheme with At = 30 min (dashed)

and At = 60 min (dotted).
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