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Abstract

Work has started on coding the tangent-linear and adjoint of the semi-Lagrangian scheme in
the ECMWF model. In this paper, some initial experiences and results are described.

1. INTRODUCTION

In November 1997, a four-dimensional variational data assimilation system (4D-Var) was im-
plemented operationally at ECMWEF (Rabier et al., 1998). The theoretical background is de-
cribed by Talagrand and Courtier (1987). For reasons of computational economy, 4D-Var is
implemented in its “incremental” form (Courtier et al., 1994). The algorithm consists of a pair
of nested loops. The outer loop uses the full-resolution model to compute the mismatch between
the current estimate of the model traject‘ory and the observations, over a six-hour assimilation
window. The inner loop employs the tangent-linear and adjoint of a simpler and lower-resolu-
tion model to compute the gradients used in minimizing the 4D-Var cost function.

Currently the tangent-linear and adjoint are only available for the Eulerian version of the model.
This restricts the horizontal resolution of the inner loop to a spectral truncation of T63, while
the outer loop uses the semi-Lagrangian version of the model with a horizontal resolution of
T319. It would be highly desirable to increase the resolution of the inner loop; in practical terms
this means that the tangent-linear and adjoint of the semi-Lagrangian scheme are needed.

The author is currently engaged in developing the required tangent-linear and adjoint code. At
the time of the Seminar, a tangent-linear version of the semi-Lagrangian scheme in the shallow-
water configuration of the ECMWF model (IFS) had been coded and tested. Although this is
only the first part of the project, a good deal had already been learned. The fruits of this experi-
ence are passed on here in a pedagogical spirit. Section 2 presents a simple motivation for the
use of tangent-linear and adjoint equations. Section 3 shows how to construct the tangent-linear
of the semi-Lagrangian scheme in a one-dimensional example. Section 4 presents the “really
two-time-level” semi-Lagrangian version of the shallow-water model, which was developed in
order to simplify the early development of the tangent-linear code. Section 5 describes some
coding problems and preliminary results.

12



TeMPERTON, C: TANGENT-LINEAR AND ADJOINT MODELS

2. A SIMPLE EXAMPLE

The theoretical basis of 4D-Var as presented by Talagrand and Courtier (1987) requires a cer-
tain amount of machinery from functional analysis: Hilbert spaces, inner products and so on.

This section presents a much simpler illustrative example, taken from an article by Rabier et al.
(1995).

Consider a system which has just two predicted values, x and y , with corresponding initial val-
ues x, and y,. The nonlinear “forecast model” requires a single “timestep”:

where @ and b are constants. Now introduce a perturbation (8x,, 8y, ) into the initial condi-
tions. The evolution of the perturbation is:

dx = 2ax,0x, + a(8x0)2 +2byy0y, + b(5y0)2

0y = 8yq.

The corresponding tangent-linear model is obtained by dropping the terms which are quadratic
in the perturbation quantities:

Ox = 2dx08x0 +2by,dy,

0y = dy,,

I:SxJ _ |2axy 2by,| | 8 &
Sy 0 1 |8y, '

Let J(x, ¥) be a function of the predicted values, and suppose we can compute (deJ)/(0x) and
(dJ)/(dy). However, we want to determine the corresponding derivatives (gradients) with re-
spect to the initial values, i.e., (0)/(dx,) and (3)/(dy,) . (This is exactly analogous to what

is done in 4D-Var.) Using the standard rules of partial differentiation together with Egs. (1) and
),

which, in matrix form, is
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8 _ 9x) 0 _ 0
0x, 0x,0x 0xy0y 09x

3 _ 053, a3
3ye = dyoax Tayeay - OV T oy

which in matrix form is

aJ 0/
dxo| _ l:?.axo O} ox . @
oJ 2by, 1||0J
CAZS ay

Equation (4) is the adjoint model corresponding to the tangent-linear model in Equation (3).

Notice that the matrix in Eq. (4) is the transpose of that in Eq. (3): loosely speaking, the adjoint
model is the transpose of the tangent-linear model. Notice also that the adjoint model runs
“backwards in time”: starting from derivatives of </ with respect to the predicted values, it pro-
duces derivatives of J with respect to the initial values.

3. TANGENT-LINEAR VERSION OF A SEMI-LAGRANGIAN SCHEME

The principles behind developing the tangent-linear version of a semi-Lagrangian scheme can
be illustrated using a one-dimensional spectral model of Burger’s equation. In Eulerian form,
the model is:

Ju ou 0 2u
—+ = Ve
ot

ué—; = axz . (5)

The corresponding Eulerian tangent-linear model is:
d d ou 0
g(ﬁu)+u5;(8u)+(6u)5}- = Dg;E(Su) . | (6)

Equations (5) and (6) can both be time-discretized in the same way, for example using a three-
time-level scheme:

2
u-u (ou) _ [du
Y +(ua_x) B U(axzj v
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. _ 0 2 -
%?m+(u%(6u)+(6u)%%) - u( J (su)]' ®

3’

where subscripts —, 0, + refer to time-levels (¢ — At ), £, (¢ + At ) respectively. Notice that in or-
der to run the tangent-linear model (8), we first have to run the “trajectory” model (7) and store

the values of u at each timestep. (The values of (du)/(dx) may be either stored or recomput-
ed.)

Now consider the Lagrangian form of Eq. (5):
2
du _  du

el ®

For the sake of argument, we choose a three-time-level semi-Lagrangian discretization of Eq.

9):

5 -
uf = up+2Atv —a—Li = Zp (10)
ox” Jp

where subscripts A and D refer respectively to the arrival gridpoint and the departure point. To
complete the scheme we need to find the departure point by iteratively solving the displacement
equation

xXp—xp = 2Atuy (11
where M is the midpoint between D and A. Assume that (as is typical) we use linear interpolé—

tion in solving (11) but cubic interpolation to obtain the value of Z at the departure point in (10).

A schematic version of the model code is given below, together with a running commentary. For
each gridpoint x; : :

(1) x* = x;, —ulAt ! first guess of midpoint x*
13 i p

Iteration loop:

(2) j = INT(x*/(Ax)) l'index of gridpoint to left
BGo=(x*-x J-)/ (Ax) ! weight for linear interpolation
@ u* = ul+ o, -ul ''u at x*

(5) x* = x;—u*At ! updated estimate of midpoint
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[ loop back to (2) ]
6) x = 2x* - x; ! departure point

(7) j = INT(x /(Ax)) !index of gridpoint to left

B o= (x** -x;)/(Ax) ! weight for interpolation
2

O Z = Z; + Z(Zj+k ~-Z;_ )P (w) ! cubic Lagrange interpolation

E=0 :

3u)
where Z = u™ +2Atv —%
. 0x

(10) uy = AN !'end of timestep.

The corresponding tangent-linear code is obtained by differentiating the above line by line:
(T1) (6x)* = —(du)lAt ! first guess of (dx)*

Iteration loop:

(T2) Do nothing ! (2) is undifferentiable!

(T3) (dw) = (dx)*/(Ax)

(T4) (du)* = (du)?+o0{(8uw)f. - (du)f} + (dw)(u),; —uf)
(T5) (dx)* = —(Ou)*At ! updated estimate
[ loop back to (T2) ]

(T6) (8x)" = 2(dx)*
(T7) Do nothing ! (7) is undifferentiable!
(T8) (3w) = (8x)" /(Ax)

2
(T9) (32)" = (32),1+ ) {(32);,4 = (82);_1}Py(®)

k=0
2
d
+(80))2(Zj+k —Zjél)ﬁpk(m)
E=0 ,
52

2
X

where (SZ) = (E‘Su)'"+2At1)a (du)”
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(T10) (du)} = (82)" ! end of timestep.

Notice that the tangent-linear of the interpolations in (T4) and (T9) contains two parts. The first
part is simply an interpolation of the perturbation quantity at the original point x* or x asde-
fined by the “trajectory” run of the model. The second part is a correction to account for a per-
turbation (8x)* or (Sx)** in this location, induced by the perturbation quantity (8u).

The significance of the “do nothing” statements (T2) and (T7) can now be appreciated: consider
for example the linear interpolation in (T4). The “correction” term (Sm)(ujo- +1—uY) is only
correct if the original midpoint x* and the perturbed midpoint x* + (8x)* lie within the same
interval [x, x;,,]. Polavarapu et al. (1996) show that for infinitesimal perturbations, the tan-
gent-linear of the interpolation is correct if and only if the first derivative of the interpolator is
continuous (which implies for example cubic spline interpolation). The more reassuring result
from their analysis is that even if the tangent-linear is occasionally incorrect, the error may be
tolerable.

4. THE “REALLY TWO-TIME-LEVEL”’ SCHEME

- The existing tangent-linear framework in the IFS model was based on a three-time-level Eule-
rian scheme. In this case, stepping the tangent-linear model forward from time-level ( n-1)to
(n + 1) requires values of the trajectory model only at time-level (n). The situation is a little
more complicated in the semi-Lagrangian case, where trajectory model values are required at
two time-levels, both (n - 1) and (n). The same is true even in the so-called two-time-level
scheme (Temperton et al., 1999) which steps from time-level (n) to time-level (n + 1), since
some values from time-level (n—1) are in fact used to estimate quantities at time-level
(n+1/2).

To circumvent this difficulty in the early stages of coding the tangent-linear of the semi-La-
grangian scheme, a “really two-time-level” version of the shallow-water code was implemented.
The semi-implicit semi-Lagrangian scheme is:

v = pp+ (A2 (FE X W) + (FEx v)2)
—((A)/2){ (V)" "' + (V)23 | | (12)
0"t = ¢" - ((A)/2)®{D"*' + Dy}

—((At)/2){(¢'D)”+(¢'D)g} -1

where @ is the mean geopotential height, D is divergence, ¢' = ¢ — @ and subscript * means
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evaluation at the departure point. The only unconventional feature in the above equations is that
the small term ¢'D is evaluated at time-level (n) rather than extrapolated to time-level
(n+1/2).

The most unconventional aspect of the scheme lies in the algorithm to find the departure point,
which is inspired by the scheme of Hortal (1999). Let z be a position vector, and consider a
Taylor series expansion about the departure point 23 . The arrival point zZ*! can be written as

§K+1 =z5+ AtQB + %(At)z(%ij + ... (14)

In the case of the shallow-water equations we can easily compute the total derivative in the last
term of Eq. (14): it is simply the right-hand side of the momentum equations. Thus, (14) be-
comes

(A’ {fkxu-Vo}s 1s)

zit! = zf + Atuf +

DI s

which can be solved iteratively in the usual way to find the departure point D.

Equations (12), (13) and (15) constitute a genuinely two-time-level semi-Lagrangian scheme
which, as discussed above, leads to a tangent-linear form in which the required trajectory model
values are the same as for the Eulerian model.

5. CODING PROBLEMS AND PRELIMINARY RESULTS

Coding the tangent-linear of the semi-Lagrangian scheme was not always straightforward. A
nice example comes from the algorithm which finds the coordinates of the departure point in
spherical geometry. The original model code to find the longitude of the departure point is of
the form

ZYY = ...
ZZW = ...
Ap = MOD(w+SIGN(1., ZYY)*(ACOS(ZZW)-1),27).

The last statement contains two non-differentiable functions, MOD and SIGN. The first part of
the solution is to recognize that the core of this statement is simply

Ap = ACOS(ZZW) ;

the rest of the code decides whether A, is east (>0) or west (<0) of the zero meridian. However,
the tangent-linear of this simpler statement is
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(ON)p =—0(ZZW)/ SIN(Ap)

so that if the departure point happens to be on the zero meridian, the perturbation (81);, is un-
defined.

The eventual solution is to recognize that the longitude of the departure point could alternatively
have been computed from its sine. The final version of the tangent-linear code is of the form:

IF (ABS(SIN(A)).GT.SQRT(0.5)) THEN
(8))p =—-8(ZZW) / SIN(Ap)
ELSE
(5))p =—8(ZZA) / COS(Ap)
ENDIF

where ZZA is a quantity derived from the trajectory variables, which was not in the original
code! (It can be verified that the result of the above is a continuous function of A .) This would
have been an interesting challenge for an “automatic differentiator” operating directly on the
original code.

Included in the IFS framework is a configuration for testing the correctness of tangent-linear
code. First, the model is run for a few timesteps from a given initial state X to produce a “tra-
jectory” forecast F'(X) . Secondly, the tangent-linear model is run from a random initial condi-
tion 6X to produce a forecast TL(8X). Finally for a = 10_}”, (A=10,9,...,1,0), the
forecast model is run from the initial condition (X + a8X) to produce F(X + a.8X). For a
selection of spectral coefficients, the ratio

p = F(X +08X)-F(X)
B o - TL(8X)

is printed out. If the tangent-linear model is correct, this ratio should be close to 1. Typically for
A = 10 the perturbation is so small that the result can be corrupted by rounding errors, while
for A = 0 the perturbation is so large that the tangent-linear approximation becomes invalid; in
between, the ratio should become very close to 1 (e.g., to within a tolerance of 107® or 107 ).
Using this test, the correctness of the tangent-linear version of the “really two-time-level” semi-
Lagrangian scheme in the shallow-water model has been verified.

6 . CONCLUDING REMARKS

The work described here represents only the first stage of the project. The next task will be to
code the corresponding adjoint of the semi-Lagrangian scheme in the shallow-water equations
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(in fact completed at the time of writing). These codes will then be extended to the three-dimen-
sional model and used to enable higher-resolution inner loops within 4D-Var, as well as for other
applications.
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