NON-STANDARD GRIDS

R J Purser
National Centers for Environmental Prediction
Washington D.C., U.5.A

Abstract: The recent trend in computer architecture towards massively parallel systems has been
partly responsible for stimulating renewed interest in non-standard configurations for the computa-
tional grids used in global numerical weather prediction. We examine some of the alternatives here,
together with their potential advantages and their possible drawbacks.

1. INTRODUCTION

The evident trend in super-computer architectures towards massively parallel configurations of
processors has revived interest in the use of grid point frameworks, as alternatives to spectral meth-
ods, for global forecast and climate models. Grid point models seem to lend themselves more easily

o “domain decomposition” — a division of labour among processors based upon some geographical
partitioning of the computational load. “Standard” grids, by which we mean locally quadnlateral hor-
izontal grids aligned everywhere with the latitude and longitude coordinate system, are not necessarily
the best frameworks to use; the meridians crowd towards the poles (fig. 1a) necessitating either exces-
sively short time steps or frequent application of special filters to preserve linear numerical stablhty
and the strong polar singularities themselves must be treated separately. It is possible to alleviate
these difficulties, following Gates and Riegel 1962, Kurihara 1965, by adopting a “reduced” grid, as
shown in fig. 1b, or a “skipped” grid, as illustrated in fig. ic Such solutions preserve approximately
constant spatial resolution zonally at all latitudes, but only at the additional computatlona.l cost and
inconvenience associated with the zonal interpolations now needed to “A1l the gaps” pole-ward of each
transitional latitude where the grid’s zonal resolution is made to change abruptly.

An alternative is to employ a “non-standard” grid, which can mean either quadrilateral or tri-
angular/hexagonal elements locally, and which conforms globally to coordinates other than latitude
and 1ong1tude (or a trivial rotation of this system). While not attempting a comprehensive review,
we here describe some old and new investigations into the use of alternative, polyhedral, grid frame-
works, none of which are without their own special problems. 'Sectlon 2 describes some of the more
promising grid topologies that allow mapping to the surface of the sphere. Section 3 presents some
of the systematic construction techniques for generating these map transformations. It also discusses
ways in which the metrical characteristics of the grid may be chosen, and perhaps optimised, to ensure
good numerical behaviour and computational efficiency. The triangular/hexagonal grids, with locally
six-fold rotational symmetry and with three (instead of two) locally intersecting families of horizontal -
grid lines, present their own challenges to the numerical analyst, quite apart from those associated

with their global topologies. Section 4 discusses some local numerical considerations pertaining to
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Figure 1. Comparison of latitude — longitude grids: (a) unmodified; (b) reduced; (c) skipped.

both staggered and unstaggered versions of these grids, which, for brevity, we shall subsequently refer
to merely as “triangular”. Finally, we summarize the apparent advantages and disadvantages of the

possible choices of non-standard grids discussed.

2. GLOBAL GRIDS BASED ON POLYHEDRA

Since the surface of a convex polyhedon, such as a cube, shares the same topology as the surface
of the sphere, then, if the surface of the polyhedron admits a natural gridding, that gridding can
be mapped continuously onto the sphere. For a regular polyhedron with triangular faces, such as
the twenty-sided regular icosahedron, the natural gridding uses a triangular grid aligned with the
twenty “large triangles”. For a cube, the most natural surface gridding uses a square grid aligned
with the edges of the cube. Various alternative grid orientations are also possible. ‘A square grid
may be oriented at 45° to the edges of the cube in which it is inscribed, or a triangular grid may be
oriented at 30° to the edges of its parent icosahedron; both cases preserve the original polyhedron’s
symmetries. There are other oblique grid orientations which break the symmetry by introducing an
artificial “chirality” or “handedness” to the grid configuration but, to this author’s knowledge, these

options have never found uses in numerical models.

2.1 Early applications.

Both the icosahedral and cubic grids have been used, from time to time, in global numerical mod-
els of the atmosphere. Sadourny et al. (1968) performed experiments using an icosahedral grid as
the basis of a barotropic vorticity model. Williamson (1968, 1970) independently introduced this
grid arrangement in studies applied to finite difference representations of the barotropic vorticity and
barotropic primitive equations, while Cullen (1974) showed how to use the icosahedral framework for

integrations of the primitive equations using finite element methods. Masuda and Chnishi (1987)
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devised an integration scheme for the primitive equations on the icosahedrél grid that used stream-
function and velocity potential as two of the primitive variables. Sadourny (1972) pioneered the use
of a cubic arrangement for a global grid point model based on Arakawa-type energy- and enstrophy-
conserving finite differencing Most of these early attempts to use nonstandard'grid encountered
numerical artifacts arising from the intrusion of the grid’s own symmetrles into components of the
computed solutions. The simplest mappings to the sphere do not preserve contmmty of the derivatives
of the metric terms on passage from one face of the associated solid to its neighbour. We shall see
below that this defect, at least, can be remedied. A more intractable problem is the contmued pres-
ence of a coordinate singularity, albeit a weak one, at each vertex. The nature of these smgulantles

deserves some discussion.

2.2 Grid distortion near vertices. ‘

The cube (ﬁg 2a) has an “angular deficiency” (Coxeter 1973, p23) of 90° at each of its eight
vertices where the corners of only three panels come together, forcing 270° of “map space” angle to
span the full 360° azimuth at the corresponding geographical point . The same angular deficiency
per vertex is also obtained in the case of the double-sided octagon, or octagonal “dihedron” (Coxeter

1973) which, at least for mapping purposes, belongs within the class of polyhedra also (fig. 2b).
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Figure 2. Polyhedra admitting a square-gridding of their surfaces: (a) the cube; (b) an octagonal dihedron.

The icosahedron, depicted in fig. 3a, has an angular deficiency of 60° at each of its twelve vertices,
where the 60° corners of five triangular panels come together.

We can take the angular deficiency as an effective measure of the unavoidable grid distortion
surrounding the vertex. This distortion might be spread continuously across all azimuth angles in the
case of a grid éonstructed to be smooth across the polyhedron’s edges, in which case, we find that at
least one of the family of grid coordinates suffers unbounded curvature in the neighbourhood of the
vertex. Alternatively, we can choose to maintain separate well-behaved grid coordinates on separate
faces of the polyhedron and concentrate all t]ﬁe difficulties in the form of coordinate discontinuities
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Figure 3. Polyhedra admitting a triangular-gridding of their surfaces: (a) the icosahedron; (b) the twisted icosahedron;
' (c) the hexagonal prism; (d) a dodecagonal dihedron. : ;

confined to the radiating edges. The total angular deficiency of any simply connected polyhedron
sums to 720° (equivalently, the areal density of angular deficiency, known as the “Gaussian curvature”,
integrates to 4w radians over the surface of any simply connected solid). It is therefore unfortunate that
the regular solid with the greatest number of vertices (and therefore the most benign singularities) —
the (twelve-sided) dodecahedron, possessing twenty vertices but pentagonal faces, is also distinguished
as being the only one of the five so-called “platonic solids” that does not admit a natural gridding of
its surface! It is partly owing to the fact that the icosahedron is the next best choice, with twelve
vertices, that this form has been so often considered as the framework for global models. However, the
icosahedron also possesses the virtue of a very high order of symmetry (the order of the group of proper
and inverting rigid rotations of the icosahedron is 120, as compared to 48 for the cube). It is this
high degree of symmetry which enables the icosahedral grid resolution to be kept very homogeneous
while the moderately large number of its vertices ensures that the grid distortion about each one is

relatively small.

2.3 Choices based on symmetries.

There are aspects to the symmetry properties of the icosahedron that are undesirable; when ori-
ented with a vertex at each pole in order to maximise the degree of zonal symmetry (five-fold), the
inscribed grid fails to exhibit mirror-symmetry about the equatorial plane. A spurious wave-five pat-
tern, with opposite phases in the two hemispheres, is one way in which the grid’s symmetry can
intrude on the simulated flow over the course of a long integration (Masudo and Ohnishi 1987). In
a modification of the icosahedral arrangement, which they refer to as the “twisted icosahedral” grid,
Heikes and Randall (1995a, 1995b) effectively turn one hemisphere’s configuration of vertices by 36°
with respect to the other hemisphere’s. Then the triangular grid is able to link up the vertices almost

as before, except now with mirror symmetry across the equator. A remaining asymmetry, that two

47



PURSER, R.J.: NON-STANDARD GRIDS

vertices are distinguished by being at the poles while the other ten, in rings of five, at a symmetrical
pair of middle latitudes, can be removed by adopting a grid with six-fold zonal symmetry. The twisted
icosahedral grid corresponds to the surface gridding of a polyhedron formed by appending pentagonal
pyramids to both ends of a pentagonal prism, the result of which is depicted in fig. 3b; the associated
polyhedron of the grid with six-fold zonal symmetry is simply a hexagonal prism, shown in fig. 3c. Fig.
3d shows one of the possible dodecagonal dihedra which, for certain ratios for the lengths of alternate
edges, admits a uniform triangular gridding continuous across edges just as the octagonal dihedron,
for particular ratios of its alternate edges, allows a uniform square gridding continuous across edges.
To an extent, the numerical performance, of any of these polyhedron-based grids is dependent upon

the manner in which the mapping from polyhedron to sphere is accomplished.

3. MAPPING BETWEEN POLYHEDRA AND THE SPHERE

Arguably, the simplest of all mappings between the uniformly gridded surface of a convex polyhe-
dron and the surface of the sphere is that obtained by central projection — a “gnomonic” projection,
in the terminology of cartography. However, despite its simplicity, this method has not found much
favour amongst modelers, presumably because it leads to a less homogeneous distribution of grid

points than can be obtained using other map projections.

3.1 Quasi-homogeneous grids.

For the icosahedral grid, Sadourny et al. (1968) placed two of the vertices at the poles so that eaéh
one of the 20 congruent large triangles, with great circle arcs for sides, had one of these sides oriented
east—west. The other pair of sides were subdivided into N intervals of equal geographical distance, with
- the corresponding pairs of the new points separating these intervals then joined by new great circle
arcs to form all the grid lines running approximately zonally. The triangular grid was completed by
arranging, for each one of these approximately zonal arcs, that the final grid points placed along them
were also separated by equal great circle distances. In this way an almost Homogeneous resolution
was achieved. Williamson (1968) used a qualitatively similar geometrical procedure to achieve the
same objective of almost homogeneous resolution for a triangular grid oriented at 30° with respect to
the large triangles of the projected icosahedron. Cullen (1974) also placed vertices at each pole but
made the sides of the large triangles straight lines in the space linear in latitude and longitude. He
obtained satisfactory numerical results from a further triangular subdivision, also linear in latitude
and longitude. This grid had the convenient property that one of the three families of grid lines in
each large triangle were precisely lines of constant latitude.

The symmetry of the original icosahedron is formally broken by each of these grid constructlons
but in the case of the cube, whose square grid is unencumbered by the restriction that three families of
grid lines must always intersect at the grid points, Sadourny (1972) exhibited a gnomonic projection of
a (nonuniformly spaced) rectangular griddiﬁg of the cube onto the sphere which gave a quasi-uniform
resolution while preserving the original cubic symmetries. In the case of the twisted icosahedral grid

of Heikes and Randall (1995a), the final grid is constructed via a process of recursive subdivision in
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which, at each successive stage, the midpoints of the sides previous small spherical triangles are joined
by arcs to form a new triangular grid of twice the resolution. This procedure obviously restricts the -
final grid dimensions to be a power of two refinement of the coarsest configuration of the same topoloé;y,
but they had other reasons, related to the efficient implementation of multigrid solvers, for adopting
this restriction in any case. Giraldo (1997) has used a similar method of successive refinement for the
true icosahedron in his recent adaptation of the Lagrange-Galerkin method to the simulation of flow
on the sphere. |

The grid constructions above all exemplify the concentration of grid problems kalong the polyhedral
edges, where there can be no smooth continuity from one polyhedral face to the next. It would appear
that the constructions based on successive grid refinement also lead to a formal lack of smoothness in
the interior of each large triangle, which would limit the applicability of generic high-order differencing
schemes to such grids. Swarztrauber et al. (1997) have found a practical way of obtaining formally
accurate differencing schemes on an icosahedral grid without assuming the usual conditions of grid
regularity; Their method is based on a form of constrained least-squares optimisétion of the coeflicients
of the template at each point of application. (In section 4.2 we give a more detailed outline of how to
formulate a method, similar in spirit to this, that. is needed to avoid ambiguity even in the evaluation
of certain high-order differencing coefficients on a plane triangular grid.) Unless customised numerical
schemes are employed at the polyhedral edges, where the metrics of the grids we have discussed become
discontinuous, unacceptably large truncation errors can result. We therefore proceed to consider grid

construction designed to address these edge defects.

3.2 Cubic grid, partially continuous across edges.

In oﬁe of the recent attempts to revive the cubic geometry for use on massively parallel processor
(MPP) cbmputers, Ronchi et al. (1995, 1996) find a partial remedy for the edge problems in the
following way. They define three families of great circles, each famﬂy having a common axis (péssing
through the centres of an opposing pair of the large squares of the syrhmetrically projected cube).
In each family, the planes defined by successive great circles differ in angle from one another by
multiples of a constant fraction of a right-angle (so that the cube’s edges each belong to one of these
families). The grid spanning each face of the spherical cube is constucted using arcs from the two of
the families of great circles which fan out from the axes piercing the centres of the neighbouring four
large squares. Like the construction of Sadourny (1972), the resulting grid can be regarded as the
gnomonic projection of some nonuniform rectangular gridding of the surface of the inscribed cube.
But it has the crucial property that, passing across the edge of each large square, the coordinate
which is changing transversally to this edge, remains smoothly continuous (except, possibly, for a
trivial additive constant or sign change) with the corresponding coordinate used in the neighbouring
large square. In this way, the necessary discontinuity across edges is confined to only one of the two
horizontal coordinates and, even at one of the corners, no actual coordinate singularity is encountered.

As shown in fig 4., the construction of Ronchi et al. implies that, by extrapolating each large

square’s grid beyond the edge, it is possible to recover the values at the points of the extrapolated grid
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_ Figure 4. Schematic form of the cubic grid of Ronchi et al.” (1996)

by only interpolating one-dimensionally, along each grid line common to the two adjoining square
panels’ coordinate frames. In this way, they are able to apply high-order differencing methods in
an efficient manner and obtain extremely accurate numerical simulations of idealized fluid flows. The
resolution of the grid is kept moderately consistent and the computations are readily distributed across

multiple processors.

3.3 Conformal grids, fully continuous across edges.

Except for the discrete vertex singularities it is possible to find various mappings from a polyhedron
to the sphere preserving smooth continuity (except at vertices, of course) of all grid coordina;ues from
one face to the next. There is a sense in which the “smoothest” of such mappings is one which also
preserves angles correctly; such a mapping is called “conformal” and the theory of two-dimensional
surface mappings with this transitive property is intimately associated with the classical theory of
complex analytic functions (e.g., Schwerdtfeger 1979). For a smooth surface of any compact simply-
connected solid, the existence of a conformal mapping to the sphere (and, by transitivity, to any
other simply-connected solid’s surface) is assured; for a simply-connected polyhedron, whose Gaussian
curvature is impulsively infinite only at the discrete vertices, there are mappings to the sphere that are
conformal everywhere except at the vertices themselves. The transformations are not unique, however,

since the sphere is conformally mapped to itself by members of the six-parameter continuous group of
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“Mbdbius” transformations which consist, in addition to rigid rotations (three parameters), a differential
scale-dilatation (one parameter) symmetrically centred about some axis (two p’arameters). Classically,
these transformations appear in the context of analytic complex functions; the identification of points
on the sphere with points in the complex plane being established through stereographic projection
(which we discuss below). In the context of numerical weather prediction, these transformations are
perhaps more familiar as the transformations of Schmidt (1977), who first realised that they offer a
way to obtain enhanced regional detail in a global spectral model. They are applied quite successfully
by Courtier and Geleyn (1988) for the ARPEGE operational forecasting system of Météo-France. We
shall see below that these transformations have a role to play also in the'design of some non-standard
grids.

Each of the polyhedra illustrated in figs. 2 and 3 exhibit a symmetry between their upper and
lower halves which, under conformal mapping to the sphere, can be preserved as a symmetry between
the two hemispheres. Fixing the longitude then makes the conformal mapping unique. Rangié
et al. (1996) investigated the use of the conformal cubic transformation as a framework for grid
point modelling lending itself to application to MPPs, comparing it with variants of the gnomonic
projection. It is instructive to examine the methods used to obtain this most symmetrical conformal -
cubic transformation since, with only minor adaptation, the same method can be applied to derive
conformal transformations of a gréat variety of polyhedral surfaces, including the “improper” ones
exemplified by the dihedra of figs. 2 and 3.

The problem of conformally transforming between a map point on the sufface of the unit-sided
cube and the corresponding target point of the sphere can be split into a sequence of separate steps.
The first step identifies the map-point with a complex number, z, by rotating and (perhaps) reflecting
the square face containing this point into the first quadrant (positive real and imaginary components)
of the complex plane in such a way that the nearest vertex, V, to the point becomes the complex
origin and the nearest edge becomes the segment [0, 1] of the real axis. The aim of the next step is
to find and apply the appropriate complex analytic function to this z whose result, w, will be the
complex stereographic image of the target pomt for the stereographic mapping whose projection axis
is identified with V' (and the origins of the z and w- -planes) and is scaled such that the centred unit-
circle of the w-plane corresponds to the “equator” of this stereographic projection. This is an example
of a projection in the optical sense, with rays intersecting at the point antipodal to the projection
centre, as shown for tlﬁ.is case in fig. 5. When we adopt the convention that the stereographic image of
the positive real axis of z maps to the positive real axis of w, the particular complex function, w(z),
is unique and, by symmetry, applies (with appropriate re-orientation and identification of “nearest
vertex” and “nearest edge”) to any point on the sphere.

The angtﬂar deficiency at vertex V manifests itself as a “branch point” of the desired complex

function, w(z). In the general polyhedral case, an angular deficiency of a radians will imply,

w(z) = f (2/@=) (3.1)
for some function f that remains analytic at z == 0. In the cubic case, w is therefore a locally analytic
function of 2%/3, but we can also infer from the three-fold rotational symmetry of the cube around V'
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Figure 5. Optical projection used to construct the stereographic w—piane image of a target point on the sphere.

(see fig. 6) that, in the expansion of f, the coefficients of z™ vanish except when mod(m, 3) =1, and

hence, the functional relationship is expanded more compactly in this case by, ,
T wl= W(z4) = Z Akz4k. . (3.2)
‘ k=1

Moreover, since we have reflection symmetry about the edge that we have mapped to the real axes of
z and w, it also follows that the Taylor coefficients A in this especially symmetric case are all real.
For a less symmetrical polyhedron than the cube, a different function f belongs to each Vértex
and a separate set of coefficients must be dealt with at each vertex, together with possible auxiliary
expansions (not involving a fractional-power term) at intermediate non-vertex points in order to
ensure sufficient mutual overlaps of the discs of convergence. The overlaps are necessary because the
coefficients themselves are deduced through the requirement of complete mutual self- cons1stency of all
of these power-series expansions, which can only be verified (or corrected) when the entire circle of
convergence of one expansion is covered by the discs of convergence of others. The radius of the disc of
convergence of the Taylor series of an analytic complex function is the distance between the expansion
centre and the nearest singularity of that function. In the case of the cubic mépping, the nearest
singularities in the z domain are the locations which correspond to the three next-nearest vertices,
implying a radius of unity in our example. Approximations to the set of the first few coefficients,
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Figure 6. Configuration of the three faces of the cube in the neighbourhood of vertex V to: (a) the stereographic
w-plane; (b) the rotated map plane, z.

Ay, can be improved iteratively by using the present estimates at each stage to evaluate the implied
mapping function W (2*) along a circle very slightly smaller than the unit circle (to avoid direct contact
with the singularities) based on the above power-series expansions pertaining to the neighbouring
vertices. In the cubic case, we can obviously invoke the built-in symmetry. As described in detail in
Ranéi¢ et al. (1996), the stereographic mapping relative to one vertex is readily transformed to the
equivalent representation with respect to the stereographic mapping of another vertex of the cube.
Let the radius of the verifying z-plane circle be 7 < 1 and express the location of a generic point there
by z=r ¢®/% W induces a complex periodic function, g(6), for 8 € [—m, n] by,

9(0) = w(r* e¥). | (33)

But, by Fourier transformation,

9(8) = are™, | (3.4)
p :
and application of the Taylor series definition of W, we obtain the identity,
A= g/r*, (3.5)

by which a new set of estimates for the A can be deduced. By uniformly spacing a suitable number of
the sample points, z=1r e®/% over one period of @ (one quadrant of the circle in the z-plane shown in
fig. 7), the fast Fourier transform method can be used to recover the new g at each iteration. For the
conformal cube, convergence of this procedure is rapid and the procedure need only be done once, and
the generated coeflicients stored for posterity. The first 30 coefficients Ak, together with the Taylor
coefficients By, for the inverse function, are given in Ranci¢ et al. (1996). For other polyhedra, such as
the octagonal dihedron, where more than one distinct series may be involved, numerical convergence

of the coefficient-finding procedure is often assisted by a cautious “under-relaxation” of the increments
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Figure 7. Schematic illustration of the arc (solid),‘ just within the circle of convergence of the expansion about z =0.
on which the function g(f) is evaluated during iterative refinement of the expansion coefficients for the conformal cubic
mapping. The dashed arc shows the circle of convergence of the expansion about the vertex situated at z = 1.

implied at each stage, but in any case, the requisite self-consistency is ultimately achieved by some

appropriate adaptation of the iterative method sketched here.

3.4 Quasi-homogeneous continuous grids.

The conformal mapping method gives us a grid that is smooth and continuous across the trans-
formed edges of the associated polyhedron, even in the case in which the polyhedron is one of the
degenerate double-sided polygons. For the icosahedron, whose conformal mapping is shown in fig. 8,
we see that a reasonably homogeneous distribution of grid points is obtained and the singularity at
each vertex is, at least to the eye, a very weak one. The minor remnant of spatial inhomogeneity is
betrayed by the slight tendency for the grid points to cluster near the vertices. In the case of the cube,
this tendency is intensified, as we see in fig. 9a. Fig. 9b shows the result of the application of a more
general method of smooth grid generation, based on the solution of a variational principle designed
to balance smoothness on the one hand with the goal of achieving spatial homogeneity on the other.
Thompson et al. (1985) discuss a great variety of systematic techniques for the generation of compu-
tational grids with desirable properties, and many of the techniques they discuss involve variational

methods. In the case of the grid shown in fig. 9b, the variational method is that suggested by Purser
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Figure 8. Conformal icosahedron grid.

and Ranéié (1998), which can be stated as the extremisation of £(X, A) defined by,

-]

where z and y are the two horizontal orthogonal map coordinates, X is the earth-centered cartesian

X |2

oy

axX |2

dx

+ +a |QXP2+A(XP = 1)| dz dy. (3.6)

3-vector of the geographical point, taking the earth as a unit sphere, and

Q= aa—fx % ' (3.7)

The constant, a, is a coefficient that determines the strength of the penalisation of spatial inhomo-
geneity; a large a implies that the quadrilateral elements of the grid are all almost the same areal size,
while a small a causes the solution to revert towards the conformal mapping solution. The value of
a= 10 was used to obtain fig. 9b. The scalar field, A(z, y) is the Lagrange multiplier used to confine
the vectors X of the solution to the unit sphere. The nonlinear Fuler-Lagrange elliptic equations

implied by the solution of our variational principle are,

9%X 92X X 8Q 86X 8Q
522 T "“(?;:: Fiaiym :5:) = AX, (3.8)
X = 1 (3.9)
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Figure 9. Smooth spherical cubic grids generated by: (a) conformal mapping; (b) quasi-homogeneous variational grid
generation with parameter a = 10.
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Figure 10. Same as fig. 9, but for the symmetric octagon

The general solution of this problem does not lend itself to such elegant complex-analytic procedures
as the examples of conformal mappings do. Solutions have been found using an iterative multigrid
method applied to a very fine grid, from which the required model grid is interpolated.

Figs 10a and 10b show the corresponding grids for a conformal and “smoothed” symmetric octagon
with vertices placed around the equator. The experiments of Purser and Rancié¢ (1998) show some
evidence that a more homogeneously resolving smooth grid could be beneficial, in spite of the loss of
grid orthogonality incurred. These experiments indicate a slight advantage in favour of the the cubic
arrangement over the octagonal for global modelling (Dr. John McGregor [personal communication]

reports a similar finding for the case of his semi-Lagrangian model [McGregor, 1996] applied to these
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grid geometries). However, one application where the octagonal arrangement has the advantage is
in the case of an autonomous model, of global extent, but distorted smoothly to provide enhanced
resolution in one (approximately circular) geographical region. Of course, this is precisely the afdre—
mentioned idea of Schmidt (1977), simply translated to the context of our gridded domains. Purser
and Rantié (1997) show that, applying the Schmidt dilatation centrally to a conformal octagon grid
gives an effectively circular region, bounded by the eight vertices, in which the enhanced grid resolution
obtained is practically uniform (fig. 11). It therefore seems that the octagonal grids are potentially
more useful in providing detailed regional simulations than in global modelling. Presumably, the same

applies to dodecagonal constructions using triangular grids.
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Figure 11. Conformal octagon with regionally enhanced resolution
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3.5 Quasi-regular gridded octagons and dodecagons.

For both the square-gridded octagon and the triangular-gridded dodecagon, there is an elegent
way to select the relative dimensions of the alternating sides in order to produce the shape which, for
its overall resolution, best approximates the corresponding regular polygon. First consider the case
of the octagon and suppose successives sides, in grid units, are a and b, where a is an integer but b
is some integer times V2. The diameters parallel to these sides are then, respectively, a + v2b and
b+ v/2a, which are more nearly “equal” than are the original sides. This suggests an obvious recursive
procedure, generating successively more regular gridded octagons, starting with the trivial degenerate
case, ag = 1, bgp = 0. Table 1 lists the first few pairs, a and b, derived by this recursion, together with
a measure of the departure from regularity. A similar procedure on the triangular grid pertains to the
generation of successively more regular dodecagons, where now the diameters assoclated with sides a
and b are, 2a + v/3b, 2b + v/3a, and where b is now some integer times V3. Table 2 lists the first few

pairs, a and b, in this case.

TABLE 1. RELATIVE LENGTHS OF ALTERNATING SIDES OF A RECUR-
SIVE SEQUENCE OF QUASI-REGULAR SQUARE-GRIDDED OCTAGONS.

k ay (sides parallel b (sides 45° ex = (be/ar — 1)
to grid lines) to grid lines)

0 1 0 -1.0000
1 1 V2 4142
2 3 2v2 -.0572
3 7 5v2 .0102
4 17 12v/2 -.0017
5 41 20/2 .0003

TABLE 2. RELATIVE LENGTHS OF ALTERNATING SIDES OF A RE-
CURSIVE SEQUENCE OF QUASI-REGULAR TRIANGULAR-GRIDDED DO-
DECAGONS.

k ax (sides parallel  bi (sides 30° ex = (bx/ax — 1)
to grid lines) to grid lines) .

0 1 0 -1.000000
1 2 V3 -.133975
2 7 43 -.010257
3 26 153 -.000740
4 97 563 -.000053
5 362 2093 -.000004

3.6 Treating the problem of singularities in smooth grids.

McGregor (1996, 1997) has very successfully employed both conformal and (stretched) gnomonic
cubic grids for use in a global semi-Lagrangian model. It seems that this approach can also be profitably

applied to icosahedral grids (Dr. F. Giraldo, personal communication). Semi-Lagrangian models are
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usually less sensitive than Eulerian models to problems in advection associated with grid singularities.
But in Eulerian models not possessing customised differencing templates for the problematic areas, the
presence of even the weak singularities of the grid coordinate in the otherwise conformal or smoothly
quasi-homogeneous grids described in the preceeding subsections remains a significant problem that
has hindered the adoption of these grids. The approach of Ronchi et al. (1996) does not suffer this
potential defect because the coordinates on which the six grids are based are without singularities at
the vertices of the cube. But this approach does not enjoy the virtue of a grid smoothly continuous
across the edges of each large square, even away from the vertices. We complete our survey of
polyhedron-based grids by discussing a technique by which the conformal mapping geometries may be
systematically modified, but only close to each vertex, in such a way that the modified region on each
separate face of the parent polyhedron blends smoothly with the unmodified region, and each vertex
is rehabilitated as a regular point of each face’s grid. Like the grid of Ronchi et al. (1996), one face’s
grid is no longer continuous with that of its neighbours, but at least the family of grid coordinates
transversal to the polyhedron’s edge still remains smoothly continuous across that edge.

For a vertex with angular deficiency 90° =27 /4 we recall that the conformal mapping involved
finding a complex analytic function of the form w(z) = f (@) for what we here define as w(z) = 2%/°.
If we take real and imaginary components of z to be z and y we find that the images of the coordinate
lines of constant = and y mapped into the w-plane form “trajectories” obeying “dynamics” with respect

to a (real) pseudo-time parameter, t:

d* 1 (dw/dt)? 3.10)
2 4w 5.
Similarly, in the triangular grids, for a vertex of angular deficiency 60° = 27 /6 and where the conformal
mapping takes the same form, but with w(z) = z8/5 the appropriate “dynamics” are given by
d2w
dt?

= %(dﬁj/f“)z. (3.11)

w

Now it is easy to appreciate that, if the “force” for these dynamics is smoothly and progressively
diluted to zero as W tends to zero, the “trajectories” (grid lines) which were hitherto stongly curved
near z = w = () are replaced by curves which become quite straighﬁ near this vertex. As an example,
fig. 12 shows the result in the w-plane of multiplying the original “forces” of (3.10) and (3.11) by a
dilution function,

B /W), (3.12)

where

‘ 1-(1-=1s? : s<1
B(s)= (3.13)

59



PURSER, R.J.: NON-STANDARD GRIDS
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Figuie 12. Modified conformal grids in their 5-planes in the vicinity of a vertex for: (a) three adjoining square grids
around a vertex with an angular deficiency of 90%; (b) five adjoining triangular grids around a vertex with an angular
deficiency of 60°.

The circles in fig. 12 cotrespond to |&| = ., the boundary of the region where dynamics are dilut :d in
this manner. Clearly, it is possible to adopt alternative “dilution functions” to achieve higher degrees
of continuity at the bounding circle or at the vertex; the important point to note is that every vertex
of angular deficiency 90° can have its conformal grid inside the chosen circle (in its w-plane) replaced
by the diluted-dynamics alternative depicted in fig. 12a. Similarly, for a triangular grid arrangement
with vertices of angular deficiency 60°, the appropriate surgery is the replacement, within the chosen
circle, of the configuration of fig. 12b. A

These patches provides a way of avoiding the principal outstanding problem of the conformal grids,
namely, their coordinate singularities, while retaining their desirable feature of smooth continuity along
at least the central segment of each polygon-edge. They may also be regarded as a way in which the
benefits of the partially continuous grids of Ronchi et al. (1996) may be attained in grids other
than the cube and, in particular, in the various triangular grids where, in no case, is there a suitable

projective analogue corresponding to the gnomonic projection Ronchi et al. employ.
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4. NUMERICAL DIFFERENCING ON TRIANGULAR GRIDS

This section examines some of the spécial problems that arise in designing numerical differencing
templates on triangular/hexagonal grids. We examine only methods which treat the three principal

grid orientations on an equal footing.

4.1 Difficulties with staggered grids

Many successful grid point models based on rectangular grid frameworks have used Arakawa-
type differencing schemes (e.g., Black 1994), in order to achieve control of the down-scale cascade of
energy and enstrophy with minimal additional artificial smoothing. The best such schemes require a
staggering of the variables in the horizontal, so it might be reasonable to suppose that corresponding
numerical benefits would be gained in the context of triangular grids by staggering the variables.
Nickovié (1994) investigated the triangular counterpart to the Arakawa “C” grid and, very recently,
Nigkovi¢ and Mesinger (personal communication) have investigated the characteristic properties of
all the triangular (or “hexagonal”) analogues of the staggered grids classified in Arakawa and Lamb

(1977). Figure 13 is a schematic depiction of these grids, which Nitkovi¢ and Mesinger refer to as

Figure 13. Classification of staggered triangular/hexagonal grids: (a) HA; (b) HB/E; (c) HC; (d) HD. Mass variables
reside at circles, wind components at solid bars, in the direction indicated by each bar.

grids HA — HD (for “hexagonal”). The circles mark the locations of the mass points and the thick
bars mark the locations and orientations of each grid’s wind components. On a flat infinite domain,

the wave-vectors, (k, l), resolved by a triangular grid of umnit spacing aligned with the conventional
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«z" direction are those bounded by a regular hexagon with corners at the point (k, 1) = (47/3,0) and
its images under 60° rotations about the origin. It is instructive to examine how the staggered grids

treat the linearized non-dimensional f-plane shallow water equations,

ou 3¢
—— —_— = 0 .
Fri i , (4.14)
dv 8¢
— —_— = 0 .
2t +u+ By , (4.15)
8¢ o [(Ou 0Ov
— —_ = 0 .
5t +c (6x+6y) ) (4.16)

where c is a parameter expressing, in grid units, the Rossby radius of deformation.
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Figure 14. Contours of the magnitudes of frequencies of modes obtained in the grid HB/E, plotted in wave-vector
space, for a Rossby radius of 2 grid units. (a) The guasi-geostrophic mode, showing a spuriously nonvanishing frequency
(contours in increments of 0.2); (b) and (c) the two components of gravity-inertia waves showing the asymmetry between
eastward and westward-propagating components. (Contours of unity, unit frequency for inertial oscillations at the origin.)

For the grid HB/E (defined by fig. 13b) Nitkovi¢ and Mesinger find that there is an undesirable

asymmetry between the speeds of an eastward propagating gravity-inertia wave and its westward-
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e

Figure 15. Contours of the magnitudes of frequencies of modes obtained in the grid HC, plotted in wave-vector space,
for a Rossby radius of 2 grid units. (a) The quasi-geostrophic mode, showing a spuriously nonvanishing frequency; (b)
gravity-inertia waves {contours in increments of 0.2 nondimensional units in both plots.)

propagating mirror-image. The frequencies of these two modes are contoured in the domain of allowed
wave-vectors in figs. 14b and 14c for the parameter c=2. A much more serious problem, which
unfortuantely affects all of the staggered triangular gfids, is that the supposedly stationary quasi-
geostrophic inod-e'possesses aﬁon-vanishi’ng freciuency at some 6riénfations, aﬁd .the‘refore pfopégates.
Fig. 14a shows contours of these spurious frequencies. For the grid HC (defined by the arrangement
shown in fig. 13¢) the gravity-inertia waves remain symmetrical under mirror—réﬂeétion symmetry (fig.
15b) but, instead of a single stationary quasi-geostropic mode, there are now two, and both propagate
spuriously (fig, 15a). The HD grid (not shown hére) also possesses a pair of spuriously propagating
ﬁon—stationary quasi-geostrophic modes. It therefore seems that the Arakawa-style numerical schemes
with staggered grids are not applicable in any obvious way to a practical meteorological model based

on the triangular grid arrangement.

4.2 High-order diﬂ’erencin'g on a triangular grid'.

Instead of applying second;ordér ener‘gyv aﬁd enstrophy conserving numerics to a staggered grid,
an alternative approach to achieving faithful simulations of atmospheric flows is to use high-order
numerical methods on the simplest, unstaggered, grid. Here we examine this option for the symmetric
triangular grid. We shall employ the indexing convention for differencing templates suggested by
fig. 16. Thus, for the two indices, (‘i, j), the z and y relative displacements implied on a unit-
spacéd grid are x = /2, y = j/3/2. We shall be concerned with derivations of coefficients of the two
orthogonal components of the numerical gradient operator that respect the local symmetries of the
grid. These symmetries (formally, the “dihedral group of order 12”, the symmetries of the regular
héxagonal dihedron) comprise the horizontal rotations about the centre by mﬁltiples of 60° and mirror-
reflections across horizontal axes oriented at multiples of 30°. The sine and cosine of azimuth (relative
to the positive :c~‘axis) of a grid displacement indexed (i, j) will be denoted respectively by S (i,5) and
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Figure 16. Indexing convention for the template members of a gradient operator on a triangular grid. The coefficients
of members of the template X for the z-derivative within the 30° sector (highlighted members) suffice, by symmetry. to
determine the remaining X -coefficients and the entire set of Y-coefficients for the y-derivative.

98

C (i, j) and are defined:

V3

S(i, _')) W, (4.17)
Cli,j) = m A (4.18)

We shall write “(i, j) = (¢, j’)” to mean that the relative displacements (i, j) and (i, j') can be brought
into equivalence by the application, to one of these grid disi)lacements, of a member of the grid’s local
symmetry group defined above. If the z- and y-components of the numerical gradient template at
(4, j) are denoted by X(; j) and Y{; j), then the condition that this gradient operator is faithful to the

local grid symmetries is that:

c("i'\Xus = CG ) Xas) (4.19)
S, i) Xu5 = CG DYy o (4.20)

whenever (i, j) = (i,j'). A symmetry-preserving gradient approximation can therefore be defined
uniquely by specifying only the coefficients of the X(; ;) components of displacements that belong to
the 30° sector, 0 < i, 0 < 3j < 4, which is also indicated in fig. 16.

Two examples of such gradient operators are shown in figs. 17 and 18, for the “first quadrant”, z >
0, y > 0, only. Both are sixth-order schemes, panel (a) shows the coefficients X(; ;), while (b) displays

the quantities, Y )/ V3 in their proper locations. Thus, contrary to the case of the unstaggered square
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TABLE 3. COEFFICIENTS OF RADIAL TEMPLATE HIGH-ORDER GRADIENT
OPERATORS FOR TRIANGULAR GRIDS

scheme R» Rs Rs Rs Rio Rz Ria Ris

B8 3 18 90 1260 3780 41580 540540 1081080

BX(2,0) 1 8 45 672 2100 23760 315315 640640

BX(4,0) -1 -9 -168 -600 -7425 -105105 -224224
BX 6.0y 1 32 150 2200 35035 81536
BX(s.0) -3 =25 485 -9555  -25480 "
BX(10,0) 2 72 1911 6267
BX(12,0) -5 -245 -1120
BX(14,0) 15 128
BX(18,0) . -7

TABLE 4. COEFFICIENTS OF SOLID TEMPLATE HIGH-ORDER GRADIENT OPERATORS
FOR TRIANGULAR GRIDS

scheme S, Sis S¢ Ss S - S Su Sie

Jé} 3 12 540 2520 4148000 138600 3052249200 85765680

BX (2,0 1 6 304 -1560 2844698 03366 2189574240 62520624

BX 1) -1 -54  -360 -961596 -24885 -759887172 -22101708
- BXeay 5 60 228610 6525 237277515 7590645
BX (4,0) 222 -138 -131538 -12348 206742624  -6758262
BX (6,2) -9 -106749  -17T10 -117694908  -4225966
BX(6,0) -8 -155418 -102  -112093206 - -3483494
B8X (8,2 1760 216 15677528 755400
BX (71 52227 -630 18859015 585963
BX (8.0) -16022 234 12469844 579942
BX(9,3) - 25 -4152242 . -345686
BX(9,1) =27  -12205539 -678597
BX (11,3 , 66550 8976
BX10,2) : 1609170 179385
BX 1, -500753 -82071
BX (10,09 5210810 382842
BX(12,4) ' -833
BX(12,2) , © 1088
BX(12,0) ‘ 15874

grid, where there is essentially only one obvious candidate for explicit‘ numerical gradient operator at
a given order of accuracy, in the case of the triangular grid we are generally faced with some choice.
Fig. 17 exhibits the sixth-order member, Rg, of what we might réfer to as the “radial template” family
of high-order gradient operators; these are just the symmetry-respecting adapfations of the standard
one-dimensional high-order differencing operators, applied with appropriate weights along the three
principal lines of the triangular grid. The coefficients for these schemes up to 16th order are given in
table 3. |

Fig. 18 exhibits the sixth-order member, Sg, of what we shall refer to here as the “solid tem-
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Figure 17. The first quadrant of the sixth-order “radial template” gradient operator, Rg; (a) components, X ;) for
z-derivatives; (b) components, Y(; )/ V'3 for y-derivatives

o
o

-1 -1
15 540
38
135 A

Tigure 18. The first quadrant of sixth-order “solid-template” gradient operator, Se; (a) coefficients, X(; jy; (b) coeffi-
cients, Y(i.j)/‘/g'

SUENG |

plate” family. Each member, Sy, of this family is defined to be the “best” (in the sense we explain
below) symmetry-respecting scheme whose template of relative displacements (i, j) from the point of
evaluation fits within the hexagonal region for which j' < (2 +3N)/8 for each (¢, j') = (i, 7). Let us
consider how we might objectively rank alternative differencing schemes in a way consistent with the
notion that a high-order scheme is better than one of lower order. Recall that a gradient scheme of
order N evaluates ezactly the derivative components of any spatial distribution consisting of a poly-
nomial of degree-N jointly in z and y. This implies that, appliéd to unit-amplitude Fourier waves,
exp(ilkz + ly]), the error, numerical-minus-true, is a function of £ and I whose Taylor-series coeflicients

vanish for powers of & and [ jointly not exceeding N. Suppose we add together the squares of the
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absolute magnitudes of the z and y components of the gradient error at each (k, !) and integrate this
quantity with respect to azimuth around each circle of constant K = (k2 + 12)}/2, thereby obtaining
a tadial error function (K ) of the total wavenumber. This is an even function of K possessing an
expansion about the origin: | o

e(K)=e0+ EQKQV. o b (4.21)

for which all coefficients, egp, for p < N vanish in a gradient scheme of order N. However,‘ this suggests
a procedure for ranking competing diﬁerencing schemes and achieving a definite verdict even when
their formalvorders of accuracy are t’he“‘same. We do this by means of a progressive comparison of
the magnitudes of these expansion coefficients, and favour scheme “A” over scheme “B” when it is
found, for some index g, that s&A) = 5,(,B) for all p < g, but e.gA),‘< e,(;B) . The g, are quadratic functions
jointly of the independent témplate coefficients, X; ), of theo gradient scheme, so the constrained
minimization problem of determining the “best” scheme for a givéﬁ template becomes a linear one
and, since the functional relationships involve only rational coefficients, the solutions are guaranteed
to produce template coeflicients which are also expressible in terms of rationals. The first few of the
schemes Sy have been determined by this procedure and their representative coefficients X(; 5y in the
principal 30° sector are listed in table 4.

The reason we might wish to consider the more compact schemes Sy in preference to the equivalent
order schemes Ry is revealed in fig. 19, which plots the absolute magnitudes of the truncations errors
of the two schemes Si» (fig. 19a) and Rio (fig. 19b), normalized by the absolute magnitudes, at
each wave-vector, of the true gradient. As we have already seen, the triangular grid is theoretically
capable of resolving Fourier waves of wavenumbers exceeding (by up to 1/3) the “Nyquist” sampling
frequenoy limit of a single grid line. However, the simple-minded application of one-dimensional high-
order differencing schemes to this grid, forming the family of schemes Ry, does not fully exploit this
range of wavevectors. In effect, these radial template schemes are degrading the resolution. The
alternative schemes, Sy, do exploit the triangular grid’s resolution to the full, but would be costly to
apply at high-order in the most straight-forward way.

There is one way in which high-order solid template schemes might be made practically viable
without disproportionate computational cost; by performing the convolutions they imply indirectly,
on the Fourier-transformed data. Since the templates possess compact support the influence of their
convolutions is limited to a finite radius. This means that the artificial imposition of periodicity on a
large enough rectangular or hexagonal subdomain of a more extensive grid will not spoil the interior
result. Overlappingb subdomains, éuitably chosen, can then cover all parts of a global grid except

‘where singularities intrude and break the symmetry.

4.3 High-order differencing where the grid is irregular.

If the singularities cannot be deferred, beyond the edges of each large face of a polyhedral grid,
as occurs in the modified conformal grids of subsection (3.6), then, at these points and regardless of
the manner in which the high-order differencing is implemented, it becomes necessary to revert to

customised numerical differencing templates for each individual point in the halo of influence of the
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Figure 19. Normalized magnitude of truncation error contoured in wave-vector space, and the template supports, for
12th-order gradient schemes: (a) Si2; (b) Riz; suggesting the inability of the latter family of schemes to match the
theoretical resolution the triangular grid allows.

offending grid singularity. We shall therefore complete this section with a brief sketch of a method
of template construction proposed by Swartztrauber et al. (1997) for icosahedral/triangular grids not
necessarily possessing the exact symmetries we have been assuming throughout the earlier part of this
section. . ‘

Essentially, their technique is to apply a least-squares variant of the collocation method. They
find spatial differencing coefficients which are exact for the most important “smoothest” test func-
tions (a strongly enforced set of linear constraints) while, for a remaining set of slightly less critical
test functions, the overall squared error norms are minimised, subject to the aforeméntioned strong
constraints. Since they are concerned with spherical geometry, they use test functions comprising the
spherical harmonics of lowest totalvdegree; these are, in one sense, the analogues on the sphere of the
Fourier plane waves, but, in another sense which their method exploits, they can also be regarded as
disguised polynomials of the three earth-centred cartesian coordinates. One potential problem in the
general case of unstructured clusters of grid points is the numerical ill-conditioning of the constrained
error-minimisation; their suggestion is to use the method of singular value decomposition (e.g., Golub
and Van Loan, 1989), which is a tool both for inspecting the conditioning characteristics, and for

carrying out the actual minimisations in a numerically well-behaved way.
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In the planar version of this technique, the test functions would be the special polynomials in

z =7 cos § and y =r sin 6 possessing either of the forms,

Pn,m(x,y) = TnCOS(mG), - L (4:_.22)
Qnm(z,y) = r"sin(m6), - - (4.23)

where n is the total degree, m <n is the azimuthal wavenumber and n —m is even. It is possible to
show that the principles we stated for defining the “best” solid-template gradjent schemes of section
4.2 lead naturally to an exactly equivalent least-squares collocation mefhod using these test functions.
For regions of a triangular grid, euch as near the vertiees of the spherical icosahedron, where the
local regularity of the grid is disrupted, the applicatioh of the planar adaptation of the method
of Swarztrauber et al. to a smooth map projection (such as is provided by the “w-plane of the
conformal-icosahedral 'map’ping) of the relevant clueter kof grid points, might actﬁally prove to be
.a simpler alternative for the generation of the customised differencing templates tha’n,’ applyin_g the
original spherical-harmonic version of their method to the true grid point locations on the spherical
surface. In any event, the conditional least-squares collocation method provides a systematic way
of directly addressing the problem of achieving high—order accuracy within the hale of influence of a
singularity which, in contrast to the method bsuggested in section 3.6, does not require any. surgical

modification of the grid itself.

5.. DISCUSSION

We have considered several non-standard grid arrangements for the spherical domain, based on
mapping the surfaces of polyhedra (possibly of the degenerate, flat, kind) and discussed the virtues
and vices intrimsic to these configurations. For three-dimensional Eulerian models, the continued
presence of grid-singularities (at the images of the vertices) within otherwise smooth grids constructed
by either conformal or variational procedures causes Ie51dual spurious numerical "“tlfaCtS (pOSSIbly
related to the resonant forcing of quasi-stationary internal gravity modes) to appear there i in many
models. The singularities do not seem to cause 51gn1ﬁcant problems in a .seIm—Lag‘ranglan treatment
(McGregor 1996) and, in high—order Eulerian models, the problem of singularities can be axﬁeliorated
by dev1sm<r special d]fferencmc templates near each vertex and, in the construction of the chﬁ'erencmcr
schemes there, regardmO' the spatxal chstnbutlon of grid pomts as unstructured (Swarztrauber et al.,
1997). The excellent results achieved by Ronchi et al. (1996) suggest that it is preferable to use several
regionally-smooth grids, each remaining ‘well-behaved up to and beyond any Ve1tex, rather than usmU
a single grid system (such as the unmodified global conformal gnds) in which smgulant]es in the
grid coordinate metrics cannot be avoided. With this principle in view, we have indicated in section
(3.6) how any conformal grid may be surgically altered to recover the desirable generic properties first
exhibited, for the particular case of the cube, by the grid of Ronchi et al. (1995)._ ‘

The higher local symmetry of the triangular grid (compared to the square grid) makes it immedi-
ately attractive as a framework for dynamically modelling the atmosphere, espemally on the global do-

main where the icosahedral grid boasts such an exceptionally uniform resolution. In some apphcatlons.
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where “physics” within the vertical columns or chemical interactions at individual points, overwhelm-
ingly dominate the computational demands made by the model, some form of the icosahedral grid
arrangement must always be considered one of the strongest candidates, owing to this configuration’s
inherent ability to allocate horizontal area equitably among the vertical columns. However, as we
have seen, the triangular arrangement for horizontal differencing conceals several subtle difficulties.
There is, as yet, no obvious’ way in which the energy- and eﬁstrophy—conserving style of staggered
grid schemes can be applied to the triangular grid without incurring such anomalies as asymmet-
rical gravity wave propagation and non-steady (quasi—)geostrophic modes (Nic¢kovié and Mesinger,
personal communication). Even on the unstaggered grid, where one might hope to gain an advan-
tage through the use of high-order differencing schemes, we find that the simplest gradient operators
(“radial template” schemes in our terminology), which are already more costly to apply than their
square-grid counterparts, are actually inadequate in utilising the resolution that the triangular grid is
theoretically capable of. And the more complicated “solid template” schemes, which do properly use
the grid’s full resolving capability, are considerably more costly to apply. These are features of the
triangular grid that deserve careful quantitative examination before a serious commitment to such a
grid is made. Nevertheless, the recent resurgence of serious interest and effort relating to icosahedral
grids, exemplified by the recent investigations of Baumgardner and Frederickson (1985), Heikes and
Randall (1995a), Giraldo (1997), Steppeler and Majewski (see D. Majewski, these seminars), and the
suitability of polyhedral grid framework in general to efficient implementation on MPPs, assures these

methods a significant, if specialised, future role.
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