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Abstract: The place of semi-Lagrangian methods in numerical weather prediction is now firmly
established, but there is.a continuing need to improve the numerical efficiency and accuracy of
these methods. We describe a number of computational techniques, appropriate to grid point semi-
Lagrangian models, by which the effectiveness of this approach may be enhanced through the use
of accurate numerical operators applied in computationally efficient ways. :

1. INTRODUCTION

In several operational forecasting centres, the semi-Lagrangian treatment of numerical advection
has been incorporated within the numerical prediction models in order to achieve computational effi-
ciencies that ‘étem from the lohger time steps these methods allowv(e.g., Ritchie et al. 1995). In various
forms, the method has been in existence since the early days of numerical weather prediction (Wiin-
Nielsen 1959, Krishnamurti 1962, Sawyer 1963), but the credit for its recent revival belongs to the late
Dr. André Robert, who provided efficient practical algorithms allowing the semi-Lagrangian method
to be applied very effectively in the context of the primitive meteorological equations (Robert 1981).
He appreciated the fa.ct that, in a semi-implicit model, the time step (and hence, to a certain extent,
the numerical efficiency) is restricted by the Courant-Friedrichs-Lewy (CFL) condition for advection,
and that this restriction could be lifted by combining the semi-implicit treatment of the fast “gravity
waves” with a semi-Lagrangian treatment of advection. Liberation from the conventional CFL restric-
tion and the conSeqtient gain of longer time steps do not come without some costs, since the spatial
interpolations required at each time step can be expensive and the temporal truncation errors incurred
by using larger time intervals in the integration can significantly exceed the corresponding truncation
errors of a comparable Fulerian model. It is also much more difficult to preserve conservation prop-
erties in a semi-Lagrangian model. A recent critique of the cost-effectiveness of the semi-Lagrangian
method is given in Bartello and Thomas (1996). Here we present some recently developed numerical
techniques that may help towards the goal of making a formally accurate semi-Lagrangian model
computationally efficient.

Section 2 will discuss the construction of spatially implicit‘ “compact” schemes of spatial differ-
encing which, for a given order of accuracy on a moderately regular grid, achieve remarkably low
coefficients of principal truncation error. For evaluations of the derivative staggered with respect to
the source data, it emerges that the numerical differentiation is exactly invertible. This property,
which remains valid at an arbitrary order of accuracy, can be exploited within a grid-to-grid interpola-
tion scheme of “cascade” form (Purser and Leslie 1991) to ensure, in addition to accuracy, the formal

conservation of advected scalar quantities (Purser and Leslie 1995). A descripﬁion of this method is
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given in section 3. The cascade method, unlike other multi-dimensional grid-to-grid interpolators, is
not severely handicapped by the source grid being smoothly distorted, as occurs when downstream,
or “forward” trajectories are used (Purser and Leslie 1994). In some ways, it is advantageous to adopt
this approach instead of the more conventional semi-Lagrangian approach which uses upstream trajec-
tories. With this form it is often easier to incorporate high-order methods of time integration in order
to keep the time truncation errors under control, and it is possible to adopt the second-derivative (in
time) combination of kinematic and momentum equations for the trajectories themselves. This second
derivative form is not only a more economical expression of the trajectory computations; it offers scope
for the application of new classes of semi-implicit time integration methods with advantageous char-
acteristics of truncatio.n error and robustness, as we discuss in section 4 Section 5 describes the use
of stereographic frames for the representation of trajectory displacements, which eliminates the need
to execute explicitly any trigonometric functions in the course of the integration of a semi-Lagrangian

model on the surface of the sphere. Conclusions are presented in section 6.

2. COMPACT DIFFERENCING AND QUADRATURE

If we wish to obtain a high order of acéuracy for the finite differencing on a regular grid, the
most obvious, explicit, centred scheme is not the most accurate one for a given expenditure of work.
We shall describe the construction of so-called “Padé” or “compact schemes” for accurate finite-
differencing and discuss how these methods may be exploited within a one-dimensional interpolator
to obtain an automatic conservation of the quantity being interpolated. The examples will assume
that the grids are uniform in their spacing (relative to the appropriate coordinate) and only centred

templates are considered.

2.1 Explicit and compact differencing with unstaggered grids.

When we derive the conventional centred unstaggered fourth-order differencing operator for a

uniform grid, z; = i6, we seek weights, Bj, with j € [-2, 2] such that, for a smooth function c,

de

d’i = Z BJ'CH_J' = -c—i-:; ] + 0(54) : (2.1)
j i

One practical way to obtain the weights, Bj, is to require that the scheme be exact for as many as
possible of the first few test functions, c(z) that comprise the successive powers of (z — z;)/6. In

Vandermonde matrix form,

1, 1, 1, 1, 1 B_36 | 0
-2, -1, 0, 1, 2 B_16 1
4, 1, 0, 1, 4 By |=1]0 (2.2)
-8, -1, 0, 1, 8 Byé 0
| 16, 1, 0, 1, 16 || Bas | | O]
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The solution, written as a vector, B = (1, —8, 0, 8, —1)T(1/(124), does not produce the exact result

when applied to the nezt test function, c(z) = (z — z;)5/6, in the series. Instead,

5
(—32,—-1,0,1,32) - B=—4/6 = (gﬁ) g4, (2.3)
where,
1
6(4) = —’3-6, (24)

is the principal coefficient of fourth-order truncation error, characteristic of this scheme.

Suppose that, along an indefinitely long line of a uniform grid, we adopt an alternative scheme,
J g

with j € [-1,1] and j' € [-1,1]. As before, we should seek coefficients which produce the exact result .
for as high a degree of generic polynomial as possible. The normalisation of weights A and B is
arbitrary, but it is convenient to choose to make the sum of the A; equal to unity. The requisite

constraints, in matrix form, can be written this time in generalised Vandermonde form as:

"1, 1, 1;, 0, 0 O0][] 417 [1]
0, 0, 0; —1, —1, —1 Ag 0
1, 1, 1, 1, 0, -1 A | _ |0 | (26)
-2, 0, 2 -1, 0, -1 B_14 0
3, 0, 3 1, 0, -1 Byd 0
| —4, 0, 4 -1, 0, -1 || Bis | [0]

and the solution for this, perhaps the best known and most often used compact scheme in meteoro-

logical applications (e.g., Navon and Villiers 1987), is the pair,

A =(1,4,1T(/6), | (2.7)
B =(-1,0,1)T(1/26). ; . - (2.8)

We apply —1/¢ times the “next” rowv‘of the matrix in order to obtain the principal coefficient of

truncation error:

S :
—(5,0,5)-A/6 — (1,0, —1)- B = —% = <%> e gt (2.9)

where,
1

e = 55 , (2.10)
a six-fold reduction compared to the explicit formula.

At higher orders of accuracy, the replacement of one wide B-stencil by the two compact A- and
B-stencils is even more advantageous in terms of the reduction of truncation error. Let a and b be
the (integer) half-widths of the stencils A and B respectively, in grid space units, of a general scheme
constructed according to the principles outlined above. Such a scheme has a formal order of accuracy of

2a + 2b. In this notation, the ordinary explicit fourth-order scheme is denoted (0, 2), our fourth-order
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compact scheme is (1,1), and so on. Figure 1 is a log-log depiction of the relative truncation errors
(absolute error divided by magnitude of true value) for a sine wave, plotted against the wavenumber.
For a given order of accuracy, the most accurate scheme in the long-wave limit is, in each case, one of

those possessing the most compact possible combination of templates.
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Figure 1. Log-log plot of the relative truncation error of unstaggered centred stencil differencing schemes as a function
of the wavenumber of the sine-wave to which they are applied. ,

In order to solve for the derivative, d, using a compact scheme it is necessary to invert a linear
system with a banded matrix A whose rows are each a copy of the vector A pertaining (in the case
where the grid is no longer uniform) to the location that corresponds to that row’s index. In the
fourth-order example, the matrix A is tridiagonal. Inverting the linear system involving A each time

“from scratch” is inefficient; instead, we “preprocess” by factorising A:,
LDU=A (2.11)

where L and U are lower and upper triangular band ‘matrices with unit main diagonals, and D is
purely diagonal. From B, the band matrix whose rows are the vectors B of this compact scheme, we

create the similarly shaped B:
B=D"'B ' (2.12)

and define
i =D"LD, (2.13)
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which, like L, is a lower band matrix with unit main diagonal elements. Now the computational

procedure for finding d from ¢ can be summarised:

e =Bgc, (2.14)
Lf =e, ' (2.15)
Ud =7, . (2.16)

where the two last steps are recursive back-substitutions. The labour involved (not counting the
manipulations done beforehand to get L, U and E) is equivalent to that required to compute the line

of derivatives at the same order of accuracy by the corresponding explicit scheme.

2.2 Invertible differencing and quadrature with staggered grids

The formal numerical relationship in (2.5) between the derivative d and the corresponing “cumu-
lative” ¢ is more symmetrical than in the case of conventional differencing. Can we invert the roles
of target and source data in the compact schemes in order to obtain the integrals ¢ from d instead of
obtaining derivatives d from ¢? With the unstaggered (either conventional or compact) schemes de-
scribed above, the practical answer is no; the matrix B is never well-conditioned to inversion because,
in the ideal generalisation of a grid extending both ways forever, the vector, c=(...,1,-1,1,-1,...)
is a null-eigenvector of B. For a finite grid, the problem recurs as one of ill-conditioning for structures
close to being “two-grid-length”. In order to obtain well-conditioned invertible differencing formulae,
whether conventional or compact, we must stagger the grid for the derivatives d with respect to the
grid for the cumulative values ¢. Let the bandwidth parameter a be defined as before but, to keep
parameter b an integer for the centred stencils B (containing an even number of active elements in
each row) of the staggered grid, let b now be half this number of active elements of the generic row.
For example, the fourth-order compact scheme, “(1, 1)”, for the staggered grids of uniform spacing, 4,

has coeflicients,

A =(1,22,1)T /24, ‘ (2.17)
B =(-1/61/8T. - ‘ (2.18)

For this, and other staggered schemes, a two-grid wave is no longer a null-eigenvector of the
matrix B (the dot-product of a vector of alternating values with the vector of coefficients, B, is now
finite). The staggered schemes have one fewer coefficients than their unstaggered counterparts; it
would seem, at first, that one would attain one less than the desired order of accuracy using the
Vandermonde matrix technique. However, on a uniform grid, the symmetries about the centre of the
stencil conspire to make the solution coefficients A and B exact also for what would be the “next”
row of the generalised Vandermonde matrix, thereby securing the order of accuracy desired. Figure 2
depicts the log-log plots of relative truncation error for the first few possible staggered schemes on a
uniform grid. As before, the most compact combined stencil gives the most accurate scheme at each

order. One crucial property of the staggered-grid schemes that we can exploit in a semi-Lagrangian "
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Figure 2. Same as figure 1 but for centred schemes with derivatives staggered with respect to the original data.

model is that, transforming from d to ¢, we incur no loss of information; the inverse operator is always
available to recover the data in its original form. How this is used in practice is the subject of the

next section.

3. CONSERVATIVE CASCADE INTERPOLATION USING COMPACT SCHEMES

3.1 Basic cascade

The “cascade” method breaks down the problem of semi-Lagrangian grid-to-grid interpolation into
a separate stage for each dimension involved; at a given stage, only along the lines corresponding to
the “active” dimension do the data explicitly interact with one-another. Let us denote the grid values
of X, Y, and Z, by the sets, {X}, {f’}, {Z}, and assume the full grid to be the Cartesian product of
these. In the cascade method’s simplest form, proposed by Purser and Leslie (1991), the interpolation
of some variable, 1, from a grid {X' Y, Z} to a topologically similar, but relatively distorted, grid,
{Z, 4, 2}, is not delivered piece-meal, one target value at a time (which is the more obvious and
conventional procedure), but is delivered whole-sale as the culmination of an orderly sequence (the

“cascade”) stratified by the space dimensions:

$(X,V,2) =Y, 2), (3.1)
%(3,Y,2) —9(E9,2), - (32)
$(2,9,2) —P(E,9,2). (3.3)



PURSER, R.J.: EFFICIENT HIGH-ORDER SEMI-LAGRANGIAN ...

The first stage requires us to know (or discover) the coordinate X of each of the intersections that
form the grid (&, Y, Z). For example, if (X, ¥, Z) are the Lagrangian grid intersections of a forward-
trajectory model, and we know the z, y and z coordinates of these trajectory end points (from the
time integration of the dynamics), then a one-dimensional “Newton” iteration at each intersection
will suffice to locate all the requisite coodinates, X (%, Y, Z) The first stage of the cascade would
interpolate, not only 1), but also y and z. This makes y(Z, v,z ) available at the second stage, from
which, again by Newton iterations, the values of Y (%, , Z) may then be found. At the second cascade
stage, z(%, Y, Z) is interpolated to 2(2,9, Z), and (2, ¥, Z) is similarly 1nterpolated to 1/)( ,y, Z) so
that, in preparation for the final stage, Z (%, 4, ) may be found.

It is an important feature of the cascade method that interpolation from a Lagrangian (distorted)
grid to the regular Eulerian grid is practically as easy as the converse. Therefore, there remains no
impediment to using forward (downstream) trajectories. Janjié (1995) argues that it is physically more
justifiable to adopt the downstream choice of semi-Lagrangian construction, but there are practical
advantageous also, one of which, the ability to adopt the second-derivative form of the momentum
equations, is discussed in section 4. Formally, the solution obtained by treating the z-direction before
the y-direction in the interpolation would differ from that obtained by reversing the order. Although
experiments to examine this difference have not been carried out, the direct comparison of the cascade
interpolation with results from a Cartesian product of conventional Lagrange polynomial interpolators

show the differences to be negligible.

3.2 Incorporating conservatlon

Although at high-order, NV, the cascade method is more efficient than the Cartesian-product in-
terpolation (by which each target is surrounded by a roughly centred box of N x N x N source grid
points), it does not automatically guarantee that the variable interpolated is conserved in any formal
sense. However, there are ways to conserve mass and tracers within the cascade by incorporating
techniques originally designed for a single dimension (e.g., Emde 1992; Harten et al. 1987). These
are probably more satisfactory than a. posteriori interventions to restore Conservatidn in response to
a monitoring of global diagnostics (Navon and de Villiers 1987; Priestley 1993; Gravel and Staniforth
1994) where there is no guarantee that the restoration occurs at the appropriate places. One example
of the use of the cascade procedure to achieve conservation was the adaptation by Ranéié (1995) of
the piece-wise parabolic method (PPM) of Colella and Woodward (1984), Carpenter et al. (1990).
Another method allowing generalisation to any formal order of accuracy, was prbposed by Leslie
and Purser (1995) and uses the invertible (staggered) compact schemes we described in the prev1ous
section. We shall give an outline of this method.

For an extensive quantity, M, (such as mass), we define the corrésponding intensive variable, 1,
which is essentially a form of density, to be the “M”-per-coordinate-volume. We express this quantity
by generalising the notation for Jacobians:

oM

YYD = s vy

(3.4)
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Let us denote the staggered grids which, for bounded coordinate domains, extend half a grid space
beyond each end of the original grid, by {X'}, {¥"}, {Z'}. Suppose we now integrate ¥(X, ¥, Z) with
respect to X along all the grid lines, {f’, A }, of constant Y and Z, to the set of staggered locations,
{f( "1, using the inverse of one of the staggered (and therefore invertible) compact differencing schemes
of the previous section. The interpolation that follows is of this field of partial integrals, which it is

convenient to denote, ”
oM X' oM

—— = ———dX 3.5
a(Y, Z) {XI’)‘},Z} B(X, Y, Z) ( )

{v,z} :
At this point, the cascade proceeds by interpolating, not 7 itself, but its partial integral given by (3.5)
above, and the target grid is similarly staggered, but in z: '

oM |, oM
(Y, Z)

— 3.6
iy O, 2 4( )

In the simplest case of a bounded domain with rigid end walls, the interpolated quantity at the two

{&.,V,7)

ends of the domain are unchanged; their difference along a given line of {Y, Z} is the conserved total
contribution, M /8(Y, Z), along this line to the domain integral,

M=//agzﬂYﬂ, | wﬂ

of the substance. We differentiate these partial integrals, along the same grid lines, but now with

oM o oM
5&,Y,Z) s (o Z)>(f,,z) ' (39)

This completes the first stage of the three-stage conservative cascade. The remaining two stages

respect to z instead of X:

are similar. Figure 3 shows a schematic progression of the conserving cascade in the case of two

dimensions.

3.3 Remarks.

The conserving cascade is obviously more complicated and typically a little more than two times
more expensive to apply than the simplest non-conserving cascade of equivalent order or accuracy.
However, when mass is one of the conserved variables treated in this way, aﬁ additional bonus is that
the vertical motion in a hydrostatic model is ob‘tained‘automatically. This aspect is discussed in detail
in Leslie and Purser (1995).

A limitation of the cascade procedure we have described is that, in its simplest forms, it is not
applicable to points close to the polar coordinate singulariries. It is probably this, more than anything
else, that has hindered the application of the cascade method to global models. Modifications of the
original nonconserving cascade (Nair et al. 1999) seem better able to cope with these problems. An
approach being taken at NCEP is to retain the latitude-longitude-based grid away from the poles and
to employ a stereographic cartesian “patch” centred over each polar region. Computations carried
out within one of these patches are then immune to singularity problems and the computed results at
each time step (or more frequently, if required) can be matched and smoothly blended with the stan-

dard grid’s solution at the outer regions of the patch where the two separate computational domains
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Figure 3. Schematic representation of the successive stages of the conserving casade in two dimensions. Starting at (a)
with the coordinate-density of the substance, M, at all the intersections of the solid grid lines,this density is integrated

in X to the X' grid (b). These partial integrals are interpolated to the semi-staggered hybrid (2, ¥)-grid (c), then

differentiate with respect to = at the (£, ¥')-grid (d) to complete the first stage of the cascade. The panels, (e), (f), (g)
illustrate corresponding steps making up the second stage of this cascade, and are the y-direction counterparts to the
steps shown in (b), (c), and (d).

overlap. A somewhat similar technique is applicable to the overlaps between quasi-rectangular com-
putational sub-domains when the data of a large horizontal domain are dispersed across processors of
a massively parallel computer. Tests at NCEP indicate that no significant spurious numerical artifacts
are introduced into the evolving solution using this technique, providing the blending of alternative
solutions is carried out in a progressive, smooth, way across a sufficient breadth of overlap. While,
formally, the blending of independently derived solutions invalidates the claim of exact conservation,
in practice, such errors are hard to detect. The relative extents of the polar and intermediate domains
are somewhat arbitrary; some investigation is needed to locate the optimal latitudes for the transition
zones, although the present approach places these as close to the poles as possible, in order to reduce

the amount of computations required to deal with the blended overlaps.

4. SECOND DERIVATIVE KINEMATICS/MOMENTUM

In a conventional model the horizontal equations on a Cartesian grid might be written,

du
E—fv = [y, (4.1)
dv
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where Fy and F, are components of the pressure gradient and frictional force in the horizontal. For a

semi-Lagrangian model, we would invoke the kinematic equations,

dx : ‘ .
?l-t— = U, ) ‘ (43)
dy _

E = v, . (44)

to integrate the trajectories. In Purser and Leslie (1994) the ability of the cascade interpolation method
to handle forward trajectories was put to use in a model that integrated the above momentum and
kinematic equations using the third-order Adams-Bashforth scheme, whose attractive properties for
numerical models was earlier noted by Durran (1991). Although it is a well known method, we observe
that the application of generalised Vaadermonde systems, similar to those used in section 2, is one

way to derive its coefficients formally:

. 1,1, 0, 0][ A 1
0, 0, 0 -1, -1|]| A 0
, 1, 1, 0, -1 Ay |=]0], (4.5)
—4, -2, 0, 0, —1 || Bodt 0
| 12, 3,0, 0 -1][Bidt] [0]

for the scheme written in generic notation, using (4.3) as an example with 7 as the time step index,
4t the time interval: o o '
g — 27 = (Agu” + Aju! + A_pu"?)ét, (4.6)

The weights of this scheme, solving (4.5), are Ag=23/12, A_; = —16/12 and A_g=>5/12. Table 1
contains the weights of this and other Adams-Bashforth schemes, together with their coefficients of

principal truncation error.

TABLE 1. THE CLASSICAL ADAMS-BASHFORTH SCHEMES.

Order 1 ndo nA-; 7nd_2 A3 Nl €
1 1 1 3
2 2 3 -1 o
3 12 23 -16 5 2
4 24 55  -59 37 -9 2
5 720 1901 -2774 2616 -1274 251 g

The enhanced accuracy of schemes of this type is bought at the price of rather substantial storage
requirements — essentially four fields of storage for each prognostic equation treated this way in the
case of the third-order scheme. This cost may be reduced by combining the momentum and kinematic

equations, making a pair of what we refer to as the “second-derivative” form of trajectory equations:

dz dy

2 T T Fy, (4.7)
d%y dz .

d—tz— + fzt‘ = Fy. (4.8)
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In the absence of the Coriolis terms, these equations become separate and may be handled by a gener-
alisation of the Adams-Bashforth family of schemes given by Stérmer (1907). Again, the generalised
Vandermonde matrix technique can be used to find the coefficients. In the Stormer schemes obtained
for vanishing Coriolis, the three weights, By, By, B_1, for 27+, 2™ and 27!, respectively, are 1 /882,
~2/6t%, 1/6t%. The weights for forcing terms, Fy, and the principal error coefficients for these schemes
are listed in table 2. The further generalisation of these second-derivative schemes to incorporate the
Coriolis force in a fully implicit way was described by Purser and Leslie (1996) and was based on the

fact that the pair, (4.7), (4.8), may be combined as a single complez equation,
, 2,

Ldx '

where x = z + iy relative to a local Cartesian frame, and F = F; + iF,. Once again, it is possible to use
the generalised Vandermonde matrix technique, but the evaluations mﬁst be repeated for each of the
standard latitudes where the moment um/kinematic equations are to be appliéd, since the matrix itself
is a function of the Coriolis parameter. For e‘xample, in the simplest “generalised Adams-Bashforth”

scheme, GAB1, we may write the Vandermonde system,

1, 0, 0 0 Ap

0; -1, —1, -1 B_;4t?
ifét; 1, 0, —1 By6t?

9 —1, 0, —1] | Bt

, | (4.10)

O O O =

To obtain the weights, Ag =1, By =1/6t® —if/dt, By = —2/6t%, By = 1/6t? 4 if /6t. The higher or-
der schemes of the same family are obtained by adding earlier forcing terms F' and their corresponding
weights B in a Vandermonde system with enough rows (based on the successive test functions of the

for‘r‘n X = 7P) to make the matrix square.

TABLE 2. THE STORMER SCHEMES.

™

Order 7 A0 7A-1 pA_g '77A_3 nA_y

2 1 1 0 5
3 12 13 -2 1 55
4 12 14 -5 4 -1 =
5 240 299  -176 194  -96 LT

S
o

An essential practical requirement of a time integration scheme used in a semi-Lagrangian model is
that it can be made semi-implicit, at least for the fastest gravity waves (including the external modified
“Lamb” wave, which propagates at sonic speed). It is not necessary, indeed, it may be undesirable,
to treat all internal gravity waves implicitly because the higher internal modes cannot objectively be
disentangled from what we should regard as “meteorological” structures and an attempt to treat them
implicitly would usually degrade the accuracy of their representatioh. Following Burridge (1975), we
recommend that only the very deepest vertical gravity modes be projected out for implicit handling.

Each vertical mode can then be associated with a (linearised) equivalent shallow-water system and the
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adjustment field derived for the solution of a Helmholtz equation in only the horizontal dimensions.
This is considerably more efficient, in a grid point model, than attempting to solve for all the vertical
modes’ adjustment terms. In the case of the generalised Adams-Bashforth schemes, it is possible to
organise the calculations in a way that makes the application of the sémi—implicit machinery a little
more streamlined, as discussed in Purser and Leslie (1996), but a straightforward modal projection
should also suffice.

Another class of time integration schemes for the second-derivative trajectory equations, are the
“seneralised Lorenz N-cycle” schemes introduced by Purser and Leslie (1997) (a variant of the Runge-
Kutta-style N-cycle schemes of Lorenz 1971). The goal of these schemes was to obtain a higher formal
accuracy in time without incurring an additional storage burden. For purely linear equations, it
was possible to find fourth-order in time schemes, but to do so required one of the cycle of N time
steps to be negative. The fourth-order of accuracy did not carry over to the nonlinear aspects of the
dynamics, so it remains questionable whether such schemes would sufficiently justify the significant

| practical inconvenience in a full-physics model of having to deal with the negative time step. Even
without going to the trouble of accommodating higher-order time integration, employing the second-
derivative form of momentum and kinematics with only the simplest vsy‘mmetric time discretization in
this framework results in inherently smaller time truncation and greater numerical robustness. While
in the idealised experiments of Purser and Leslie (1996, 1997) the higher-order time schemes were
slightly beneficial (but more costly to apply) the question of whether it is worthwhile to exploit these
methods in a given forecasting of simulation application needs to be re-examined, and the potential

advantages balanced against the additional cost and complexity, in each particular context.

5. STEREOGRAPHIC REPRESENTATIONS OF TRAJECTORIES

Polar stereographic frames The numerical description of trajectory displacements in a global semi-
Lagrangian model requires some care if this description is to be sufficiently general to apply at all points
and to be capable of computationally efficient implementation. It is convenient, in using the second-
derivative kinematics/momentum equations, if the coordinates used to describe a local trajectory
do not require the introduction of additional terms (a “fictitious force”) to correct for the intrinsic
curvature of these coordinates; this condition is satisfied if locally cartesian horizontal coordinates
are employed, centred on the trajectory’s associated Eulerian grid point. It is also desirable that the
displacements be expressed in a way that facilitates their spatial interpolatioh, which the cascade
procedure requires; this requires that it be relatively straightforward to transform from one local
frame to another, usually nearby one. While there are various choices satisfying these requirements, a
particularly useful convention is to use local stereographic frames. As we shall find below, once all the
trajectory information is expressed in terms of stereographic map displacements, the need for carrying
out any explicit trigonometric computat‘ions in the course of the semi-Lagrangian computations is
completely avoided. This is another way in which the computational cost of impleménting a global

semi-Lagrangian model may be minimised.
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5.1 Polar stereographic frames.

Let cartesian coordinates E = (F1, Eq, E3) be defined, with respect to which the earth is a unit
sphere centered at the origin. Orient the systeni such that the South and North poles are at S =
(0,0,—-1) and N = (0,0, 1) and the prime meridian has E; >0 and E; =0. Identify the standard
north-polar stereographic map coordinates (z,y) of the generic point E as the values such that the
point (z,y, 0) is the intersection of the equatorial plane with the segment SE. As we see from fig. 4,
if r?=12 +y? and R? = E? + EZ, we find R=r/m for m=1/(1 + E3) and r = tan(¢/2), where ¢ is
the co-latitude of E. Since R? 4+ E3 =1,

(1+Bs)'r? =1 B}, : (5.1)

hence,

(5.2)

Figure 4. Construction of the polar stereographic mapping.

Therefore, we convert Cartesians, (Fy, E», E3) to polar stereographic coordinates, (z, y) using,

g = mEy, (5.3)
y = mE2a
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and convert polar stereographics to Cartesians using (5.2) followed by,

E; = z/m, ‘,
B, = y/m, (54)
Ey = (l—m)/'m.

Now, taking partials:

OE; |0z, 6E’1/6y 1/m~—E%, —E1Fy
BEQ/BSL', BEQ/By = | —EyEn, 1/m - E% (5.5)
0E3/8x, OFE3/0y —Ey/m, —Ea/m
we can verify that,
" 2}_?'_ . ?.]2 = __1_5..
6.’1:-5 a:l)j - m2 h
JE
— . E=0.
a.'L‘i 0

The mapping is therefore conformal with map scale factor m.
A convenient algebraic representation of the stereographic coordinates of the point E is the complex

number Ey = (z,y) = z + iy. Its reciprocal,
Es=1/En

is then the corresponding south-polar stereographic representation of the same point with, again, the
prime meridian forming the positive real axis. The conformal property is preserved under compositions

by complex analytic functions — a property we exploit below in defining “local” stereographic frames.

5.2 Local stereographic frames..

The local stereographic (LS) frame, with projection “pole” at the location on the trajectory where
the acceleration is required, will permit this acceleration to be estimated by temporal finite differencing
without the need for any compensating calculations of the coordinate frame’s intrinsic curvature. But
using local frames in this way presupposes that we be able to transform among them with ease. Here,
we review some algebraic machinery to accomplish this.

It is convenient that the North pole be placed on the negative real axis of each local stereographic
complex plane. Then the label of the point at the projection pole may be used also to label this
local stereographic frame unambiguously. Let A be a non- polar point on the prime meridian with
complex representation Ay relative to the frame at the North pdle. From the relationship between
A’s co-latatitude and the radial distance of its image in the polar stereographic map , and using the
standard formula for tangents of the sums or the differences of angles, we deduce that another point B
on the prime meridian with polar stereographic representation By must have a representation relative

to frame A of
By — An

BA:I—}-BNAN'

(5.6)
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We argue that, by virtue of the transitive property of conformality, under complex analytic functions,
the formula above must remain true also for B not on the prime meridian, since this formula is
manifestly analytic and therefore already respects the conformal mapping property we require. When,
in addition, the longitude A4 of A is also nonzero, it is easily shown (by applying to all points the
rotation required to bring the longitude of A back to zero) that the appropriate generalization of the
transformation formula is, r A

Note that the pole (Ny = 0) is itself transformed to
Ni=—|An]. | | (5.8)

Conversely, if the loca.tlon of the pole, N4 < 0 and that of B B A, are both grven relative to the
frame of A, we may convert to the polar stereographlc image, By, by:

BA Ny

L2 it : S 5.
T+ BN, o (5.9)

N:

We can comblne these formulae to produce the transformation between any pair of LS frames. However,
when transformmg representatlons of C between frames A and B, where A, B, C are all closer to
each other than any one of them is to the pole, N, a smaller roundoff error is expected by employing
a more direct transformation which avoids the errors incurred by subtracting pairs of reletively large,
almost equal, magnitudes to extract a much smaller residual. The more direct formula possible when

the position of B is known relative to A is:

Cys— By A V
C = — 3 510
e A - 6o
where ‘ ,
gap = 1AB) : (6.11)

for some angle 7(A, B), an antisymmetric real-valued function of the two locations A and B. For an

interpretation of -y observe that, applying (5.10) to transform A itself, we obtain,
A= _BAEAB (5.12)

and therefore, the rotation factor € 4p simply represents the relative change in orientation of fhe frames
A and B (for example, compared to the geodesic “great circle” that joins them). Observe also that,
by differentiating (5.10), if 6C4 is an infinitesimal displacement at A, its representation in frame B
becomes,

6Cp = (1+BaB})dCacp. | - (5.18)

To define algebraically the rotation factor £45, observe that the pole must transform by (5.10) to

~|Bx| = - (“ﬁl'fmig‘z)eiv (5.14)

give
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If | By| is not already known, it can be determined from

|An|+ Ba

By|=|12Mt D4
[Bwl 1—-|An|Ba

(5.15)

and hence,
[An|+Ba
(1 |[An|By
TIAn[+Ba |
1-|An|B3

i

(5.16)

However, in practical calculations, we shall see in the next subsection that there are better computa-
tional methods when A, B and C are close together relative to the scale of the earth, as is the case in

computations involving short-duration atmospheric trajectories.

5.3 - Application of stereographic transformations to trajectories.

We consider the case where the standard computational grid is of latitude-longitude type and
one point, A, of this grid is used to define thé local stereographic frame. The associated Lagrangian
trajectory, also nominally labeled by A and passing through or very close to this Eulerian grid point,
is, at some future point B, given by its complex representation relative to A: By = z +1y. In the
forward-trajectory semi—LagTangiah model using cascade interpolation (for example, sée Leslie and
Pufser 1995) we are now faced with several tasks. We shall asume that the order in which the
mterpolatlons are carried out is: first latxtude (v); then longltude (z). ’

First, we need to deduce from the fixed polar stereographic posmon AN ,. of A a,nd froym B, the
relative latitude (or some function of it) of B. Then we are in a posmon to accomphsh the ﬁrst stage
of the cascade interpolation by locating the hybrid grid targets, which consist of the mtersectxons of
the discrete Lagrangian longitudes with the standard Eulerian latitudes. Second, in order to convert
the coordinates of some third point C, or to compare vectors ‘by parallel-transport between 4 and B
we shall need to compute the rotation factor e4p between the two frames as defined in the previous
subsection. Third, we need to computé the relative displacement of (Eulerian) longitude (or some
function of it) at the new hydrid grid points. As always, we shall avoid explicitly invoking any
trigonometric functions in the actual calculations, for reasons of computational efficiency. This means
that, instead of using or computing any angles directly, we shall arrange ali calculations in terms of
the sines, cosines or tangents of the angles. Thus, for our first goal, we aim to compute the tangent of
half the latitude displacement of B from A. ’ v

For convenience, let us measure longitude from the meridian through A and abbreviate Ay by 4,

By by B. Thus, our first objective is to evaluate,

&Y= — (%) =_ (%) , (5.17)

but in a way that does not explicitly require us to subtract A from |B|. Writing,

By = (z,y), (5.18)
D = 1-A*By=(1- Az, —Ay), (5.19)
E = 14 B4/|Al=(1+z/A,1y/A). (5.20)
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we note that

T—AB,~ D (521)
We assume we have precomputed, \
1-4
F=. (5.22)
From By, we get,
r’ =1’ +1y° = B4B}, (5.23)
hence the “map factor” at B relative to A (or vice-versa),
_1+4r* 1+ BsB}
== 5 , (5.24)
and the quantity,
F—z
Cp== 2
p=— (5.25)
Then we find that,
E
p 2
|ID] = A [2m(1 + Z)] , (5.26)
1 , 1
Bl = = [2m(1-4p)7, (5.27)
and, since, , ‘ ;
B| - |D| |
v (_IBl=IDl } 5.28
| ) (0:2)
multiplying top and bottom by |E| + |D| and simplifying leads to:
y_ _—9 | 5.29
=L, (5.29)
where: ,
g=2z+pr?, (5.30)
and
H =./(1+ pg). , : (5.31)

(Algebraically, g =2F — p, but the definition (5.30) is better for minimizing round-off ). Note that,
upon interchanging A and —1/A, we interchange D and E while leaving F and £¥ unchanged.

In the previous subsection we showed how the application of the transformation equation (5.10)
to the pole led to a calculation of the rotation factor, £45. Applying (5.16) where B is expressed as
in (5.21) we find that

(&%) _imp)

EAB = IBI = ED,
2mH )
= —— ' 5.32
ZD (5.32)
But, ED
14 , 5.33
5 =1+pBa4 (5.33)
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hence,

__H
14 pBa
There remains the task of computing at B a function of the longitudinal displacement relative-to

EAB (5.34)

A. Let ® and & denote the real and imaginary components of the complex argument. As before, we

choose for the angle’s function the tangent of the half-angle:

S(B)
T = 5.35
AR (5:39)
with A e
+
|Bf = 1= Adv (5.36)
But an alternative approach is to use,
te +1ip
T &
=1 (5.37)
where
S(eap)
t — 5.38
€ 1+ R(eanB) ( )
_ S(D) _ -4y
b = RD)T1-4z (5:39)

which avoids ever evaluating |B| itself.

Tt might be helpful here to summarize these calculations. Assume we begin with the local stere-
ographic components of the displacement B4. We compute 72 and the map-factor m. Using the
precomputed table of F to look up its value at the standard grid latitude of A we form p, g and H
using (5.25), (5.30) and (5.31). We obtain &Y from (5.29), e4p from (5.34). Then, using (5.38) and
(5.39) to get t. and tp, we complete these manipulations by applying (5.37) to get £°.

Analogous methods can be used for the two regions of the globe covered by the cartesian dis-
cretizations of the two polar stereographic projections, the so-called “polar patches” discussed at the
'end of section 3. However, in this case the orientations of the LS frames, to line up with the local

"grid, are chosen to be parallel (along the meridian) to the standard polar stereographic frame. The

transformation (5.7) simplifies to,
‘ B-—A

- The grid lines in the polar patch delineate the real and imaginary components of the complex polar

By (5.40)

stereographic representation of the geographical points; these lines therefore form a pair of families of
circles on the sphere, each family intersecting tangentially at the opposite pole.

Appropriate increments, ¢* and €Y, in this case are

€ =R(B — A) =R(Ba/D)(1 + AL), | (5.41)
&Y =%(B — A) =3(Ba/D)(1 + A4*), (5.42)

where, as in (5.19),
D=1-—ByA*, (5.43)
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The transformation of a third point, C, from frame A to frame B now conforms to (5.10), but with
the rotation factor, D
EAB = 5‘ ’ (5'44)

Thus, the case of the polar stereographic grid is actually easier to deal with.

5.4 Kinematics in a stereographic frame.

Since the map factor m at the origin of a stereographic frame 4 is 1 /2, the instantaneous velocity

u,4 and acceration (= specific force) F4 of a particle at the origin are
Ua= 2C’AIC=A, | (5.45)

Fy =2C4|c=a, v , © (5.46)

where we extend the cdmplex number representation to these two derivatives. In order to quantify
the effect, on the image of the particle trajectory, of the intrinsic map curvature at a ‘generic point,

we differentiate (5.10), assuming Cy to be a function of time:

(1+BaB3) 4 ' '
-——-—(1+CAB:1)QCAEAB, . ; (5.47)
(1+BaBj) 4 2B3(1+ BaBj) 2
(1+CABZ)20AEAB-— L+ CaBs) CaeaB. (5.48)

Cs

Cp =
Thus, recalling that the map factor m = (1 + B4B})/2
dBlC:A =Ugpm=Ugmep, . (5.49)

C;BIC'=A = (FB -+ ng)m = FAmE_AB + 2632A§/2m, (5.50) _

where the “fictitious’ force, Fz, owes entirely to the intrinsic curvature of the coordinates. Combining

(5.49) and (5.50), this complex representation of the fictitious force is given by,
Fp=UgAy. (5.51)

We can also express this result using vector notation. Use Ap =z + iy, Up = u + v to define vectors
x = (z,y) and U = (u, v). Then, expanding the components of (5.51) we find that the vector form F’

of the fictitious force is expressible:

F = —x(U.U)+2U(xU),
= kxUlk-(xxU)] + U(xU). . (5.52)
where
kxU = (—v,u), | (5.53)
k-(xxU) = (zv—yu). (5.54)

If, for x, we substitute the quantity, V(logm), in (5.52), we obtain the corresponding expressions for

the fictitious force valid in any conformal mapping framework.
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The fictitious force increases linearly with displacement from the stereographic map origin and is
quadratic in the true velocity components. When the displacement Ap is just the tiny correction to
the location of the trajectory brought about by the numerical time integration scheme’s semi-implicit
adjustment, the fictitious component to the effective specific force can often be regarded as negligible.
However, for other semi-implicit time integration methods it is better to account accurately for the
exact force components along any trajectory which does not exactly intersect the LS coordinate origin

and the formulae we have derived then come into play.

6. DISCUSSION

‘We have discuésed a variety of numerical approaches, all designed to enable a high degree of
formal accuracy in a global semi-Lagrangian model to be achieved reasonably efficiently. For finite
differencing in space, we recommend the use of “compact” schemes whenever feasible. For the grid to
grid interpolations of a semi-Lagrangian model, we showed in section 3 how the three dimensions of
this problem can be separated out; the individual one dimensional steps become relatively straight-
forward in such a “cascade” interpolation scheme. Also in section 3 we showed how some of the
compact schemes discussed in section 2 can play an essential part in achieving formally conserving
cascade interpolation schemes without sacrificing the local accuracy which the cascade interpolation
method facilitates. The cascade method is practicaily as easy to use with forward trajectories as it
is with backward trajectories, but forward trajectories simplify the application of more accurate time
integration schemes. One possibility that looks increasingly attractive for numerical weather prediction
is to adopt the “second-derivative” form of the combined momentum and kinematics equations for
the trajectories. In section 4 we described some of the options available for treating the trajectories
in this way with time 1nteg'rat10n schenies that allow a seml-lmphmt treatment of the gravity waves.
Trajectory calculations, espe(:lally near the poles of a global model can be comphca’ced by the presence
of strong coordinate curvature, and, if done without careful thought, may require the costly evaluations
of trigonometrical functions. There are various ways to avoid the trigonometrical penalties; one way
we presented in outline is to employ local stereographic frames for the descriptions of all trajectory
displacements. o ' ' A o ‘

An indirect way of enhancing the efficiency of any global grid point model, given that so much
of the computational labour is spent performing “physics” calculations, is to find a grid with a more
equitable resolution from region to region. In a framework based on the the latitude-longitude coordi-
nates, the generally recommended procedure is to reduce or skip longitudinal grid points progressively
towards the two poles. Like the polar singularities themselves, this introduces some difficulties for
a semi-Lagrangian model employing the cascade interpolation method, where it is desirable to have
a grid structured as the Cartesian product of simple one-dimensional grids. One solution, which we
have alluded to in the context of the polar problem and MPP implementation, is to fragment the
global domain into logically rectangular and overlapping érid patches. At the expense of carrying
out computations for some overlap regions more than once (on different patches) and blending these

solutions smoothly together (with additional interpolations where the respective grids do not exactly

92



PURSER, R.J.: EFFICIENT HIGH-ORDER SEMI-LAGRANGIAN ...

conform), it remains possible to reap the main benefits that the cascade approach offers. It is es-
sentially this approach that is presently being pursued at NCEP in the development of a proposed
new global forecasting model. But it may well emerge in the long term, provided that the problems
with grid singularies can be satiéfactorily dealt with, that one of the alternative global grids, such as
those we discuss in another seminar in this volume, are more tidily adapted to high resolution and

high-order accurate semi-Lagrangian modeling on the sphere.
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