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1. INTRODUCTION

Traditionally, numerical models for simulating planetary scale weather and climate employ the
hydrostatic primitive equations—an abbreviated form of Navier-Stokes’ equations that neglect vertical
accelerations and use simplified Coriolis forces.! Although there is no evidence so far that including
nonhydrostatic effects in global models has any phy‘sicalv significance for large scale solutions, there
. 18 an emerging trend in the community toward restoring Navier-Stokes’ equations (or at least their
less constrained forms) in global models of atmosphefes and oceans (Cullen et al.1997, Marshall
et al.1997a, Semazzi et al.1995). The primary motivation is that state-of-the-art computers already
admit resolutions where local nonhydrostatic effects become noticeable. Other advantages include: the
convenience of local mesh refinement; better ox}efall accuracy; insubstantial computational overhead
relative to hydrostatic models; universality and therefore convenience of maintaining a single large
code; conceptual simplicity and matheinatical elegance—features important for education.

The few existing nonhydrostatic global models differ in analytic formulation and numerical de-
sign, reﬂecting their different origins and purposes. Much. of our present research (Anderson et
al.1997; Smolarklevvlcz and Ma,rgohn 1997) aims to improve the design of a high-performance nu-
merical model for simulating the flows of moist (and precipitating), rotating, stratified fluids past a
specified time-dépendent irregular lower boundary. This model is representative of a class of non-
hydrostatic atmospheric codes fhat employs the anelastic equations of motion in a terrain-following
curvilinear 'framework, and contains parallel implementations of semi-Lagrangian and Eulerian ap-
proximations (Smolarkiewicz and Pudykiewicé 1992, Smolarkiewicz and Margolin 1993) selectable by
the user. The model has been employed in a variety Qf applications; the quality of results suggest that
modern nbn’oscillatory forward-in-time (NFT) methods are superior to the more traditional centered-

in-time-and-space schemes, in terms of accuracy, computational efficiency, flexibility and robustness

!For a thorough critique of the hydrostatic primitive equations see Marshall et al. 1997b.
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(Smolarkiewicz and Margolin 1997, 1998).

We have extended the Cartesian NF'T model to a mountaineous sphere and, consequently, have
dispensed with the traditional geophysical simplifications of hydrostaticity, gentle terrain slopes, and
weak rotation. In this paper, we discuss the algorithmic design, relative efficiency and accuracy of
several different variants (hydrostatic, nonhydrostatic, implicit, explicit, etc.) of the NFT global
model. We substantiate our theoretical discussions with the results of simulations of idealized global

orographic flows and climates.

2. MODEL DESCRIPTION

The small-scale numerical model used as the basis of the global model discussed in this study has
been described in Smolarkiewicz and Margolin (1997). It is representative of a class of nonhydrostatic
atmospheric models that solve the anelastic equations of motion in standard, nonorthogonal terrain-
following coordinates. The extended global model results from a composition of two mappings: it
can be derived by either transforming the small-scale model equations to spherical coordinates, or by
transforming the anelastic variant of the Navier-Stokes’ equations on a rotating sphere (cf. section
4.12 in Gill 1982) to terrain-following coordinates. Below we comment briefly on the essential aspects

of the design of the extended global model while referring the reader to earlier work for further details.
2.1 Analytic formulation

In this paper, we focus on an inviscid, adiabatic, density-stratified fluid whose undisturbed, geostro-
phically-balanced “ambient” state is described by the potential temperature O, = O¢(x) and the veloc-
ity v = ve(x). The nonorthogonal terrain-following system of coordinates [z, y, z] = [RA\, R¢, H(r—
h)/(H — h)] assumes a model depth H and an irregular (but at least twice-differentiable) lower bound-
ary h = h(z, y). Here r, R, ), and ¢ denote, respectively, the radial component of the vector radius,
sphere’s radius, longitude, and latitude. The coordinate transformation enters the governing equa-
tions of motion through the coefficients of the metric tensor G = (82! 0z K )(0z7 /0zK), and the
Jacobian of transformation G = Det{0x¢c/0x} = (Det{G'’})~'/2, where the subscript C refers to
Cartesian coordinates. In particular, GI! = (l'cos ¢)7%, GB3 = GUGE, G2 =T71,G8 = G2G3,
and G = G,I'% cos ¢. Here, T' = r/R, and the subscript o refers to the metric coefficients of the stan-
dard terrain-following transformation from a Cartesian space (Gal-Chen and Somerville 1975). The
remaining coefficients are as in the standard transformation.

Given the assumptions above, the governing anelastic equations may be written compactly as
follows: |
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Here m is the pressure perturbation with respect to the ambient state normalized by the anelastic
density. © is the potential temperature, f = 20 sin¢ and f = 202 cos ¢ are the radial and latitudinal
components of the planetary rotation vector €2, g is the acceleration due to gravity, and w = 2 is
the “vertical” component of the transformed (contravariant) velocity, related to the covdfiant velocity

components of a local tangent Cartesian framework (aligned with standard geographical coordinates)

through

w=G;lw+GBu+G%y | (2)

and & = G''u, and § = G*v. The potential temperature ® = O(r"), ' = r— R, which appears in the
denominator of the buoyancy term in (1c), and the anelastic density p = p(r’ ) in the mass continuity
equation (le) refer to the hydrostatic reference state of the Boussinesq expansion around a constant
stability profile. The attenuation forcings that appear in the momentum and entropy equations (la)-
(1d) simulate wave-absorbing devices employed typically in the vicinity of the open upper boundary
of the problem domain, and primes denote deviations from ambient values.

Mathematically, the formulation in (1)-(2) is analogous to that of the small-scale model except
for the metric forces in (1a)-(1c) proportional to products of various velocity components (cf. Clark
et al.1996). Similarly, the finite-difference approximations employed to solve (1) closely follow the

approach adopted in the small-scale model.

2.2 Finite-difference approximations

2.2.1 Basic model algorithm

Our basic algorithm for integrating (1) on a discrete mesh is second-order-accurate in space and
time. Time marching is based on two-time-level NFT transport methods. In general, there are
two options for the spatial differencing——semi—Lagrangian (Smolarkiewicz and Pudykiewicz 1992) and
Eulerian (Smolarkiewicz and Margolin 1993). The lattice structure assumes all prognostic variables
defined at the same grid points x;—important for the efficacy of the unified semi-Lagrangian/Eulerian
NFT approach (Smolarkiewicz and Margolin 1997).

We write the finite-difference approximations to the prognostic equations ( 1a)4(1d) in the compact
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form

P! = LE(9) + 0.5AtFFF 3)

Here, LE denotes either an advective semi-Lagrangian or a flux-form Eulerian NFT transport operator
(sections 3.1 and 3.2 in Smolarkiewicz and Margolin 1997, respectively);? ¥ = Y™+ 0.5AtF", where
and F denote vectors of the dependent variables u, v, w, and © and the associated forcings appearing
in (1); and the indices i and n denote the spatial and temporal location on a (logically) rectangular
Cartesian mesh. Completion of the model algorithm requires a straightforward algebraic inversion
of the system (3), which is implicit with respect to O, u, v, and w; and the formulation of the
boundary value problem for pressure ™ implived by the continuity constraint (1le). [Some details of the
formulation as well as the explicit form of the resulting operator for the implicit variant of the model,
introduced later in section 2.2.4, can be found in Appendix B.] The resulting elliptic equation is solved
(subject to appropriate Boundary conditions; section 4b in Smolarkiewicz and Margolin 1994) using

the generalized conjugate-residual (GCR) approach (Eisenstat et al.1983, Smolarkiewicz et al.1997)

summarized in Appendix A.

2.2.2 Metric forces

In order to avoid solving a nonlinear elliptic equation for pressure, the metric forces contributing
to F*t1 on the RHS of (3) are either approximated explicitly (e.g., in the spirit of Adams-Bashfort
schemes), or the entire subset of (3) corresponding to the momentum equations (1a)-(1c) is iterated
with the metric terms lagged behind. In both cases the metric forces enter the RHS of the resulting
linear elliptic pressure equation. Although the iterative approach requires solving the elliptic equation
at each iteration, it is overall advanta.géous: In the limit, it converges to the trapezoidal-rule approx-
imation, which preserves the neutral character of the metric force. With the first guess F*™1|0 = F™,
one iteration suffices for second-order accuracy. In typical applications for flows on the Earth, the
results are insensitive to the number of iterations beyond 2, and the overhead associated with two
passes through the pressure solver is insignificant, as the second pass requires merely a few iterations

of the GCR solver to maintain the accuracy of the first pass.

2.2.3 Pressure solver

Because NFT methods are inherently two-time-level, an accurate (time-centered) integration of
forces leads to the inversion of a large nonsymmetric linear system that represents a complex nonself-

adjoint 3D elliptic PDE for pressure. For atmospheres whose depth is comparable to the radius of the

2Specifically, the semi-Lagrangian algorithm remaps transported fields to the departure points of flow trajectories
arriving at grid points (x1, t**1) (Smolarkiewicz and Grell 1992), while the Eulerian scheme integrates the homogeneous
transport equation P, t+ V- (pVe) =0, where V = (G*u, G**v, w) (Smolarkiewicz and Clark 1986).
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sphere, such a problem can be solved easily using standard Krylov subspace methods for nonsymmetric
operators (Smolarkiewicz and Margolin 1994, Smolarkiewicz et al.1997). For thin atmospheres typical
of Earth meteorology, however, the resulting elliptic operator is extremely stiff 3, necessitating addi-
tional enhancements to the Krylov solvers to assure their convergence as well as to reduce the number
of iterations. We have explored two (not necessarily exclusive) strategies. One is to use the hydro-
static solution for pressure as an initial guess for the (iterative) nonhydrostatic pressure solver. This
procedure naturally facilitates the optional implementation of hydrostatic or nonhydrostatic models,
leaving the final choice to the user. The second strategy uses ADI-type preconditioners (Skamarock et
al.1997) for the Krylov solver, and dispenses with the decomposition of the pressure into a hydrostatic
and a nonhydrostatic part (Marshall et al.1997a). This results in a simpler, more general, and elegant
variant of the model. ,

A particularly simple and effective preconditioner used in the stage (A3e) of the GCR procedure
(Appendix A) derives from the implicit stationary Richardson iteration

| ut1

¢ —q R +1 +1
A3 phge Z(ghtly v
AF Pl (q ) + Pl (q ) T] H (4)

where ¢ denotes an error estimate between the currént iterate of m and the exact solution, r is the
residual error, P is an abbreviated form of £ in (A3f) Wik‘th all “off-diagonal” coefficients C?7 set
to zero, P* and P? are the horizontal and the vertical counterparts of the operator P, respectively,
AT is a parameter of the iteration (a pseudo-time step) based on spectral properties of P? [uviz.,
linear stability analysis of (4)], 4 numbers successive Richardson iterations, and v numbers the outer

iterations of the GCR solver. The equation (4) leads to a linear problem
(T - AFPA)g = B, : (5

where V; RY = o' + AF(PR(g") — r{t1), that can be solved readily using the celebrated tridiagonal
algorithm (cf. Appendix A in Roache 1972).# The majority of results shown in this paper use the
fourth-order GCR [i.e., GCR(k) with & = 4 in Appendix A] with eight inner iterations in (4).

In a series of numerical experiments for continuously stratified flows past a large isolated mountain
in mid latitudes (discussed later in section 3.1 of this paper), we have verified that both hydrostatic
and nonhydrostatic models reproduce the same solution. The solution differences take the form of
horizontally propagating inertia-gravity waves (cf. Fig. 2b in section 3.1) with a maximal vertical
velocity ~ 1072 ms™ that is an order of magnitude less than the vertical velocities of the actual

flow. The relative overhead of solving the nonhydrostatic problem is ~ 80% in the model where

%A reasonable estimate of the spectral condition number is & ~ O(10%°).
“On the nonstaggered mesh used here, the resulting liner problem is formally pentadiagonal and requires a customized
tridiagonal algorithm for its inversion.
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the nonhydrostatic solution is sought as a perturbation to the hydrostatic result, but only ~ 40% in
the simpler model without the hydrostatic counterpart. We believe the latter number can be reduced
substantially by accelerating the elliptic solver with improved preconditioners. In light of these results,

pursuit of the hydrostatic approach seems unjustified.
2.2.4 Implicit variant

In the basic version of the model, the entropy equation (1d) is integrated prior to the momentum
equations. This allows the buoyancy term in b(lc) to be evaluated explicitly at n + 1 in (3)—in the
spirit of Runge-Kutta schemes—and to enter the RHS of the elliptic preésure equation. Consequently,
the numerical stability of the basic model depends primarily on the propagation speed of internal

gravity waves.> Another implicit variant of the model replaces (1d) with

Do’ _ —Gllu?—@—g —G22va@e _w6®e B

~
Dt Oz Oy 0z ae’, (6)

solved simultaneously with the momentum equations; the buoyancy term in (1c) is evaluated implicitly
at n + 1 in (3)—in the spirit of the trapezoidal-rule scheme—and enters both the RHS and the
coefficients of the elliptic pressure equation (see Appendix B for details). The numerical stability of
this variant of the model is controlled solely by proper limiting of Courant and Lipschitz numbers
C =|| AtV/AX || and L =|| At(dV/0x) ||, respectively, for the Eulerian and semi-Lagrangian options
of the solver. For smooth flows, the latter option admits large time steps characteristic of semi-implicit

semi-Lagrangian models.

3. EXAMPLES

3.1 Orographic flow

Figure 1 shows the pattern of vertical and meridional velocity components after 15 days of simulated
zonal flow of a stratified Boussinesq fluid past a large hill (cf. Grose and Hoskins 1979, Williamson et
al.1992) using the semi-Lagrangian implicit variant of the model discussed above. The flow parameters
are:

~

ue=U(r"cos¢, ve=0, UF)=UT, Uy=20ms™*; (7)
the corresponding thermally-balanced

_ou)+ Qe |0 o 10 (524 g
O = Oc(r') + —sin® § | 17+ foU o5 (07 +UTLER)| (8)

where O,(r') = ©,[1+r'N?/g] and the Brunt-Viisills frequency N = 1072 s™!. The conical hill with
height 2 - 10> m and angular base radius II/9 is centered at (A, ¢) = (3/2II, 1/6II). The globe is

SExternal gravity modes are eliminated by assuming a rigid-lid upper boundary.
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Figure 1: Planetary wave propagation on a sphere. Contours show patterns of vertical and meridional
velocity components in ms™! (plates a and b, respectively) at 4 km after 15 days of simulation. Contour
extrema and intervals are shown in the upper left corner of each plate. Negative values are dashed,

and zero contours are omitted. The mountain is illustrated with thick solid circles. Maximum vector
lengths (here identical) are shown in the upper right corner of each plate.
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covered with a uniform spherical mesh with nz x ny = 128 x 64 grid intervals (no grid points at the
poles) and the H = 8- 10% m deep atmosphere is resolved with nz = 20 uniform grid intervals. The
time step of integration is At = 7.2 - 103 s.

The simulation in Fig. 1 employs no viscous filters, and the only dissipation is that due to the
monotonicity constraints built into the remapping algorithm (Smolarkiewicz and Grell 1992). The
execution time on 'a single processor CRAY J-90 is ~ 1.4-10* 5. This value can be easily reduced by a
factor of about 2 by using dissipative filters in polar regions (a common practice in global circulation
models). At the large time step employed here, most of the computational effort is already in the
elliptic solver, so that overall model efficiency strongly depends on such technical issues as stopping
criteria (Smolarkiewicz et al.1997) and effective preconditioning (Skamarock et al.1997). We believe
that further improvement in the latter will lead to substantial acceleration of the model.

In order to establish the solution dependence on model design and on the numerical scheme em-
ployed, as well as on alternate formulations of the governing equations of motion, we have performed

a series of simulations like that in Fig. 1. The results of this sensitivity study are summarized in

Tables 1 to 5.

Run Solver-At ||v]lee vl %l | w |2 CPU

1 EU-2400  20.6 50 231072 9.6.107* 291
SL-2400 20.5 48 2.2.107%2 9.4-107* 378
SL-7200 20.6 48 22-107%2 9.6-107* 226

3b  SL-7200¢  21.0 48 22-1072 94-107% 616

4  SL-1200 20.7 48 22-1072 9.3-107% 527

5 EU-1200 209 51 23-1072 9.7-107% 377

Table 1: Comparison of various executions of the semi-implicit anelastic model for simulating the
15-day evolution of the orographic flow on the sphere. The first column numbers runs, for further
reference. The second column lists the solver (Eulerian vs. semi-Lagrangian) and the time step (At in
s) employed; run SL-7200¢ tests the convergence criterion in the pressure solver. Columns 3-6 provide
norms of the meridional and vertical velocity components (in ms™?!), respectively. The last column
lists single-processor Cray J90 CPU times (min).

Tables 1 to 4 collect various runs in a certain logical order. Table 1 contains semi-Lagrangian and
Eulerian rﬁns of the semi-implicit model (section 2.2.4) at different time steps; run 3b is identical
to run 3 except for the order of magnitude tighter convergence criterion in the GCR pressure solver.
Table 2 contains hydrostatic and nonhydrostatic runs using explicit (with respect to internal gravity
waves) variants of the model (section 2.2.1). Since the explicit model runs are unreasonably expensive,

further applications of the explicit models (Tables 3 and 4) incorporate a heavy dissipative filter in
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polar regions [in (1a)-(1d), @ = & increases linearly from 0 to 1/150 s~! over the five grid intervals near
each pole] to allow for a substantially larger time step. Thus, runs 9 and 10 in Table 3 were designed
to make runs 8 (Table 2) and 4 (Table 1) directly comparable. Finally, Table 4 collects results of the

simulations using alternate governing equations of motion (1a)-(1e).

Run Solver-At [vlleo fvlz fJwle |wlz CPU

6 HNH-h 21.7. 46 21-107%2 88-107*% 1328
7 HNH-nh  21.9 46 2.1-107%2 8.8-10~% 2407
8 ADIprc  21.0 46 21-107%2 8.9-107* 1900

Table 2: As in Table 1 but for three different explicit semi-Lagrangian anelastic models. Runs 6 and 7
are for the hydrostatic and nonhydrostatic options of the model based on the hydrostatic first guess,
and run 8 is for the alternate nonhydrostatic model with an ADI-type preconditioner of the 3D elliptic
pressure solver; At = 150 s.

Run Solver-At ||vllee vz |wlleo fwlz CPU

9 EXPL 20.3 46 21-107%2 8.9-10* 704
10 IMPL 203 .46 21-107%2 89-10% 437

Table 3: As in Table 1 but for the explicit and semi-implicit nonhydrostatic semi-Lagrangian anelastic
models; At = 1200 s with a heavy dissipative filter near the poles.

Run Solver-At {[vo vz lwle | w2 | CPU

11 INCM 197 46 21-1072 9.0-10* 677
12 ELAS 20.1 46 21-107%2 9.0-107% 356

Table 4: As in Table 1 but for the incompressible Euler and elastic Boussinesq governing equations,
simulated using explicit nonhydrostatic semi-Lagrangian models; At = 1200 s with the heavy filter
near poles. ' ‘

Run INCM in Table 4 uses the fully nonlinear incompressible Euler equations, and so addresses
the impact of the Boussinesq approximation inherent in the anelastic model (1a)-(1e). The conversion
from the anelastic to incompressible equations is achieved easily within the framework of the explicit
numerical model (section 2.2.1). In detail (cf. Rotunno and Smolarkiewicz 1995), the conversion: i)
replaces the pressure gradient terms Or/0z; with ©~197/8z; terms, and the buoyancy term go’/®©
with —g®’/© term; ii) removes dependence on p from (le); and iii) exploits © field fbr the fluid
density p(x,t). Run ELAS, in turn, addresses the impact of incompressibility inherent in the anelastic

model by admitting a finite speed of sound while retaining the Boussinesq approximation. This is a
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Runs [ 0vlloo 1 00llz [[6wlew [ 6wl

A(3,4) 3.3 079 1.2-1072 3.8-1074

A(3,2) 2.8 066 12.-107%2 3.6.107*

A(3, 3b) 3.0 071 23-107% 8.9.1075

A(1,2) 2.2 049 6.8-107% 2.6-107*

A(4,5) 2.3 044 6.4-107% 2.6-1074
)

A(7,8 2.1 049 23.1073 1.7-1074
A(6,8) 2.0 049 22-107% 1.7-107*
A(L,5) 1.5 035 4.1-107% 1.6-1074

A(11,9) 0.9 0.15 21-107% 1.5.1074
A(2,4) 0.8 019 20-107% 8.7-1075
A(9,10) 0.9 0.14 23-107% 7.7-107°
A(12,9) 0.7 017 66-107* 6.1-1075
A(6,7) 0.9 0.06 7.9-107* 7.9.107°

Table 5: Difference analysis of various runs collected in tables 1 to 4.

particularly simple alteration of the model (either explicit or implicit), merely replacing the anelastic

mass continuity equation (le) with

or ¢ (0pGG1u  pGGPv = OpGw
ot  pG Oz Oy 0z

(9)

where ¢, is the speed of sound (taken here at 300 ms™!). In effect, the Poisson equation for pressure
(cf. Appendix B) is transformed into an appropriate, slightly better-conditioned Helmholtz equation.

All four tables list L, and Lo norms of the meridional and vertical velocity fields—mnatural pertur-
bation fields with respect to the ambient flow (7)—as well as the computational expense of the model
measured by the CPU time (in minutes). As evidenced by the values collected in tables, all the listed
solutions agree to within about 10%. In fact, they are all similar to that shown in Fig. 1 and are hdrdly
distinguishable in the figures. In order to quantify the differences between various experiments, we
have performed analyses of the appropriate difference fields. The results are summarized in Table 5.8

Table 5 leads to a number of interesting conclusions. We draw attention to a few points that
are especially noteWorthy. The largest differences observed are due to the six-fold difference in At
(using the semi—Lagfangian semi-implicit model from section 2.2.4), while the smallest differences are
between the hydrostatic and nonhydrostatic model formulations. For illustration, in Fig. 2, we show

the respective dw difference fields (cf. plate a in Fig. 1). The corresponding dv fields are not shown

8Qur intention was to order the analyses of the difference fields in the decreasing magnitude of the differences. In
some cases, this required a subjective judgement, since not all the norms used decrease at the same rate.
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Figure 2: The vertical velocity difference field dw for the first A(3,4) and the last A(6,7) entry in

Table 5 (plates a and b, respectively). The contouring convention is the same as in Fig. 1.

31



SMOLARKIEWICZ ET AL.: NONHYDROSTATIC MODELING OF GLOBAL FLOWS....

because: i) they mostly mimic the wave field in plate b of Fig. 1, so the numeric values of the ov
norms in Table 5 adequately describe the differences; and ii) the vectors of the flow difference already
give a sense of dv field. In general, “physical” differences [hydrostatic vs. nonhydrostatic A(6,7),
elastic vs. anelastic A(12,9), incompressible Euler vs. Boussinesq A(11,9)] appear much smaller than
those due to truncation errors of the finite-difference approximations. For a sufficiently small At, the
difference between the explicit and implicit A(9,10) model formulations are small. Surprisingly, it is
the implicit model that is computationally more efficient (see Table 3), which is most likely due to the

better conditioning of the elliptic pressure operator in the implicit model formulation.

3.2 Idealized climates

The orographic planetary ﬂbw discussed in the preceding section, is fairly laminar and deterministic.
The relevant results generated with many different variants of the model closely match each other,
documenting both the hydrodynamic stability of the flow and robustness of the model design. The
example considered in this section is very different in nature. Simulations of the idealized climates
of Held and Suarez (1994) bear striking resemblance to large-eddy simulations (LES) of convective
boundary layers (Nieuwstadt et al.1992), where small differences in model setups can lead to totally
different instantaneous flow realizations, and where different model designs can lead to quite divergent
integral flow characteristics. In other words, these simulated flows are both turbulent and chaotic.

Figure 3 illustrates the overall complexity of the flow. It shows instantaneous vertical cross-sections
in the equatorial plane and surface plots of the isentropes © and isolines of zonal velocity u, after 3
years of simulated flow. The results displayed typify the response of an initially stagnant and uniformly
stratified fluid to the diabatic forcing attenuating © and v to, respectively, the prescribed equilibrium
temperature ©gg(lyl,r') and v|., = 0 (here, z; represents a height of the boundary layer) in a
manner mimicking the long term thermal and frictional forcings in the Earth atmosphere (see section
2 in Held and Suarez 1994, for details). The corresponding forcing functions augment the govern-
ing ‘equations of motion (1a)-(1d) with appropriate Rayleigh friction and Newtonian cooling/heating
terms.

The original forcing functions of Held and Suarez are expressed in the normalized pressure coordi-
nates o = p/ps (where p, and p denote, fespectively, the full thermodynamic pressures at the surface
and in the atmosphere aloft), so their diabatic forcing may evolve in time. In the anelastic model,
only gradients of the perturbation pressure are meaningful and the full thermodynamic pressure is,
in essence, unavailable. In order to avoid cumbersome procedures attempting to recover the true o
coordinate in our anelastic model, we have simply assumed a standard a.tmoéphere w_ith the density

scale of 7 km to evaluate the fixed forcing functions. The significance of such a simplification can be
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Figure 3: Instantaneous solutions of the idealized climate problem after 3 years of simulation. Plates
a/ and a show © field in the vertical equatorial plane and at the surface, respectively. Plates b’ and b
display the zonal velocity, respectively, in the equatorial plane and at the surface. Contour extrema
and intervals are shown in the upper left corner of each plate (in plate a’ we used a variable contour
to capture © variability in the troposphere). Negative values are dashed. Maximum vector lengths
are shown in the upper right corner of plates b’ and b.
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verified easily within the framework of a o-coordinate model.

In section 3.1, we assumed a shallow fluid and used the Boussinesq approximation p(z;) = po
and ® = ©,. Here we consider a deep atmosphere and, therefore, solve the anelastic equations
(1a)-(le) with the variable reference density and potential tem‘perature’ implied by N = 1072 s7!
Brunt- Viisilli frequency assumed for the reference state (cf. section 2b in Clark and Farley 1984).
The implicit numerical model (section 2.2.4) is employed, and the environmental profiles v, = 0 and
©. = Op(1l/2, r') are assumed. The globe is covered with uniform spherical mesh with nz x ny =
64 x 32 grid intervals (no grid points at the poles) and the H = 32 - 10% m deep atmosphere is
resolved with nz = 40 uniform grid intervals. The time step of integration is At = 900 s. The
dissipative filter in the polar regions assumes o = & increasing linearly from 0 to 1/86400 s~ over
the four grid intervals near each pole. Also, in lieu of the biharmonic diffusion used in the original
Held-Suarez experiments, we exploit the implicit viscosity of the advection algorithms by employing
the first-order upwind scheme at every 6th time step of the model (cf. Liska and Wendroff 1996) in
both the Eulerian and the semi-Lagrangian simulations.” The particular simulation depicted in Fig. 3
used the massively parallel version® of the Eulerian model algorithm with the standard and linearized
nonoscillatory MPDATA transport schemes for, resi)ectively, ©' and momenta (Smolarkiewicz and
Margolin 1998).

Figure 4 contrasts the complexity of the instantaneous flow in Fig. 3 with the display of the resulting
“climate”, i.e., zonally-averaged th.ree-year means of u and © (with the data from the first 200 days
excluded). This figure corresponds to the results in Figs. 1 and 2 of Held and Suarez (1994). [Note
that their plots are in the o-coordinate.] The agreement of the two solutions is merely qualitative,
which is not necessarily surprising taking into account the substantial differences between the models
employed. Our trade winds and equatorial easterlies aloft are somewhat weaker; but our subpolar
easterlies are more pronounced. Our westerlies are about as strong but shifted somewhat toward
the equator. Although the Held-Suarez original solutions are for the primitive equations, we do not
believe (based on the results of the preceding section) that either hydrostaticity, compressibility, or
simplified Coriolis and metric forces are responsible for the differences observed. Among “physical”
factors, perhaps the Boussinesq linearization of the pressure gradient terms may be important, but
even this seems unlikely in the light of the following results.

We have performed numerous experiments addressing the sensitivity of Held-Suarez climates to var-

ious aspects of the numerical model design. Among these, we have tested sensitivities to the initial and

"Qur semi-Lagrangian remapping procedure is built on nonoscillatory advection transport schemes similar to those
used in the Eulerian model; Smolarkiewicz and Pudykiewicz 1992, Smolarkiewicz and Grell 1992.

8The parallelization strategy adopted in the global model (a single program multiple data, SPMD, message-passing
approach with an explicit 2D horizontal grid decomposition) closely follows that used in the small-scale anelastic model
(Anderson and Smolarkiewicz 1997, Anderson et al.1997), a precursor of the present code.
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Figure 4: The zonally averaged 3-year means of potential temperature (plate a) and zonal velocity
(plate b) for the simulation highlighted in Fig. 3. Contouring convention is similar to that used in
Fig. 3.
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ambient conditions, selected reference state, definition of the o-coordinate in the forcing functions,
spatial and temporal resolution, model depth, strength and spatial extent of polar filters, various
viscosities in the model (in particular, the relative viscosity in the entropy and velocity equa,tioris,
i.e., Prandt] number), flux versus advective (i.e.‘, Bulerian versus semi-Lagrangian) model formula-
tion, and linear z versus mass o (recall §p ~ pdz) vertical cobrd_ina,te representation (the latter has
been achieved by an exponential stretching of the vertical coordinate mimicking o coordinate for the
standard atmosphere with the density scale height of 7 km).

We have found that the tropospheric climate is fairly robust (with details depending both on
the model resolution and characteristics of polar filters), while the stratospheric solutions are quite
sensitive even to fine details of the model design. For instance, the simulation identical to that
summarized in Fig. 4, except using the linearized (a somewhat less viscous) optibn of the MPDATA
advection scheme not only for momenta but for ©' as well, results in weaker equatorial easterlies aloft
and reduced stability of the stratospheric solution manifested by a slow O(year) meridional oscillation.
Also, a similar simulation but using semi-Lagrangian a,dvection,kproduces westerlies whose magnitude
increases monotonically with height (no closed jets). However, both models tend to reproduce the
solution in Fig. 4 when the model depth is doubled and stretched “mass” coordinates are employed
with a vertical gravity-wave absorber activated at the top of the model. Experiments with enhanced
viscosity in the vertical transport terms (a crude convection pararheterization) demonstrate another
strong sensitivity of the solutions. More such examples could be presented.

The picture emerging from our sensitivity Study—consistent 'with some other reported results (Chen
and Bates 1996, Untch et al.1998)—is that the simulated Held-Suarez climates strongly depend on
‘the viscous properties of the numerical models employed, regardless whether those come via explicit
parameterizations or implicit effects of the truncation errors. In our experience, the lesser the viscosity
of the model, the less robust are the climate simulations. The latter .may appear discouraging as it
suggests a need for an LES approach to climate modeling—clearly beyond the reach of the present
computational technology. However, this is a point where nonhydrostatic global models may turn out
to be helpful. Restoring less constrained forms of the Navier-Stokes’ equations allows rescalings of
the global problems that are unattainable in models based on the primitive equations. This opens
new possibilities in climate research and modeling. To illustrate, Fig. 5 compares zonally-averaged
instantaneous zonal winds after 90 days of simulation® on four abstract planets (starting in plate a
with an Earth-like planet from Figs. 3 and 4) whose radius and temporal scales of diabatic forcings
decrease by factor of 10 while the planetary rotation increases at the same ratek to keep the Rossby

number fixed. Thus, the planet in plate d, has a radius 6371.22 m and one day lasts there 86.4 s. The

°In our experience, zonal averages after about 2 months of simulation already give an adequate sense of the long-term
mean climates. ‘
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Figure 5: The zonally averaged instantaneous zonal velocity after 3 months of idealized climate simu-
lations on rescaled planets with Rossby number kept constant. ‘The Earth-like solution (corresponding
to that in Fig. 4) is shown in plate a. Plates b, ¢, and d display the solutions for planets with the
radius 10, 100, and 1000 times smaller, respectively. The contouring convention is the same as in
Fig. 4.

results for the 10 and 100 times smaller planéts already captu:re some of the characteristic features
of the Earth climate. Thus, such rescaled globes could be employed to investigate effect of certain
small- and mesoscale phenomena (e.g., gravity wave breaking, moist convection) on global flows and

ViCE VETS0.

4. SUMMARY REMARKS

In the giobal atmospheric/oceanic modeling community, there is an appafent trend toward replac-
ing the traditional hydrostatic primitive equations with less constrained nonhydrostatic forms of the
Navier-Stokes’ equations (Semmazi et al.1995, Marshall et al.1997, Cullen et al.1997). The few exist-
ing nonhydrostatic global models differ in analytic formulation and numericél design, reflecting their
different purposes and origins. | |

We have extended our Cartesian NFT small-to-mesoscale model (broadly documented in the liter-
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ature) to a mountaineous sphere and, consequently, have dispensed with the traditional geophysical
simplifications of hydrostaticity, gentle terrain slopes, and weak rotation.

The results so far are encouraging: i) our nonhydrostatic global models pres‘erve flow hydrostaticity;
ii) their computational expense is comparable to that of present hydrostatic mo‘dels, and can be greatly
reduced by further acceleration of elliptic solvers. In light of these results, pursuit of the nonhydrostatic
global approach seems well justified—at least in research models—especially in that nonhydrostatic
models are more general, conceptually simpler, and more well posed. i

The present model offers a number of opportunities for further development. Our immediate
plans include extensions to non-Boussinesq compressible forms of the governing equations as well as

incorporating more realistic thermal forcings, subgrid-scale parameterizations, moist processes, etc.
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APPENDIX A GENERALIZED CONJUGATE-RESIDUAL APPROACH

Here we describe the preconditioned GCR(k) algorithm used in this study, special cases of which
are discussed extensively in section 3 of Smolarkieﬁicz and Margolin (1994, hereafter SM94). We
assume a general linear elliptic equation

¥ e (M L0
L(¢)=I§;1W(JZ=10 57+ D ¢>—A¢:R, (A1)
with variable coefficients 4, C!7, DI, R, and either periodic, Dirichlet, or Neumann boundary condi-
tions; and adopt the following notation. The discrete representation of a field on the grid is denoted
by the subscript i; the discrete representation of the elliptic operator on the lhs of (A1) is denoted by
L;(¢); and the inner product (£¢) = > &iGi- The preconditioner P is a linear operator that approxi-
mates £ to a greater or lesser degree f;nd LP~ ! is definite!.

The GCR(k) method of Eisenstat et al.(1983) may be derived via the same variational arguments

as those adopted in SM94 for the CR2 scheme—i.e., GCR(1) with P = Z, where T is the identity

operator. Starting with a kth-order damped oscillation equation

%P (¢) 1 9 1P(¢) 1 9P(9)

ork Tp_1(1) O7F1 tot Ty(r) Ot =L(¢)- R (42)

10 Ap operator A is said to be definite if (€ A(£)) is either strictly positive (positive definite) or strictly negative (negative
definite) for all £.

38



SMOLARKIEWICZ ET AL.: NONHYDROSTATIC MODELING OF GLOBAL FLOWS....

in lieu of Eq. (2) in SM94, and proceeding with the formalism of sections 2 and 3 therein!! leads to

the following algorithm.

For any initial guess ¢?, set 79 = L;i(¢°) — R;, p = P;*(r); then iterate:

For n = 1,2, ...until convergence do

forv=10,.,k—1do

{r”L(p"))
(L)L)’

QYT = Y + Bt

IB:__

it =l +BLiE")
exit if || r*tl|<e,

g =P

M 8 M 1y aq !

(L(9)L(P")
(LEPVL@Y) ’

1/+1__q +Zalp17

1('I‘U+1)

]

Vicop o= —

L") = Li(g) + Y_ ()
) ©l=0
end do ,

reset [¢, 7, p, E(p)ﬂc to [¢, 7, p, E(P)](i) ;

end do .

(A3a)
(A3b)
(A3c)
(A3d)

(A3e)

(43f)

The GCR(k) scheme in (A3a)-(A3j) assumes a negative definite but not necessarily self-adjoint

operator £.'2 Direct evaluation of the elliptic operator on the grid takes place only once per iteration

in (A3f).

117y essence, we discretize the oscillation equation in a pseudo-time 7, form the affine discrete equation for the
progression of the residual errors r, and determine the optimal parameters Ti,..,Tx—1 and integration increment AT

(variable in 7) that assure minimization of the residual errors in the norm defined by the inner product {rr).

12 An operator A is said to be self-adjoint if (£A(¢)) = {¢A(£)) for all £ and (.
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+HGBF+GRY,] (B7h)
c® = RRGBF+4G%Fa+f$+waVa+}@+2GfGﬁﬁfq+
(140726 [~ (G F + G5 G2 + G5 'GP F5) d |
+ (636% 5 + 651 GPF - G5 67) 9,
+ (62 +(6%)) 0] - @7

For 9, = ¥, =9, = 0, the above expressions simplify to those of the explicit model (section 2.2.1).
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