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Summary: Many fluid flow problems are mappable to a rectangle or a box; conformal
mappings are particularly useful in this regard. We are concerned here with the efficient
solution of such problems using finite elements. The central issue is the element choice.
Rectangular (box) elements generally lead to more efficient algorithms than triangular
(tetrahedral) elements. A synthesis of algorithms, based on bilinear (trilinear) elements is
presented. The algorithms have the attributes of simplicity, accuracy, stability and
straightforward incorporation of boundary conditions. For bilinear and trilinear elements, it is
found that product and first-derivative terms are well-handled by the Galerkin FE method, but
that it is advantageous to go outside of the Galerkin framework when treating second-derivative
terms. It is particularly important to consider the form of the governing equations, vis-a-vis the
choice of staggered, non-staggered and/or mixed-order elements, and to choose an appropriate
time scheme. '

1. INTRODUCTION

Many fluid flow problems of interest occur in regular domains. In the context of this paper we define a regular
domain to be one that can be mapped (conformally or otherwise) to either a rectangle or a box. This class of
problem includes the simulation of the earth's atmosphere including orographic effects. Often when one is.
interested in understanding more about physical phenomena (eg convection studies), the choice of geometry is

arbitrary and is frequently taken to be regular for both convenience and efficiency.

The central issue when formulating a finite-element (FE) flow model is the choice of elements, since this choice
has a very direct impact on the accuracy, stability, computational efficiency and simplicity of a given

formulation.

To help clarify the use of the presented algorithms, we relate them to the integration of the shallow-water
equations on a rotating sphere. These equations, although simple in form, are nevertheless very useful for
illustrative purposes since they include time-dependence, two space Vdim'ensions, first and second derivatives,
non-linear terms, stiffness and variable coefficients due to a co-ordinate transformation (mapping). On a polar-

stereographic projection, true at 60 degrees N, they are (e.g. Staniforth and Mitchell, 1977)

&/s=-{(Qu), +(av),] M
D,/S+9.+$,=(QV-K,),-(QU+K,) . ®

0, +®, /S =-{(9U), +(oV),]. )

where

=8 (Vx -U y) = relative vorticity, @

D=5 (UJt + V)) = divergence, 5)

.Q={+ f = absolute vorticity, ©6)

U=u/m, V=v/mand §=m". A : 0)

Here, x and y are the co-ordinates of the projection, # and v are the components of the wind vector along the
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axes of the co-ordinate system, ¢ is the perturbation geopotential height of the free surface about its mean value
(®y), m= [1 + sin(7/3 ] / [1+ sin(latitude)] is the map-scale factor, f is the Coriolis parameter and U and
~ V are termed the wind images. Decomposing the wind images in terms of velocity potential ¥ and a stream

function ¥, we have

U=2.-¥, ®
V=1, +V,. ©)
which lead to the relations
o TW, =E/S, | (10)
xxx+}(yy—D/S. ‘ (11

For a contained flow, ¥ =0 and Vx ‘n =0 on the boundary, where n is the normal vector to the boundary.

Equations (1) and (2) are derived from the momentum equations and (3) is the continuity equation. For the
corresponding problem in a plane geometry, the equations remain unchanged, except that m=S=1and f is

constant.

In section 2 we examine the impact that the element choice has on the structure of the matrices which result from
application of the Galerkin finite-element method (GFEM), by comparting the computational effort required to
evaluate derivatives and products when using (linear) rectangular and triangular elements. The key issue here is

the efficient solution of the 'mass-matrix problem'.

A breakdown of the remainder of the paper is: section 3 - element order, spatial evolutionary error and code
modularity; section 4 - staggered, non-staggered and mixed- order elements, and the form of the governing
equations; section 5 - stability; section 6 - miscellaneous considerations; section 7 - time schemes; and section 8 -

some conclusions.

2. COMPUTING DERIVATIVES AND PRODUCTS - THE 'MASS-MATRIX PROBLEM'

The essence of the GFEM (e.g. Strang and Fix, 1973) is to:

(1) expand the dependent variables of the problem in terms of a set of basis functions, each of which is a low-
order polynomial of compact support (i.e. non-zero only over a small subdomain called an element);

(i1) insert these expansions into the governing equations and orthogonalise the error to the basis.

The first task is to geometrically subdivide the domain of the problem into a set of overlapping subdomains, and
. to examine the impact on efficiency of the choice of subdivision. To illustrate this point, let us examine the
simple (but fundamental) operations of calculating first derivative and product terms over a rectangular domain,
and contrast the impact of a subdivision of the domain into rectangles (Fig.1a) with that of arbitrarily chosen
triangles (Fig. 1b) when using linear elements. Clearly triangularisation is more general than rectangularisation,
being applicable to an arbitrary polyhedral domain, but here we only concern ourselves with problems in a
Cartesian geometry. The key issues for problems that are mappable to a Cartesian geometry are:

(i) can we afford the generality of triangles in comparison to rectangles?

(ii) does either offer any advantage over competing methods such as finite differences?

As we will see, the answer to (i) is an overwhelming no, whereas the answer to (ii) is a qualified yes for
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rectangular FEs,

It remains to define the basis functions. For both triangular and rectangular elements we associate a basis
function with each and every vertex (or node). The basis function association with a given node is defined to be

unity at the node, to vary linearly to zero at neighbouring nodes and to be identically zero elsewhere.

{b)

Figure 1.  Two subdivisions of a rectangular domain: (a) rectangles, and (b) triangles.
Basis functions associated with square nodes have value unity there, vary linearly
to zero at neighbouring circular nodes, and are zero outside hatched areas.

In Fig.1, the given node is denoted by a square and neighbouring nodes by circles; the associated basis function
is unity at square points, zero at circle points, and non-zero only within the hatched areas. For a rectangular
element (Fig.1a), the algebraic variation of the basis function over a hatched rectangle is (a+ bx)(c + dy)
where a, b, ¢ and d are determined such that the basis function is unity at the given node and zero at the
other three nodes of the rectangle. Similarly for triangular elements (Fig. 1b), except that the algebraic variation
within a hatched triangle is (a +bx + cy) , since a triangle has one less node than a rectangle. For both
rectangular and triangular elements the basis is an interpolatory one, since the coefficients in the expansion of a

function in terms of the basis are just the values of the function at the nodes.

2.1 First derivatives

Consider the problem of evaluating

v=u, ' (12)

where u is known at the set of nodal points and we require the value of v at these nodal points. The first step

in the FE treatment of this problem is to expand # as

u(x,y) =Y ue'(x,y), (13)

where ei(x, y) is the basis function associated with the ith node (assuming some ordering of nodes) the sum
over ; is the sum over all nodes and # is the value of u(x, y) at the :;th node: v is also expanded in a similar

manner. After insertion of these eXpansions into (12) and orthogonalisation of the error to the basis (by
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multiplying by an arbitrary basis function and integrating over the domain), we obtain a set of linear equations of
the form

Pv =Qu, ‘ (14)
where u and v are vectors of nodal values, P and Q are large sparse matrices and P is often referred to as the
mass matrix or projection matrix. For rectangular elements with the usual row-wise ordering of elements, both
P and Q are block tridiagonal and each block itself tridiagonal. For triangular elements there is no natural
ordering and the structure will depend on the particular ordering chosen.

For rectangular elements, (14) may be written explicitly at the point (xm, y") of the mesh (Fig. 1a) as

hm—lknvm—l.n-H + 2(hm—l + hm)knvm,n+1 + hmknvm+1,n+1
51—6- +2hm—1 (kn—-l + kn )vm-—l,n + 4(hm—1 + hm )(kn—-l + kn )vm,n + 2hm(kn—1 + kn )vm+1,n .
+hm—1kn—1vm—l,n—1 + 2(h'm—l + hm )kn—lvm,n—l + hmkn—lvmﬂ,n—l » ’ (15)
1
= E kn (um+1,n+1 - um—l,n+1) + 2(kn—1 + kn )(um+1,n - um—l,n) + kn—l‘(umﬂ,‘n—l - um—l,n—l )]

where h,=x,,,—x, and k, =y, —y,. The evaluation of the right-hand side of (15) is explicit and

straightforward to calculate, but it is not immediately clear how to solve efficiently for v

m,n

given the implicit

way in which it appears.

The brute-force method of multiplying the right-hand side of (15) by the inverse of P is clearly not viable since
this requires O(M ’N 2) arithmetic operations and O(M ’N 2) words of storage for an M X N mesh, even
when P~ has been precalculated. The operation count and memory requirements may both be reduced to
O(M N ) if a 'banded-solver' is used that exploits the fact the elements of P are zero everywhere outside the
tridiagonal band of blocks centred on the diagonal. Although this is better, it is still a factor of O(M) more
expensive than the theoretical optimum of O(MN) operations and storage. Since typically M = 0(102), this
is still a very expensive proposition, both in terms of arithmetic operations and storage. Cullen (1973) proposed
a method that uses a truncated series to obtain an approximate solution, the accuracy of the solution depending
on the ﬁumber of terms taken. This method has the advantages of reducing memory requirements to optimum
order and decreasing the operation count, but has the disadvantages of not being exact, not having an optimal
operation count and only working for uniform grids. Iterative methods suffer from similar deficiencies except

that they are applicable to non- uniform Cartesian meshes.

It must be emphasised that it is extremely important to be able efficiently to solve (14) if the FE method is to be
competitive with the finite-difference (FD) method, since P is the identity matrix for FD methods and the
problem is then trivial. The matrix P in‘the finite-element literature is often replaced by a diagonal matrix (or
mass-lumped in FE parlance), where the diagonal element is obtained by taking the row sum of P. As we

shall see later, this may be undesirable since it can lead to a significant reduction in the accuracy of the method.

2.2 Efficient solution of the 'mass-matrix problem' for rectangular elements
An efficient solution algorithm for (14) is easily derived for the rectangular element case (but not the triangular

element case). In the engineering literature it has been used in conjunction with approximate factorisation
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techniques (e.g. Baker and Soliman, 1983) and is often referred to as the tensor-product method. The essence
of this algorithm (Staniforth and Mitchell, 1977, 1978) is to

(1) Solve the set of non-dimensional tridiagonal problems

P*s,=r,; n=12,.,N, (16)
for s, along lines of constant y (i.e. n fixed) using Gaussian elimination (e.g. Ahlberg et al., 1967),
where "
] [ 2 h | 7
Bon S2.n h, 2("‘1 + hz) h, v |
r, = , S, = , P*= 1 ,
6
Tv-1,n SM-1.n , hM—z 2(hM—2 + hM—,l) Py
| T L Sun L s 2hm-1_

and 7, , is the right-hand side of (15).

(i) Solve the set of one-dimensional tridiagonal problems

Pv, =s; m=12,..M, an
for v, along lines of constant x (i.e. m fixed), again using Géussian elimination,where
Vin1 Sm.1 2k, k,
V2 82 k, Z(k1 +k2) k,
vV, = , S, = , P’= 1
6
Vin, N-1 S, N1 ky_a 2(kN—2 +k1v-1) ky_i
| VN | SmN | L kg 2ky_; |

The above algorithm requires O(MN) operations and O(MN)) storage (i.e. it is of optimum order), is stable to
round-off error, gives the exact solution (to within round-off error) to the set of linear equations defined by

(15), easily generalises to three dimensions, and includes the equations appropriate to boundary points.

To put this in the context of an application code, let M = N =100, and then the number of arithmetic
operations and words of storage is 0(104) which poses no problem for today's computers. On the other hand,
a 'banded solver' would require 0(106)arithmetic operations and words of storage, which is two orders of
magnitude more voracious. Of these two drawbacks (namely the larger number of arithmetic operations and the
larger storage requirements) perhaps the most severe is the storage requirement, since the problem is unlikely to
fit in (computer) memory. This then results in the need to perform extensive I/O to and from mass storage and

the code becomes I/O bound (i.e. the CPU will spend most of its time waiting for operands to arrive from mass

storage) .

Regarding vectorisation, the algorithm appears, at first sight not to vectorise, because Gaussian elimination is a
set of recursive operations. However, by performing each operation of Gaussian elimination in parallel for all
members of the set of tridiagonal problems in x or y (as the case may be), a vectorisable operation is

established in the transverse direction, and the algorithm is th_us fully vectorisable.
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It is interesting to note that even though the above algorithm is of optimal order, it can nevertheless still be
improved upon in the context of taking a derivative [e.g. when computing U and V from y and W using (8)
and (9)], by exploiting the particular form of the right-hand side of (15). It can be shown that (15) may be

rewritten as
[ + 2 h 1t h ) + hmvm+1 n] [umﬂ n um—l,n] . (18)

The algorithm thus reduces to solving (18) for v,, , along lines of constant y (ie constant 7). This is equivalent
to solving a set of one-dimensional FE problems, holding y fixed, and is consistent with the underlying
mathematics where the x-derivative at a point is obtained by a limiting process holding y fixed. This

consistency does not obtain with triangular elements.

For triangular elements the best we can usually do for the solution of the mass-matrix problem is to either use a
‘banded-solver' or an iterative method, both of which are considerably (typically at least an order of magnitude)

more expensive than the algorithm for rectangular elements defined by (16) and (17).

2.3 Comparison with FD evaluation of first derivatives

Let us compare the efficiency and accuracy of evaluating a derivative using linear rectangular elements with
those using second and fourth-order finite differences. First, we note that on any uniform subdomain (i.e .
h, . =k, , = h=constant), equation (18) gives an O(h )accurate estimate for the derivative at the nodes, a
result often referred to in the literature as super-convergence at nodes (Strang and Fix, 1973). Triangular
clements generally give O(hz) accuracy and furthermore the solution of (14) is far more costly, so that we pay
considerably more to get considerably less. The second-order centred finite-difference solution amounts to
replacing the left-hand site of (18) by hv,, , (mass-lumping), and in comparison with rectangular FEs we find
there is less computational effort (approximately a factor of 2.5) but considerably less accuracy [O(hz)
compared to 0(h4)]. On the other hand, fourth-order finite-differences are somewhat more expensive and

somewhat less accurate than rectangular FEs.

2.4 Products
Consider the problem of evaluating a product

V=uw, (19)
where u and w are given at nodal points and we require values of v at these nodal points. Expanding as before
in terms of the basis functions e’ (x, y), multiplying by an arbitrary basis function ek(x, y) and orthogonalising

the error to the basis we obtain

Pv =uNw, 20
where P is as before, V
(uVw), = Y uw, [€(x,y)e (x,)e (x,)dxdy, e
L D

the summations over : and ; are performed over all nodal points, and b is the domain.

The double sum in (21) is not as formidable as it appears since e* (x, y) is only non-zero in a relatively small

neighbourhood of the «th node and therefore only nearest neighbours of # and w are involved in the
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calculation. Its efficient evaluation for rectangular (two dimensional) and box (three dimensional) elements is
discussed in detail by Staniforth and Beaudoin (1986) who show that it is advantageous to use Simpson
quadrature rather than Gaussian. The evaluation of the right-hand side of (20) takes O(MN) operations on an
M X N grid for both rectangular and triangular elements (but triangular elements are more costly), and the
prime difference in algorithmic efficiency is again the computational cost of solving a set of linear equations (the
'mass-matrix problem' Pv =r). For rectangular elements the solution of this problem is approximately a factor
of two less expensive than the evaluation of the RHS but, as mentioned above, for triangulzir elements it is

considerably more costly, both in terms of arithmetic operations and storage.

2.5 Additional economies for linear rectamgular (and box) elements, and a useful notation
As a further illustration of efficiency 'tricks' that may be employed when using linear rectangular elements,
consider the evaluation of .

D=u, +v, ’ : ; (22)
where u, v and D are all functions of the three dimensions x,y and z. The Galerkin finite-element
approximation to this equation may be written formally as |

P*PPP'D=PP Pu+ PyP"PZv, (23)
where P* and P, are tridiagonal one-dimensional operators having weights [hm_i / 6,(h, ,+h,) /3,hm / 6] and
[~1/2,0,1/2]respectively, and with similar definitions obtaining for P”, P,, P* and P,.

The solution of (23) is usually found by explicitly applying the six one-dimensional operators on the right-hand
side and then successively 'inverting' the three one-dimensional operators on the left-hand side resﬁlting. in the
successive application of nine operators of approximately equal cost. However, we can achieve exactly the
same result with half the work (i.e. by applying four operators instead of nine). To see this, we formally
multiply (23) by (P" )—1 (Py )_1 (PZ )_] and use commutativity of operators to obtain

D=(P*) Pu+(P") Py.
These formal operations may be justified rigorously, and the end result is equivalent to using one-dimensional

FEs along lines of constant y to calculate u, ,one-dimensional FEs along lines of constant x to calculate v, and

then summing the result. Such a simplification is not possible with tliangular (or tetrahedral) elements.

This is one example of the usefulness of the 'subscript/superscript' notation introduced above for rectangular
(and box) elements. Another (similar) example is to consider the solution of the three-dimensional mass matrix
problem Pv =r, where T is given. Rewriting P as the product ( P*P?P*) of one-dimensional operators, this
problem reduces to the successive solution of three sets of one-dimensional problems, namely

(i) solve Pf=r for columns (fixed x and y);

(i) solve P’g=f{f forfixed x and z;

(i) solve P*v=g forfixed y and z.

Again, the algorithm is of optimal order (i.e . O(1) operations per node) and does not require any I/O to mass

storage.
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2.6 Rectangular vs. triangular elements ,

Why are rectangular elements (and box elements in three-dimensions) in general more efficient? Because the
underlying geometrical partitioning of the domain, together with the form of the basis functions, leads to
matrices whose structure may be exploited. Although linear rectangular elements at first glance appear more
expensive than triangular elements (they need four degrees of freedom to define them, rather than three), the fact
that they are expressible as the product of one-dimensional elements leads to considerable economies in their
manipulation. Not only are fewer operations and less memory required in general for rectangular elements than
for triangular (tetrahedral) elements, they are also inherently more vectorisable (because they are well-ordered in

memory and easily accessed), further enhancing efficiency.

3. ELEMENT ORDER, SPATIAL EVOLUTIONARY ERROR AND CODE MODULARITY
Having indicated in the previous section the high cost for even simple problems of linear triangular elements
when compared to both linear rectangular elements and finite differences, we now restrict our attention to
rectangular elements. The next question to address is 'among rectangular elements, which ones are most
suitable for fluid flow problems?' Put another way, is there any virtue to using higher-order elements (ie
piecewise polynomials of higher order) such as quadratic or cubic elements, rather than linear elements? The
answer appears to be no for several reasons, many of which may be found in Cullen and Morton (1980). They
analysed the error associated with calculating an advection term such as uov/dx directly or calculating it as a
two-stage process (compute the derivative, then the product) when using linear elements in the context of an
evolutionary problem. They concluded that both methods asymptotically give an 0(h4)estimate for the spatial
evolutionary error but that the two-stage method has a smaller coefficient. For a coding point of view, the two-
stage method is probably to be preferred, since all terms may be computed in a modular way using a set of
. 'kernel' subroutines that handle the fundamental operations of differences, products and the solution of linear

equations involving the mass matrix P.

It has been found that quadratic elements are generally (there may be some exceptions) less accurate and more
costly than linear elements not to mention more complicated. Why are they less accurate? Because they have no
super-convergence properties at nodes. What about cubic elements? They can have super-convergence
properties but are much more expensive to work with per degree of freedom, boundary conditions are difficult
to implement, program complexity is increased and, because of their higher order, there are more computational

modes to worry about. The law of diminishing returns seems to apply.

4. STAGGERED, NON-STAGGERED AND MIXED-ORDER ELEMENTS AND THE FORM OF THE
GOVERNING EQUATIONS

When formulating a fluid flow model, one often has to choose among several different forms of the governing
equations. Furthermore, in the finite-element framework one is not restricted to using the same elements for all
variables. Two possibilities come immediately to mind. First it is possible to use equal-order elements on a
staggered grid (by analogy with staggered FD formulations). Secondly it is possible to use the same grid for all

variables but to use mixed-order elements (ie expand some of the dependent variables in terms of one set of
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elements, and the others in terms of another set of elements of different order). In an ideal world one would
expect that the choice of the form of the governing equations would be independent of the choice of element. In

fact, we do not live in an ideal world and the two choices are intimately linked.

As a first example of how these two choices are linked, consider the shallow-water equations (1)-(3). Williams

(1981) analysed various formulations for the FE solution of the linearised one-dimensional form of these

equations using linear elements on both staggered and unstaggered meshes, where either velocity components or

vorticity and divergence (as in the Introduction of the present study) were used as the momentum variables. His

analysis indicates that to obtain good results with linear elements it is necessary to use either

(i) velocity components as momentum variables, and stagger the nodal pointys for the free surface height; or

(i) vorticity and divergence as momentum variables and no staggering;

and furthermore that using velocity components as momentum variables and no staggering propagates energy in

the wrong direction and is likely to cause noise problems in a non- linear model. That the conclusions of this

analysis also apply to higher dimensions and the non-linear equations is well supported by:

(i) the absence of noise problems reported by Staniforth and Mitchell (1977, 1978), Cullen and Hall (1979)
and Staniforth and Daley (1979) when using vorticity/divergence formulations and unstaggered elements;

(i) the importance of introducing artificial smoothing to eliminate noise problems when using velocity
components and unstaggered elements, reported by Cullen (1976); and

(iii) the noise problems reported by Walters (1983) for some of the formulations examined.

Williams' analysis is applicable to equal-order (namely linear) elements. It is also possible to use mixed-order
elements (e.g. linear elements for velocity components and constant elements for free-surface height and vice

versa), and it was concluded by Williams and Zienkiewicz (1981) and Walters (1983) that such schemes are

viable.

The above discussion is centred on horizontal considerations, but similar considerations should also be expected
to apply in the vertical. An analysis of a linearised version of the vertical FE discretisation scheme of Staniforth
and Daley (1977) for the hydrostatic primitive equations is given by Béland et al. (1983). The analysis is
similar iﬁ concept to that of Williams (1981), but focuses on the vertical instead of the horizontal. For the
partiéular scheme analysed (unstaggered linear elements) it was shown that there is no spurious vertical
propagation of energy in the wrong direction and that the scheme is basically sound. This analysis and that of
Coté et al. (1983) did however lead to the diagnosis of a weakness, namely the existence of a vertical

computational mode.

Although this mode may in principle be forced by the parametrised terms of the model, in practice it was found
that a small amount of vertical diffusion adequately controls it. The source of the weakness was traced (see
equation 10.20 of Cbté et al., 1983) to the form chosen for the governing equations, and in particular to the

treatment of the hydrostatic equation. A revised formulation was successfully implemented by Béland and
Beaudoin (1985).

Cliffe (1981) presented an interesting analysis (based on the earlier analysis of Lee et al. (1980)) of the
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conservation properties of GFEM approximations to the Boussinesq equations. The basic idea is to expand each
variable in terms of a finite-element space of unspecified order (or degree of continuity), and then to examine the
conservation consequences of specific choices. An interesting feature of this framework is that it is easy to
determine the minimum degree of continuity required of a certain variable after that of another has been set. The
key point here is that if the finite-element space is too large (ie of too high an order) then computational modes
will appear (‘spurious pressure modes' in the terminology of Cliffe, 1981). It appears therefore to be desirable
to choose the element order for one of the dependent variables of the problem (the higher the order, the higher
the degree of complexity of the final algorithm), and to choose the minimum order for the other variables that is
required to satisfy the desired conservation laws. Although the present author is not convinced that the best
schemes aré necessarily those which exactly conserve certain quantities (rather than those that almost éonserve a
larger number) the above- mentioned framework is nevertheless a valuable analysis tool for choosing elements

appropriate to a given problem.

5. STABILITY

The stability properties of FE schemes turn out to be very similar to those of FD schemes. For pure advection
(ie equation(3) with a non-divergent velocity field) a leap-frog scheme is conditionally stable whereas a forward
(Euler) time scheme is unconditionally unstable (Cullen, 1973). For pure diffusion, a leap-frog scheme is
unconditionally unstable, whereas a forward scheme is conditionally stable. These conclusions hold true for
both FD and FE schemes, and the principal differences in stability are that the coefficients appearing in the
stability conditions are slightly different. For one-dimensional advection, a leap-frog scheme using linear FEs
has akstability condition C =UAt/ Ax < 0.58 whereas for centred second-order FDs C <1, and for centred
fourth-order FDs C < 0.73. Thus the most restrictive of these schemes from the point of view of stability is the
FE one; however it is also the most accurate, and the price for increased accuracy is thus increased cost (ie more

time steps).

A stability analysis of three different schemes (FD, FE and spectral) for solving the linearised shallow-water
equations (cf.(1-3)) using a semi-implicit time scheme is given by Staniforth and Mitchell (1977). This analysis
is performed in terms of response functions, and the conditions for stability for each of the three schemes is
obtained by substituting the response functions appropriate to the method into the final result. The analysis was
performed for a formulation using vorticity and divergence as momenturh variables (cf. (1)-(3)) and also for two
different formulations using velocity components as momentum variables. For a FE discretisation it was
concluded that one of the velocity component formulations was not viable because it was overdamped, the other
was not viable because it was computationally too expensive, and that this is a direct consequence of using a
same-implicit time discretisation. This choice of time discretisation turned out to be quite fortunate, because
only the vorticity/divergence formulation was left, which Williams (1981) later demonstrated was the only FE
scheme on an 'ﬁnstaggered grid using linear elements that does not suffer from propagation of small scales in the

wrong direction!

A second example of a stability analysis is that given by Co6té et al. (1983) for the hydrostatic primitive
equations. This analysis, although applied principally to the vertical discretisation FE scheme of Staniforth and
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Daley (1977), is also applicable to FD discretisation schemes. It is similar to that described by Simmons et al.
(1978) its principal virtues being that it is somewhat more general and less empirical. An explicit stability
criterion (that the static stability of the reference temperature profile be greater than the explicit one) is given in
the limit of small At for a case examined numerically by Simmons et al. (1978) and there is good agreement
between the results. It was also shown that the first modes to go unstable if the criterion is violated are the
computational modes due to the use of a (three time-level) semi-implicit time scheme. All of these conclusions

apply equally well to FD schemes as they do to FE schemes, except for minor details.

6. SOME ‘FURTHER CONSIDERATIONS
Although finite-element Galerkin schemes are optimal in the sense that for a given choice of finite-element space
they orthogonalise the error to the basis, this does not necessarily mean that in the context of a fluid flow model
they are the optimum choice among algorithms of a given complexity. An illustration of this point may be found
in Staniforth and Mitchell (1977) who showed that a minor change in the approximation of second derivative
terms, and no changes elsewhere, led to a striking improvement in the accuracy of the result. To see why this is

so0, we examine the problem of evaluating second derivatives.

6.1  Second derivatives
Consider the problem of evaluating

v=u,, ‘ (24)
where u is known at the set of nodal points, and we require values of v at these same points. Expanding u
~ and v in terms of linear FEs (cf. equation 13) and orthogonalising the error to the basis (by multiplying by an
arbitrary basis function e*(x)and integrating over the domain) we obtain

P'v=P u, , (25)
where P* and P_ are tridiagonal matrices having weights [h'm—l / 6,(h,_, + h,)/3.h,/ 6] and
[1/ By —(1R, . + /h,).Y hm] respectively. It is easily shown by Taylor series that this gives an 0(112)
approximation to the second derivative on aﬁy uniform subdomain, which is no better than that obtained for half

the computational effort using centred second-order FDs. However, by rewriting (25) as

| Py = Pu, (26)
where P” has been modified to be a tridiagonal matrix having weights [hm_l / 12,5(h,_, +h, ) / 12,h,/ 12] we
obtain an O(h4) approximation at no extra computational cost as our reward for venturing outside the Galerkin

FE framework.
Staniforth and Mitchell (1977) demonstrated that this idea does not adversely affect the computational stability of

a FE fluid flow model (the shallow-water equations of section 1), and can be used to good advantage for

problems in higher dimensions such as the solution of the two-dimensional Poisson problem

fetf,=8- 27)
The approximation used for this problem was ‘ ‘
(PP, + PR, )i = P*P'g 28)
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where P_vy and P are the analogues of P_ and P* as redefined. The resulting set of difference equations
(involving a 9-point operator) was solved using discrete Fourier transforms, which are economical in their

memory requirements ( O(MN) ona M X N mesh) and computational effort (O(MN logN )) operations).

6.2 Aliasing

Let us now turn our attention towards aliasing and compare the FE treatment with the FD treatment. It is well
known that evaluating the pointwise product of the two terms involved in an advection term (such terms are
implicitly contained in the RH sides of (1)- (3)) generally leads to non-linear computational instability in the
context of an evolution problem. The cause of this instability is the aliasing of that part of the spectrum
generated by the product that cannot be resolved by the mesh. The cure in all Eulerian methods (FD, FE,
spectral, etc.) is to either implicitly or explicitly control this aliasing by smoothing (filtering) the result. The
spectral method is the most direct and simply ignores the least significant half of the spectrum, whereas FD

methods smooth by averaging various quantities.

The optimum treatment of aliasing is therefore a trade-off between accuracy and stability; too little smoothing
leads to computational iﬁstability, whereas too much degrades accuracy. Where does the FE method stand in all
this? An illuminating example is given by comparing A'rakawa's- approximation for two-dimensional
incompressible flow on a uniform grid with that of the FE method using linear elements. It was shown by
Jespersen (1974) that the treafments of the advection terms are identical. The only difference between the two
methods, therefore, is that the time derivative term in the FE approximation is multiplied by the projection (or
mass) matrix P of section 2, and the FE method is consequently a little more expensive. However the FE
approximation leads to an 0(h4) estimate for the spatial evolutionary error rather than the O(hz) estimate for

Arakawa's (1966) method, and the increased accuracy more than compensates for the added work.

Noting that the application to one side of an equation of a 'smoothing' operator (such as the projection matrix
P) is equivalent to the application to the other side of an 'unsmoothing' operator, the above result may be
interpreted as follows: both methods control stability by using the same smoothing operator, but the FE method
'sharpens the response' to increase accuracy without adversely affecting stability, and is consequently a more

efficient scheme.

6.3 Boundary conditions

An often-overlooked aspect of the FE method when using linear elements as compared to higher-order FD
schemes, is the incorporation of boundary conditions. Higher-order FD schemes in the literature usually
achieve better accuracy by involving more neighbouring points in the calculations, thus increasing the bandwidth
of the matrices involved. For example, fourth order FD derivative approximations in one dimension involve
five adjacent points rather than the three adjacent points of second-order FDs and the FE method using linear
elements. In three-point schemes, the boundary conditions are used to obtain an equation associated with a
boundary point, and the discretised governing equation is applied directly at all internal points. With a five-point
FD scheme it is necessary to impose an extra computational boundary condition at all the internal points

immediately adjacent to the boundary in order to obtain as many equations as there are unknowns. This can be a
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delicate procedure and if not done properly can result in the forcing of the computational modes associated with

the use of a higher-order difference scheme. The linear FE scheme on the other hand can achieve fourth-order

accuracy (for a first déxivative, for example) without the need for additional (artificial) boundary conditions for

the points immediately adjacent to boundaries. This is particularly advahtageous when solving Poisson
problems such as (10) and (11).

7. TIME SCHEMES

The choice of time discretisation and how it interacts with the Space discretisation can have an important impact
on the efﬁciéncy of a fluid dynamics code. The simplest time schemes are explicit. In these schemes the partial |
time derivative of a variable is isolated on the left-hand side of an equation and approximated in terms of a time
difference involving the new and previous time steps, whereas the right-hand side is evaluated éxplicit_ly using
known values of the dependent variables at previous time steps. The ﬁght—hand side rhay be evaluated using the
traditional Galerkin FE method, by breaking it down into several steps or by grouping them togethér as fluxes.
Terms on the right-hand side are evaluated using the methods described in the precedihg sections, and thé mass
matrix problem (associated with the time differencing of the left-hand side) is solved using the efficiency

algorithm of section 2.

Explicit time schemes are very efficient and’ appropriate for problems where the time step is restricted by the time
truncation error rather ‘than by stability considerations. However, they are not particularly efficient for stiff sets
of equations (such as the shallow-water equations (1)-(3)), and it is often ’advanté.geous to treat some or all, of
the terms implicitly in time. This can‘ be done in several ways. For example, Baker and Soliman (1983)
approximate all terms as time averages or differences over times nAt and (n+1)At. This results in a set of
coupled non-linear equations at each time step which are solved iteratively. The advantage of such an approach
is that fewer time steps are required for stiff systems of equations because of the enhanced stability. The
disadvantage is that each time step is more costly than that of an explicit time scheme because of the need to
iterate. Nevertheless this approach can be cost effective, provided that the time step may be increased

significantly without loss of accuracy, and the iterative technique is efficient.

A further alternative, particularly effective for stiff sets of equations, is to identify those terms that are
responsible for restricting the time step because of stability. The linear contributions of these terms are then
treated implicitly in time, whereas perturbations about them, and the remaining terms, are treated explicitly. This
idea was first applied to a finite-difference discretisation of the shallow-water equations by Kwizak and Robert
(1971), who found that such a scheme (which they termed semi-implicit) is five times more efficient than an
explicit leap-frog scheme. Later, Staniforth and Mitchell (1977) applied it to an FE discretisation of the same
equations with a similar improvement. The extension to the three-dimensional hydrostatic primitive equations
was first demonstrated for an FD discretisation by Robert et al. (1972) and subsequently by Staniforth and
Daley (1979) for a FE formulation. '

Semi-implicit schemes offer a good compromise for stiff systems of equations. They require fewer time steps
than explicit schemes (because of their enhanced stability) and yet do not require significantly more

computations per time step.
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8. | CONCLUSIONS
For fluid flow problems in regular domains, triangular (and tetrahedral) elements cannot in general compete with
rectangular (and box) elements, because they do not permit an efficient solution of the mass-matrix problem. An

optimal (or close to optimal) scheme for given computational effort in this context is achieved by a judicious mix

of techniques.

First derivative and product terms are well handled by GFEM schemes using linear rectangular (and box)
elements. They have the attributes of simplicity, accuracy stability and straightforward incorporation of
boundary conditions, and compete favourably with fourth-order FD schemes. However for these elements it is
often advantageous to go outside the Galerkin framework when approximating second derivatives, as described
in section 6. Higher-order rectangular elements are a possibility, but the introduction of more computational

modes and added programming complexity are decided disadvantages, and the law of diminishing returns

applies.

It is important to analyse carefully the properties of linearised versions of the discrete models in order to obtain
maximum accuracy and efficiency. Of particular importance is the form of the governlng equatlons vis-a-vis

the choice of staggered, non-staggered and/or mixed-order elements, and the ch01ce of an appropnate time

scheme.
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