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1. INTRODUCTION

Although the semi-Lagrangian semi-implicit (SLSI) discretization of the primitive meteo-
rological equations has resulted in significant savings of CPU, achieving its full potential
has been hampered by the intermittent appearance of non-meteorological oscillations;
‘noise’. Over the years the sources of this noise have been isolated and solutions have
been invented to eliminate or control them.

The most obvious culprit, which is examined in section 2b, is the explicit integration
of the non-linear terms. A more subtle phenomenon, looked at in section 2c, is the
numerical distortion of the resonance appearing in stationary solutions in response to
orographic forcing. Another cause of noise, which we are just beginning to understand, is
the extrapolation in time used in evaluating the departure point position in two time level
integrations. This is discussed in section 2d. Lastly, a source of noise which is not unique
to semi-Lagrangian integrations, the upper boundary condition, is discussed in section 2e.

The SLSI discretization gives us the freedom to use larger time steps than previously for
the dynamics. This prompts the question: will the physical parameterization schemes be
able to tolerate such large time steps? In order to see where dangers may lurk some simple
differential equations, typical of those used in the physics, are discretized and integrated
with ‘large’ time steps in section 3. In sections 3a and 3b it is demonstrated that sudden
jumps in the values of fields can lead to instabilities or unphysical oscillations. Also,
non-linear terms make large time step integrations even more problematic (section 3c).

Using large time steps raises questions about how to join the physics to the dynamics,
and also about how to join the individual physics sub-processes to each other. Lack of
balance between them can lead to noisy forecasts. These issues are discussed in sections
4a and 4b. Lastly, a possible source of noise caused by the interaction of steep orography
with the physics (or dynamics) is discussed in section 4c.
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2. NOISE FROM THE DYNAMICS .

2a. Semi-Lagrangian and semi-implicit discretization.

In this section the two time level semi-Lagrangian and semi-implicit (2TLSLSI) method
of discretization is summarized by considering the following generic one-dimensional ad-
vection equation:

M@ L p)

Op(z,1)
ot 0z

= L{¢(:E,t)} + N{¢(w7t)}7 (2'1)

where u is the advecting velocity and L and N represent the linear and non-linear terms,
respectively. A popular 2TLSLSI discretization of this equation is

o= (] ()], o
I *
where
N2 = (3N™ — N*1)/2, (2.3)

and Aty = (14£¢)At ; ¢, is called the ‘de-centering’ parameter. For any field 4, o7 =
¢(IAz,nAt), and ¢} = ¢(z,,nAt). The position of the departure point, z., is estimated
by solving the equation

dz
as

t+ At
ot + At) — 2(t) = /t w{z(r), r}dr. (2.5)

Since u(x,t) is unknown and the integral is along the trajectory of the parcel an approx-
imate method must be devised for finding the departure point, z(t) = z, . (The arrival
point, z(t + At) = I Az, is known).

The most popular method can be thought of as approximating the integral in Eq. (2.5)
using the ‘mid-point rule’:

z(t) = z(t + At) — Atu{ [z(t + At) + z(£)]/2, ¢t + At/2 }, (2.6)
and evaluating x(t) iteratively. First, u is extrapolated to time level n + 1/2:
u{z, (n + 1/2)At} = gu{w, nAt} — %u{z, (n - 1)Ad}. 2.7)
Thenvthe (k 4+ 1)st iteration is given by
g = TAz — Atu{[IAz 4+ 2¥)/2, (n + 1/2) At} = [Az — Ata®; (2.8)

z®) = IAz — Atu T2, (2.9)
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The integration proceeds as follows. (a) The departure point position associated with
each grid point is estimated using Eq. (2.8), and stored. (b) The non-linear terms are
computed at time level (n +1/2) at each grid-point and stored. (c) The linear terms are
computed at each grid-point and combined with the non-linear terms and the resultant-
fields are interpolated to the departure points. (d) Finally , the implicit system,

At At_ At_ Aty .
P = e S SRR L S

is solved.

What are the possible sources of instability? (a) The non-linear terms, which are inte-
grated explicitly. (b) In the presence of orography even the linear terms become problem-
atic. (c) The extrapolation in time in Eq. (2. 7) is suspect. We return to this in section
2d, whereas in sections 2b and 2c the one-dimensional shallow water equations are used
to examine the first two sources of noise. '

2b. Instability caused by the non-linear terms.

In this section we try to gain some understanding as to why the non-linear terms are
a source of instability, and how we control that instability. To do this, we analyse the
following one-dimensional shallow water equations,

du(z, 1) Ou(z,t) | O0f(z,t)

ot Tule )t =0 (211)
8 (z, 1) 3¢(:v t) Ou(z,t) _
_(%—_ + u(m,t) + ¢( ) oz =0. (2'12)

Here ¢ is g times the height above a reference level; see Pedlosky (1979) p58. Separating
$0u/0z into linear, ¢o0u/dz, and non-linear, gb’@u/ax components (¢, a constant, is
> ¢') and discretizing as in Eq. (2.2) gives the following;:

upt —ur = - S - By, e

A 1 A n

P g0 = = o)} — S do(w)]
At 3 n 1 ’ n— At__ 3 ’ n 1 / n—1 .
EERCCERIRE LI S CIUURASEICI il ST

To perform a von Neumann stability analysis it is necessary to make two assumptions;
that the advecting velocity is constant, u(z,t) = ug, and that ¢’ = ¢y is also a constant.
The stability analysis of Eqs. (2.13) - (2.14) is relegated to appendix 1 and results in
the cubic equation (A.1.9). It is not difficult to write a programme to solve Eq. (A.1.9)
numerically and to look at the stability for different values of ¢q, dn, ug , and €g. This is
left as an exercise. Here we try to gain additional insight by looking at analytical results.
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Consider first of all the solution in the absence of ‘de-centering’ , with no non-linear terms,
and with zero advecting velocity; (¢, = 0, yv = 0, and A = 1 in Eq. (A.1.9)). Then the
dispersion relation is

(1 +9) =221 —y2) + (L +7z) = 0, (2.15)
and its solution is 14
yo lEnm (2.16) -

S IFir

where 7z, is defined in Eq. (A.1.8). Obviously, || = 1 and the scheme is stable.

What happens when we include the non-linear terms? In the absence of ‘de-centering’
and with zero advecting velocity (¢; = 0 and A = 1in Eq. (A.1.9)) the dispersion relation
becomes

A +A1) + N (=24 212 4 3yw) + M1+ 7z + 29n) — v =0, (2.17)

where 7y is defined in Eq. (A.1.8). This can be solved numerically; see fig. 1 of Gravel,
Staniforth and Coté (1993). Let us try to gain some additional insight by doing a per-
turbation expansion. First divide by 1+ vz and write y5 /(1 + 7z) = €. Then Eq. (2.17)
becomes

pRgE Az{_2(l—_%) + 36} +AM1+2¢)—e=0. (2.18)

14+

For small € we can do a perturbation analysis of this equation. The zeroth order solution
is given by Eq. (2.16). To O(e) the solution is given by (see appendix 2)

142 14+2
Ao tEWL | 1E20 AP =1 _{_4*&132_ (2.19)
1Fi/AL Fi/ L (I+7z)

Since 71, = {v¢o(At/Az)sin(rAz/L;)}?, the limit 7, >> 1 can be regarded as the
large time step, external gravity mode, short wave-length limit ( 4/$oAt/Az >> 1, and
sin(rAz/Lg) ~ O(1)); (Ly is the wavelength). In this limit we get

IM? =1+4¢n/¢o (2.20)
If we choose ¢ equal to the mean value of ¢ then |A| > 1 and the scheme is unstable.

How can we control it? By ‘de-centering’. To see why ‘de-centering’ works consider once
more the situation when the non-linear terms and the advecting velocity are zero, but
now retaining the ‘de-centering’ coefficient; ( vy = 0 and A = 1 in Eq. (A.1.9)). The
solution of the resulting dispersion equation is

)\:1:{:7:\/713(1_69), |A|2:1+7L(1"'6g)2-
1FiAr(l+¢)’ L+ p(1+ ¢)*

[A]* < 1, for €, > 0. The derivation of the multi-level equivalent is given by Tanguay et
al. (1992) and Bates et al. (1993).

(2.21)
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Thus, our expectation is that this damping of the linear terms caused by the de-centering
will compensate for the amplification caused by the ¢x terms. Including these terms
results in the equation for A is given by Eq. (A.1.9) with A = 1. We can again do a
perturbation analysis if we make some reasonable assumptions. First, O(e,¢0) = O(én),
implying €, = Tyn , where 7 ~ O(1). Making this substitution in Eq. (A.1.9) results
in the dispersion equation

1—~’)’L
}\3{1 + 27e + ’reeg} + /\2{——2<1 m ’)’L> + 3e+ e€,(3 — 27’)}

+A{1+26(1—T)+eeg(7—4)} — e+ ee; =0, (2.22)
which, making the assumption that O(e;) = O(e), has the following solution to O(e):

1424/ 14 204/ 142
A N 3 7L+6( 4 ’YL-——Z -_J: Zﬁ); |A[2 — 1+4 F)IL ( rYN ég). (2‘23)

= . . T —
LF /1 Fi/7L LF /11 14+ \1+7

For 4z, >> 1 this becomes

A2 :1+4<@-—eg). (2.24)

%o A
A typical mean value of the 500hPa geopotential height field is ¢ = 55000m?/s%, and an
approximate maximum variation from that mean, ¢y = 5500m?/s?. This indicates that
€, = 0.1 will re-establish stability. This agrees with practical experience in multi-level

primitive equation models.

There is an alternative method for controlling this instability. To see how it works look
at Eq. (2.20) again. Notice that if ¢, is negative then |A|? < 1 and we restore stability.
How can we do this? If we choose ¢g to be greater than the mazimum geopotential height
then ¢' in Eq. (2.14) will always be negative, as will ¢, by implication. This was stated
by Coté and Staniforth (1988), but its full significance was not realised until Simmons
and Temperton (1997) pointed out that in a multi-level model the equivalent stabilizing
procedure was to choose T°, the constant temperature associated with the resting basic

state of the atmosphere, to be greater than the maximum atmospheric temperature. (They
chose 350K).

Equation (21) of Simmons and Temperton (1997) is the multi-level spectral version of our
Eq. (2.18); (put 7z = B%, € = p). It is interesting to note that Gravel, Staniforth, and
Coté (1993), who performed the same analysis for a multi-level grid-point model did not
realise the significance of their Eq. (40) in this regard. Because, in the absence of diver-
gence damping it is formally the same as Eq. (A.1.9), they were in a position to conclude
that if they chose T (their notation) to be greater than the maximum temperature then
TF (their notation) would always be negative, thus restoring stability without recourse
to divergence damping or ‘de-centering’.

Other methods are used to control this noise. For instance, McDonald and Haugen (1993)
time-filter the non-linear terms and also employ divergence damping in their model. The
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latter, however, has been somewhat discredited by Gravel, Staniforth, and Coté (1993).
Also, because the de-centering described by Eq. (2.2) is O(At) accurate schemes which

are O(At?) accurate have been suggested by Rivest et al. (1994) and Simmons and
Temperton (1997). : :

So far we have only considered stability with ug = 0. To see the effects of non-zero
advecting velocities we must solve Eq. (A.1.9) numerically. The main impact of the semi-
Lagrangian interpolations is to damp the shorter waves. For example, compare figures 2
and 1 in Gravel, Staniforth, and Coté (1993).

2c. Un-meteorological stationary solutions with orographic forcing.

The linearized primitive equations have a stationary solution in response to orographic
forcing. Coiffier, Chapelet, and Marie (1987) demonstrated that this solution is distorted
by the semi-Lagrangian discretization and that this distortion becomes worse as the time
step is increased. We will examine the phenomenon in this section by looking again at the
one-dimensional shallow water equations; now with orography included. Then Eq. (2.11)
remains unaltered but (2.12) is changed; see Pedlosky (1979), pp 61-62:

84 (z, 1) 0p(z, 1) 3u(az ) s (z)
o T )T 4 {6 ) - @ = (e, )22 (2.29)

where ¢,(z) is g times the height of the bottom topography. Linearizing Eqs. (2.11) and
(2.25) and assuming ¢,(z) << ¢g gives

Ou(z,t)  Ou(z,t)  O¢(z,1)
o T e T s

20(at) | 0(e,t) |, Bulot) _, 04u(a)

ot Oz Oz Oz
This is a system of inhomogeneous linear partial differential equations with constant
coeflicients. The solution is summarised in Appendlx 3. We are particularly interested in
the stationary solution :

=0. (2.26)

(2.27)

b=
Toud— o

which has a resonance centered at v/dg = Fuq .

Bas (2.28)

What happens to this resonance when we perform a semi-Lagrangian discretization of
Eqgs. (2.26) and (2.27)7 Consider first of all what happens with no de-centering and with
the original approach to the orographic term:

u(z,t + At) —u(c — uoAt,t)  do(z,t + At) + do(x — uoAt, 1)
At t 2

@ (z,t + At) — ®(z — uoAt, 1) Ug(z,t + At)+ ug(z — uolt, )
At 2

=0,  (2.29)

+ ¢o =0, (2.30)
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where ® = ¢ — ¢,. As is shown in Appendix 3, this leads to the stationary solution being
changed to the following;: '
‘ udS?

¢p = WIGE B s, (2.31)

where S and C are both equal to 1 when At = 0; (see Appendix 3). Comparing Eq.
(2.31) with Eq. (2.28) we see that the solution has been distorted by the semi-Lagrangian
discretization. This may cause difficulties if we wish to model stationary waves accurately
and use large time steps. See Pinty et al. (1995) and Héreil and Laprise (1996).

To get a feeling for why it may cause noise as well consider what happens when C' =
0. Then Eq. (2.31) becomes qu = qAﬁs. Compare this with the analytical solution in
the ‘external gravity mode limit’; (u2 << ¢o); ¢, = —(ul/¢o)ds. The solution of the
discretized equations is much too large and has the wrong sign. Since C = cos(raAz/L,)
this can happen for two-grid-waves (L, = 2Az) when the Courant number (a) equals 1.

In order to gain further insight into the methods used to improve this bad behaviour it
is useful to display the solution in the limit u2 << ¢q, where it seems to have singular
behaviour when C = 0:

$p = —(u}S?/$0C")$s. (2.32)

Can we alleviate this numerical anomaly? Ritchie and Tanguay (1996) made the following
suggestion. Instead of a Lagrangian differentiation of the orographic term do a Lagrangian
averaging along the trajectory. Therefore Eq. (2.30) is replaced by

d(z,t + At) — ¢z — uoAt,t) N ug(z,t + At) + uz(z — upAt,t)

At %o 2 N
T 5,7 - At
up ezl H ¢ . (= = ult) (2.33)
which leads to (see Appendix 3),
| 2

v ugSC

¢Z7 - UgSZ _ (]5002 ¢s> (234)
which gives qASP = 0 when C = 0, which is much closer to the correct answer, qAﬁp =
—(ud/¢0)¢s in the limit uf << ¢o. In this limit Eq. (2.34) becomes

by = (2SI 00 (2.35)
This still tends to infinity as L, — 2aAz, but not as rapidly as Eq. (2.32). '

Averaging the orographic term along the trajectory had the effect of reducing the ‘sin-
gularity’ by multiplying Eq. (2.32) by a term proportional to ‘C/S’. The reason for this
becomes obvious if we compare Eqgs. (A.3.8) and (A.3.12); Lagrangian differentiation
leads to an ‘S’; Lagrangian averaging leads to a ‘C’. Can a scheme be devised which has
the effect of multiplying Eq. (2.32) by a term proportional to ‘C?/S5’? Yes, with a ‘doubly
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spatially averaged’ scheme (Laprise, private communication). For instance, replacing the
spatially averaged orographic term in Eq. (2.33) with

%{@,Ax + woAAL[2) + 2y — uoAL[2) + Bya(z — 3qu¢/2)} (2.36)

results in 26072
s Uy a
¢P - U%SZ _ ¢DC2 ¢87 (2.37)
which, in the limit u2 << @y becomes
bp = —(u}S/¢0)gs. (2.38)

This has no infinity when L, = 2aAz.

Eq. (2.36) implies three additional interpolations. We can reduce this to two additional
interpolations by using

%{qbs,z(a: + o) + 300 (2) + 3aa(T — UolA) + (e — 2u0At)} (2.39)

which ‘over-kills’ the ‘external mode large Courant number’ ‘singularity’:

~ udscr .

¢P - U?)Sz _ ¢002 ¢S' (240)

Another way of attacking this problem is to resort to de-centering. It is left as an exercise
to show that the de-centered equations:

u(z,t + At) — u(z — upAt,t) + {é;iqﬁm(a:,t + At) + A—2L~q5x(a: — qut,t)} =0 (2.41)
Aty At_
give rise to the following stationary solution:

2Q2
R uls .

P = BT 4o(C + i5e bughij2)E

(2.43)

As long as ¢; # 0 the ‘external mode large Courant number’ ‘singularity’ is removed from
the stationary solution. It is replaced with a peak whose half-width is is proportional
to ;. The larger ¢, the more the peak will spread out. However, since large ¢, has
negative effects on the overall integration there exists a contradiction between damping
the numerical resonance and accurate integration. See Rivest, Staniforth and Robert,
(1994) who investigate this dilemma and propose an O(At?) de-centering solution.
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2d. Extrapolation to find the departure point.

Hortal (1998) has demonstrated that, in some weather regimes, there appear in forecasts
of the ECMWF 2TSLSI spectral model non-meteorological oscillations whose origin can
be traced to the computation of the departure point position. See also his presentation
to this seminar. In this section an attempt is made to gain some insight into the cause
of these oscillations inspired.by a personal communication from Dale Durran; see also

Durran (1998).

How can we perform a stability analysis of the non-linear equation dz/dt = u(z,t) 7 Let
us resort to the standard procedure of assuming that we can gain some useful insight by
investigating the oscillation equation,

Ox(z,1) Ox(z,t)
ot T g,

as a ‘first order’ linear representation of dz/dt = u(z,t).

= ivx(z,t), : o (2.44)

Consider first of all the method of computing the departure point indicated by Eq. (2.8):
x{z, (n + 1At} — x{z — ugAf7 nAt} =

iVAt(gX{SE — ugAt/2,nAt} — %X{m — upAt/2,(n — 1)At}) (2.45)

Substituting the solution x{z,nAt} = A" exptkz and multiplying by exp 2ikuoAt gives

A2elikuot _ )\ gikuo e L 37y AL[2)eF oA 2} (v AtL[2)ePFHAl2 = (), (2.46)

whose solution is

l_*_ JivAt cikuo /2

A ikug At —
¢ 27 T4

+ %\/ {14 3i(vAt/2)euti/z}2 — iy Atedikudt/2(2.47)

Notice that |A| is a function of ug. To get some indication of its behaviour consider the
solution for vAt << 1:

|M? = 1 — 4vAtsin®(kuoAt/2) + O(v?) = 1 — dvAtsin®(arAz/L;) + O(V*At?). (2.48)

Therefore, although the leading term is O(At*), |A]* becomes effectively 1 + O(At) for
two grid waves with Courant number equal to 1. (There is also a numerical mode whose
leading term is O(v2At?)). ’

Next consider the ‘extrapolation along the trajectory’ method of computing the departure
point:

x{z, (n + 1)At} — x‘{w — upAt,nAt} =

At (gx{m — ugAt,nAt} — éx{m — 2upAt, (n — 1)At}) (2.49)
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Substituting the solution x{z,nAt} = xA" exp ikz and multiplying by exp 2ikuoAt gives
AZeZkuolt _ yeikwltf] 1 3i(yAL[2)} + i(vAt/2) =0, (2.50)

whose solution is

1 3ivAt

/\ 1kug At —
¢ 277

+ -;-\/{1 + 3i(vAt/2)}2 — 2ivAt (2.51)
Notice that |A| is now no longer a function of uy. The solution for At << 1 is
A2 =14 (1/2)(vAt)* + OV AL) (2.52)

Therefore, the solution is weakly amplifying, but is indépendent of how strong the ad-
vecting velocity is. (There is also a numerical mode whose leading term is O(v2At?)).

1t is left as an exercise to show that
A2 = 1+ 2(vAt)2sin®(arAz/Ly) + O(PA). (2.59)

for the following scheme, corresponding to that suggested by Egs. (6) and (7) of Hortal
(1998), : |
x{z,(n + 1)At} — x{z — uoAt,nAt} =

wAt (—;—x{z, nAt} + x{z — uoAt,nAt} — %—x{z — ugAt, (n — I)At}) (2.54)

Now, in contrast to Eq. (2.48), |A|* becomes effectively 1 + O(At?) for two grid waves

with Courant number equal to 1. However, the dependence on a remains, in contrast to
Eq. (2.52).

Although it must be admitted that it bears a somewhat tenuous connection to the highly
non-linear problem being examined, this stability analysis points strongly toward ‘ex-
trapolation along the trajectory’ being the most attractive method for calculating the
departure point position. Therefore, it is disconcerting to note that Temperton and Stan-
iforth (1987), in shallow water experiments, found that with this scheme ‘results were

consistently worse than those for the simpler method 2’ (their method 2 corresponds to
our Eq. (2.8)).

2e. The upper boundary condition.

The upper boundary condition used in SLSI schemes is usually a lid condition with the
vertical motion set to zero. This has no physical basis and is a source of false reflections
which can cause standing waves to form in the model atmosphere. The standard device
to handle this problem consists in using diffusion with a coefficient which increases with
height. An attractive alternative would be to use a radiation upper boundary condition,
which is more physical. Herzog (1995) expanded on the work of Klemp and Durran
(1983) and Bougeault (1983) in order to derive a radiation upper boundary condition for
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a hybrid vertical coordinate. As he says in his report, ‘the application of radiation upper
boundary conditions becomes more necessary with increasing grid resolution’. His scheme
is unstable for large time steps and thus is not appropriate for a semi-Lagrangian model.
A radiation upper boundary condition scheme within a semi- Lagrangw,n semi-implicit
model has not yet been invented.

3. NOISE FROM THE ‘PHYSICS’.

Because the semi-Lagrangian semi-implicit scheme has an extremely liberal stability crite-
rion we can, in principle, use very large time steps to integrate the dynamics in primitive
equation Inodels This prompts the question: can we use equally large time steps When
updating the physical processes? : ~

Actually, noise originating in the physics is not exclusive to semi-Lagrangian integrations.
In Eulerian models, Kallberg and Gollvik (1983) discuss spurious oscillations caused by the
vertical diffusion scheme, and their elimination, as does Hammarstrand (1997). Kalnay
and Kanamitsu (1988) and Girard and Delage (1990) also describe spurious oscillations
originating in the surface schemes and vertical diffusion schemes in Eulerian mtegratlons
As we move to relatively larger time steps and finer grids we can expect these problems
to be exacerbated; see Bénard and Yassad (1995): They encountered very strong high
frequency osc1llat10ns in their vertical diffusion scheme when they used large time steps
with high vertical resolution near the surface in a semi-Lagrangian 1ntegrat10n

In order 'to use bigger time steps in ‘the ‘physics’ we must make sure that the time dis-
cretization schemes we use are accurate, stable, and non- osc1llat1ng 1In this section some
possibly unexpected sources of inaccuracy, instability, and unwanted oscillations, which
may arise when large time steps are used in the ‘physics’, are examined. This is done
by employing some widely used strategies to integrate a number of sunple differential
equatlons Wthh are typlcal of the kind used in the physmal parameterlzatlon schemes

3a. Stiffness. -

Consider the equation

du(t) dF( ) o

= —K[u(t) - F(t)] + ——= dt ;7 u(0)=0. | (3.1)
Kisa positive cqnstdnt’. The solution is ’give'n by ‘
u®) = [w(0) = F(Oesp(-Kt) + F(&) —  ~ (32)

If we choose K = 100hr~! and F(t) = t/10 + 0 5, (‘t” is in units of hours), then we
see that the solution consists of a slowly varying part, F(t), and a rapidly varying part,
exp(-100t); see the line made of long dashes in fig. 1. If we are only interested in the

318



McDoNALD, A: THE ORIGIN OF NOISE IN SEMI-LAGRANGIAN INTEGRATIONS

slowly evolving part of this solution then we would like to be able to use a large time
step to get as accurate an integration of Eq. (3.1) as we require. Looking naively at fig.
1, a time step of 0.5hr would seem to be a comservative choice. Let us examine what
happens when we use this time step with three simple integration schemes, all of which
are used widely in the ‘physics’. These are the Euler explicit, the trapezoidal, and the
Euler implicit schemes. These correspond to v = 0,7 = = 0.5, and v =1, respectlvely, in
a. (3.3):
(™ —u")/At = —K[yu™ + (1 — y)u™] + KF™ + (F/r (3.3)

With At = 0.5 hr the Euler explicit scheme is unstable. The values of u for the first five
time steps are 0, 25, -1195, 58589, -2870871. This growing oscillation continues until we
get a floating overflow. We must use a very small time step (At = 0.01Ar) to get a stable
and oscillation-free integration.

2-0
— ——- Exact solution
----- gamma = 1.0, K = 100.0, dt = 0.50hr
e gamma = 0.5, K = 100.0, dt = 0.50hr
o)) 7N/ -
(— - -
35 T/
-'_’ - .-
® /T
o0+ =7\
o P
£ -\
) T
— —f .
0-5377-\°
0-0 ; } } L J T ’ t )
0 i > 3 4 5 6 7 8 9 10
Time(hr)

FIGURE 1. Graphs of the solutions to Eq. (3.3) using At = 0.5, K = 100.0 and various
values of 7.

This illustrates the phenomenon of stiffness; the time step is restricted by stability re-
quirements, rather than accuracy. A good working definition of stiffness is as follows. A
system is stiff if the solution we seek is slowly varying but other solutions exist which
decay rapidly.

A stability analysis of the homogeneous part of Eq. (3.3) can be performed by substituting
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u(nAt) = A", giving

1+ AtK(y—1)
14+ AtKy
For the Euler explicit scheme (v = 0) we must have KAt < 2 for stability.

A= (3.4)

Notice that the trapezoidal scheme (y = 0.5) has |[A| < 1. Thus an integration with
At = 0.5 hr will be unconditionally stable. This is in fact true, as can be seen from fig.
1, where the solution is displayed as a continuous line. Unfortunately it oscﬂla,tes about
the correct solution before setthng down. Stiffness strlkes agam'

We can understand what is happening here by noticing that for v = 0.5 and KAt =
50,2 = —0.92. Therefore, the homogeneous solution will oscillate, because u(At)
—0.924 ;u(2At) = (—0.92)%% = 0.854 ; u(3At) = (—0.92)%4 = —0.794, and so on.

Obviously, if we wish to eliminate this oscillation from the homogeneous solution we must
choose v such that A > 0, that is, v > 1. With 4 = 1, (the Euler implicit scheme) and
At = 0.5hr, then A = 0.02 and the transient solution disappears rapidly, as it should.
The integration is then stable and non-oscillatory. See the line made with short dashes
in fig. 1.

The above simple analysis is actually indicative of some very general results. 1. No
explicit scheme will be stable for a stiff system. 2. The choice of implicit schemes which
are stable and non-oscillatory is extremely restricted. 3. O(At?) accurate schemes will
be computationally expensive. 1 and 2 above, when expressed in precise mathematical
terms, are known as the ‘second Dalquist barrier ; see Dalquist (1963), and section 6.6 of
Lambert (1991). The latter also contains an excellent discussion on the nature of stiffness
in sections 6.1 and 6.2.

Where can stiffness arise in the ‘physics’? One possibility is if a process is ‘switched on’
or ‘switched off’ instantaneously. Since thls represents a very fast process 1ndeed it is a
prime candidate for stiffness. -

3b. Boundaries.

Spatial boundaries can also be a source of oscillating solutions when large time‘step's are
used. To illustrate this let us solve solve the diffusion equation,

BX(z t) 62X(z,t)
at o 922 7

with the following boundary conditions: X(0,t) = 0; X(Z, t) = 0; and the following 1n1t1a1
condition: X (z,0) = Xp for 0 < z < Z. The parameter « is a positive constant.

(35)

This is the classic problem of a bar initially at temperature X, whose ends are iplaced
against blocks of ice. Physically, the bar gradually cools, most rapidly near the ends, and
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more slowly at the centre. There is an analytical solution; see Churchill (1963). For our
purposes we can also regard it as column model of a tongue of warm air between the cold
ground and the cold free atmosphere. Let us discretize as follows:

X'n.+1 — Xn 62X n+1 aZX n
A Al - Wam) +e-0(5x) ] (3:6)
*X _ Xpp = 22Xk + Xpa
(ﬁ)h = A2 (3.7)

I have chosen X, = 16°, Z = 1600m, £ = 20m?sec™?, and Az = 100m . With these
choices kAt/Az* varies between 0.2 and 7.2 as At goes from 100sec to 1 hour. Let us
examine what happens if we use the trapezoidal scheme to integrate. Since this has
v = 0.5 it is O(At?) accurate, and would seem to be the optimal choice. For small values
of kAt/Az* we get stable and accurate integrations. See the line joining the small dots in
fig. 2. This shows the evolution of the temperature at z = 100m over the first five hours
of the integration, using a time step of 100 sec.

+20

gam = 0.5 K = 20.0 dt = 100 cfl = 0.20
+154 ——— gam = 0.5 K = 20.0 dt = 3600 cfl = 7.20
—=a—— gam = |,0 K = 20.0 dt = 3600 cfl = 7.20

ture

+10+

Tempera
+
@

0 \/ o~ <]
2 — ! 4 5
Time (hours).

o

FIGURE 2. Graph of the temperature at z = 100m predicted by Eq. (3.6) for various
values of At and . In the labels within the figure cfl = kAt/AZ2.

If we are interested only in the longer-term changes in the temperature at 100m we would
like to be able to integrate with a large time step. However, with the trapezoidal scheme
a nasty oscillation occurs if we do this. See the line joining the triangles in fig. 2. For
this integration At = 3600sec (kAt/Az* = 7.2). Notice that the integration is settling
down as time goes on; the scheme is ‘stable but oscillating’.
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The Euler implicit scheme (fy = 1) has no oscillations. See the line joining the squares in
fig. 2, which again shows the integration with kAt/Az* = 7.2. Of course, there is some
loss in accuracy initially.

Sudden jumps in space can also lead to oscillating solutions and must be treated carefully.
3c. Non-linear terms.

The results and arguments of Kalnay and Kanamitsu (1988) are used extenswely in this
section.

In order to illustrate additional problems posed by ‘non-linear terms’ when updating the
‘physics’ with large time steps consider the following simple damping equation,

oxX
i

To give a meteorological flavour to the interpretation of the results let X be the tempera-
ture difference between the ground and air, K X¥ represents the exchange coefficient, and
all slowly varying processes are included in D(t), to which we will assign a diurnal cycle:
D(t) = 1—sin(27nAt/24), (At is measured in units of hours in this section); K = 10 and
P = 3. With these choices, the solution is slowly varying, see the line joining the dots in
fig. 3, and At = 0.5 hr would seem to be sufficient to maintain our required accuracy.

_KXPR@) £ D@ (38)

Let us examine first of all a most disconcerting result. A predictor-corrector discretization
which treats the linear term implicitly is

(X - X")/At = -K(X"FPX 4+ D" (3.9a)

(X" - X") /At = —KXP X" 4 D" (3.98)

With At = 0.5 hr time step this gives a solution which is stable and non-oscillatory, and
completely wrong. See the line joining the ‘+’s in fig. 3, and compare with the correct
solution. (An accurate integration can be restored by reducing the time step to 0.166 hr).

The Euler implicit scheme served us well in sections 2a and 2b. Thus, let us try the
following scheme with v =1

(X" X")/At = ~K(X") X" + (1 - )X"] + D" (3.10)

With a At = 1.0 hr time step this produces an unpleasant result. The solution oscillates
wildly. See the line joining the squares in fig. 3.

The linear analysis of Kalnay and Kanamitsu shows us that the amplification factor for
the scheme of Eq.(3.10) is :
1-B(P+1-9)

A=
14 By

(3.11)

322




McDoNALD, A: THE ORIGIN OF NOISE IN SEMI-LAGRANGIAN INTEGRATIONS

where 8 = K XF At, X, being the equilibrium temperature used to linearise the equation.
Thus, the linear stability requirement is violated for large § when P = 3 and v = 1, since
A = —3. This analysis also tells us that ¥ = P + 1 gives a non-oscillating unconditionally

stable scheme since 0 < A < 1. Such a solution is plotted as the line joining the ‘x’s in.
fig. 3.

2-0

— gemma = 0.0, dt = 0.0Thr
—=&— gamma = ], D dt = 1.00hr
1.8+ —+—— gamma = 4. CI dt = 1.00hr
o f—+— predic-corr -, dt = 0.50h¢ i
164

o
[

Temperature

Time(hr)

FIGURE 3. Graphs of solutions to Eq. (3.8) using the predictor-corrector scheme, Eq.
(3.9) and simple implicit schemes (Eq. (3.10) with various values of y)

Is there a scheme which does not depend on knowmg P? Consider the generic equation
dX/dt = f(X) discretized as follows:

(Xn+1 ___Xn) _ n ’ (Xn—{—l Xn) df
Y G e e

Notice that if we apply this idea to Eq. (3.8) we get Eq. (3.10) with v = P + 1,
an unconditionally stable and oscillation-free scheme according to Eq. (3.11), as we
discussed in the previous paragraph. There are two drawbacks (a) df /dX may not be
easily computed, and (b) it is O(At) accurate.

s | (3.12)

We have shown that explicit schemes lead to instability and naive application of implicit
schemes can lead to oscillating solutions for stiff systems and also for systems such that
the boundary values differ markedly from the interior values. For both these problematic
systems the Euler implicit scheme gave stable and oscillation-free integrations. However,
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it is only O(At) accurate. It is the O(At) accurate representative of a class of (L-stable)
schemes which are appropriate for solving these kinds of problems. There are higher order
members of the class of L-stable schemes. All seem to be computationally expensive. See,
for example, section 6.3 of Lambert (1991).

When non-linear terms appear in the equations then stable schemes which are computa-
tionally inexpensive are more difficult to invent. The ‘over-implicit’ scheme (large v in Eq.
(3.10) ) is effective. If that fails the method of Eq. (3.12) seems to be the most reliable.
Again, both of these schemes are O(At) accurate, and higher order accurate versions.of
them will almost certainly be computationally expensive.

4. THE INTERFACE BETWEEN THE PHYSICS AND DYNAMICS.
4a. Splitting the physics from the dynamics.

The methods by which the physical parameterization schemes (‘the physics’) is joined to
the dynamics can be summarised by considering the generic equation with physics added:

W — L)+ VW) + P), | (4.1)

where L and N represent the linear and non-linear terms coming from the dynamics
and P represents all of the physics. The natural way to proceed would be to divide the
physics into linear and non-linear terms, P(y) = Lp + Np, and subsequently solve the
new 2TLSLSI system:

At
¢n+l {Ln+1+Ln+1} {qpn {Ln+L" +Nn+1/2+Nn+1/2 H +_A‘_2_€{Nn+1/2+N;+1/2}
| ) (4.2)

This has not been done because, firstly, in a multi-level primitive equation model the
left hand side of Eq. (4.2) represents a system of equations which is expensive to solve.
(However, Grabowski and Smolarkiewicz (1996) have taken a step in this direction). Sec-
ondly, because some of the terms contributing to IV p+1/ may lead to instability. Thirdly,
because some of the physical parameterization schemes may need dynamical tendencies

as independent input.

There are two separate ways in which a particular physics sub-process may require a
knowledge of (0v/0t)4yn. First, it may require it as an independent input, for instance,
moisture convergence for Kuo closure in some convection schemes. Second, as part of
a ‘fractional stepping’ approach to updating the physics. We will leave discussion of
the latter to the next section. In what follows we assume that the physics requires, for
whichever reason, a reasonable approximation of (0t /0t)gyn.
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The solution has been to split computation of the physics from the computation of the
dynamics, do them separately, and to subsequently join them together. There is no unique
way of doing this. Thus many different options have been tried. In order to give a theme
to the discussion we will take the point of view that Eq. (4.2) is a ‘holy grail’, and.
therefore worthy of pursuit. :

The cheapest and simplest approach is to compute the physics after the semi-implicit
adjustment and after the semi-Lagrangian interpolation:

t
g = St = [w” S+ N”+1/2}J T (4.30)

Having solved this implicit system we can now use (0¢/0t)4y, = (™ — ¢™)/At in any
physics subroutine where it is needed and complete the integration as follows:

P = gt AP ‘ (4.3b)

As we discuss in the next section, we could use P" instead of P™+ in Eq. (4. 3b) although
this is not in the spirit of Marchuk (1974) splitting.

It we accept that Eq. (4.2) as an ideal we should aim for then the approach of Ritchie
et al. (1995), who compute the physics before the semi-implicit adjustment and after the
semi-Lagrangian interpolation, takes a step toward that ideal. Theirs is a three time level
scheme. The equivalent two time level scheme might proceed as follows.

,(/) [ n {Ln+Nn+1/2}J + Azt{Ln + Nn+1/2} (4.4(1)

Notice an additional computation has been performed (L™). The reason is to provide
an approximate value for (9¢%/0t)4yn, (= (Y™ — ™)/ At), needed for the physics, which
can now be computed, and the semi-implicit adjustment can subsequently be performed,
remembering to subtract out the anomalous linear term:

At At

Bl pntt _ e -Q—L” + AP  (4.40)

n+l
¥ 2

One way of taking a further step toward Eq. (4.2) is to compute the physics before
the semi-implicit adjustment and before the semi-Lagrangian interpolation. Then the
question is: what do we use for (8¢/8%)4yn? One approach, that used at Météo France,
is to compute it explicitly at the beginning of each time step, which is expensive. We are
then in a position to solve a more balanced looking system:

Bl [w {L” + N2 P"}] + At{ N2 P“} (4.5)

n+l
¥ 2

It should be pointed out that at Météo France they disagree with the ‘holy grail’ point of
view and argue that all of the physics should be included at the departure point, that is,
they replace Pl + P* with 2P} in Eq. (4.5).
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A clever way of almost reaching the same objective which avoids the additional expense
of explicitly computing (9v/0t)ays is that described in Hortal (1998); see also his talk at
this seminar. At time level ‘n — 1’ after computing the contribution from the physical

parameterization schemes, P™!, store these arrays, and, in our notation, replace Egs.
(4.4a) and (4.4b) with

g{L” + N2 P”“l} (4.6a)

o [¢" {Ln+Nn+1/z+Pn 1}} +5

The ‘physics’, P", can now be computed using (0% /0t)4yn &~ (Y™ — ¥™)/At, and subse-
quently performing the semi-implicit adjustment completes the integration:

%Lrﬁl ¢n+ + Z;t{_pn + Pn—l _ Ln} (4.6())

Of course, the trade-off is that the extra fields must be stored.

¢n+1 _

Logically, there is a fourth option, that is, to compute the physics ‘after’ the semi-implicit
adjustment and ‘before’ the semi-Lagrangian interpolation:

At
Y — —2—L“+ P" {L” + N”“/Z} (4.7q)

Pl = [7,&“* + AtP”+] + %N"H/Z (4.7b)

Doubt about the accuracy of Egs. (4.3) has arisen as a result of a paper by Caya, Laprise,
and Zwack (1998). They demonstrate that for large time steps a localized noise-like
feature appears in the upper levels in a forecast using the three time level equivalent
of Eqs. (4.3). This feature did not appear in the same forecast using the three time
level equivalent of Eqgs. (4.4) using the same large time step; (nor in the small-time-step
forecast). In contrast, Chen and Bates (1996) found the forecasts using Eq. (4.3) ‘showed
similar scores’ to those using Eq. (4.5).

4b. Splitting within the physics.

Within the physics each different process is computed essentially independently of the oth-
ers. Thus, the radiation scheme, the vertical diffusion scheme, the condensation scheme,
the surface scheme, and so on, are split from each other. Within this context two questions
arise. (a) Should the physics be computed using the fields valid at time level ‘n’, or using
fields which have been updated by the dynamics? In the notation of the previous section
should we use P™ instead of P™ in Egs. (4.4b), (4.5) and (4.6b)? Having decided which
of these options to use there arises a separate question. (b) Should a physics sub-process
use the fields which have been updated by the previous sub-process, or should it use the
starting fields? For example, say we proceed as follows. We call the radiation sub-routine
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first. Next, we call the vertical diffusion scheme. In it we have the choice of using the
original fields or those incremented by the radiation scheme. Should the vertical diffusion
update ‘know’ that the radiation scheme has changed the model atmosphere? We are
faced the same dilemma when we call the next physics sub-process.

Beljaars (1991) has used the term ‘process splitting’ to describe the procedure whereby
all of the physics sub-process use the same fields. He also showed that it can be a source
of unwanted oscillations in certain circumstances.

He used the term ‘fractional stepping’ to describe the procedure whereby each physics
sub-process uses fields which have been updated by the previous sub-processes. He then
argued that where certain processes balance each other in the atmosphere then ‘with
longer time steps it becomes more and more relevant to keep an accurate balance between
processes within a single time step’ during the numerical integration. As an example,
Janssen et al. (1992) demonstrate the importance of including the Coriolis terms in
the vertical diffusion update. If one accepts these arguments, then Eq. (4.2) seems ‘as
balanced as possible’ and. therefore worth aiming for.

4c. Orographic noise.

The two-grid-wave group velocity is hopelessly inaccurate for both the semi- Lagrangian
and Eulerian discretizations of the advection equation. For example, the one dimensional

advection equation,
M(z,t) | Bp(a,t)
ot + o Oz
using a leapirog discretization, yields a group velocity which is in the the opposite direction
to the advective velocity; uy(2Az) = —ug. See page 117 of Haltiner and Williams (1980).

For the semi-Lagrangian discretization, using a cubic interpolation, the group velocity is
given by

=0, (4.8)

Yy g & (1-4°)(2-&)(26 - 1){3 4 &(1 — &)S}S?/9

Ug a 1-a&(1-4%)(2-a){3+24(1 — &)S8}S2/9
where § = 2sin*(kAz/2). (Exercise: derive this result using Egs. (30) and (33) of
McDonald (1984) ).

(4.9)

The group velocity of the two-grid waves(S = 2) varies between —1.66uq for @ = 0 and
—oo for o = 0.5—. It varies between +oo for & = 0.5+ and ug for o = 1. However,
since the amplitude of the two-grid wave with o = 0.5 is zero these infinite values are
not catastrophic. (Because the denominator in Eq. (4.9) is the amplitude squared, the
amplitude will always be small when the group velocity is large).

As long as the amplitude of the two-grid wave remains small these inaccuracies need not

concern us. By definition we are trying to model much longer wave phenomena. However,
big problems occur if their amplitude grows. One can therefore argue that any feature of
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the model which can be a source of large amplitude two-grid waves should be removed
because the energy associated with it will be advected away totally inaccurately by the
advection scheme; this is just noise, by definition.

One possible mechanism for amplifying these waves is the interaction of the physics and/or
dynamics with orography which varies significantly from one grid point to the next. Thus
it can be argued that the mountains should be smoothed to remove all two-grid features.

McDonald and De Bruijn (1998) showed in a case study that single-grid-point enhance-
ments of rainfall were significantly reduced by removing the two-grid structures from the
orography.

The four-grid-wave group velocity is also poorly described; ¢;(4Az) = 0 for the leapfrog
discretization. For the semi-Lagrangian scheme their group velocity (§ =1 in Eq. (4.9))
climbs steadily from 0.33ug (for @ = 0) to ug (for @ = 0.5), rising to a maximum of
1.116ug (for o = 0.72) and falling to ug (for o = 1). Thus, it is possible to argue that
these scales should also be filtered from the orography.

5 FINAL REMARK.

The history of the implementation of 2TLSLSI schemes has been that as the grids have
been refined new sources of noise have appeared. Given this, we should anticipate further
unpleasant surprises, particularly when we try to integrate SLSI non-hydrostatic models
with time steps which are large compared with those allowed by Eulerian schemes.

Acknowledgement. The presentation in sections 4a and 4b owes much to many exchanges
with Erik Bazile, Pierre Bénard and Jean-Frangois Geleyn and in particular to the latter’s
(unpublished) presentation to the SRNWP mini-workshop hosted by Météo-France in
Toulouse during December 8-9, 1997. Thanks to Peter Lynch for a critical reading of the
manuscript.

6a. APPENDIX 1.

In this section the von Neumann stability analysis of Egs. (2.13) and (2.14) with u(z,t) =
ug and ¢’ = ¢y is performed.

Substituting as follows for any field
PP = pAneihlde (A.1.1)
then, using centered differencing on a c-grid,

o™  sin(kAz
(%)Izz_——gm/?)zp, P (A.1.2)
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For a Lagrange linear interpolation, (see, for example, Bates and McDonald, 1982)
¥y = (1= a)Yr_, + g1 54, (A.1.3)
where p + & = a = ugAt/Az. Substituting ¥7 from Eq. (A.1.1) results in

,‘z): — {(1 _ &) + &e—ikAx}e—ikpr¢? = Aﬂb? (A]_4)

By the same method we get, for a Lagrange cubic interpolation,

r=Aggp, (4.15)

where ( see, for example, Eq. (16) of McDonald (1987))

a1 +6)(2 - &) %au )1+ @) e (A1)
Also,
(%‘ﬁe)" — iKAY", (A.LT)

where A stands for A; or Az depending on whether a linear or cubic interpolation is being
used to evaluate the field at the departure point.

Using the following definitions of v, and 7y,

At

YL = (%EK)E)%; IN = (7K>2¢Na (A-1-8)

then substitution of A.1.1, A.1.2, A.1.5, A.1.7, and A.1.8 into Eqgs. 2.13 and 2.14 results
in the following dispersion relation:

A3{1 +(1+ eg)zf)'L} + ,\2{—21\ +2(1 - €)Ay +, E(l + €)% + g(l — ej)A}ny}Jr
,\{A2 + (1 — ) APy + [—%(1 +6) 4+ (1—e)A+ -g-(1 - eg)W]vN}
+{ [—%(1 — A - %(1 - eg)2A2]7N} -0 (AL9)

6b. APPENDIX 2.

For small € Eq. (2.18) lends itself to a perturbation analysis; see for example, Bender and
Orszag (1978). Postulate a solution

A= )\0 + 6/\1 + 6/\2 + ceny (A2].)
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and substitute it in Eq. (2.18):

1—’YL) }

3 oy)2

{AO 2A°<1—+7m Thop A+

e&uﬂg—éh%<1;$j44»3+2%+A1—1}+0@%:o (4.2.2)
L

The zeroth order equation has three solutions; two given by Eq. (2.16), and Ag = 0. The
latter corresponds to the computational mode. Here we concentrate on perturbations of
the gravity wave solutions. Substituting A from Eq. (2.16) into the O(¢) equation and
using the substitution 2(1 —~5)/(14+75) = Ao +1/Ao gives A; in terms of the zeroth order

solution: )
1 -3 _ 14 2i/1
< Ao —1 Fi /L
It is left as an exercise to derive Eq. (2.23) from Eq. (2.22).

A1

(4.2.3)

6c. APPENDIX 3.

Equations (2.26)-(2.27) form a system of inhomogeneous linear partial differential equa-
tions with constant coefficients. Fourier transformation with respect to ‘z’ will change it
to a system of inhomogeneous ordinary differential equations (with respect to time) with
constant coefficients, which can be solved by standard methods. (See for example, Ince,
ch VI). It is an interesting exercise to do this. Let us take a short-cut by postulating a
solution the form

P(z,t) = \/—;_ﬂ_- /_o:o dk{z&h expi(kz — wt) + b, expz'k:v} (A.3.1)

where the subscript A refers to the homogeneous part of the solution and the subscript p
to the particular integral. For each wave number k the homogeneous system becomes

—w + ku k U ) 0
[ o 0 —w+ku0][(;Z]expz(km—wt):[o],

(A.3.2)

which only has a non-trivial solution for w = k(ug % 4/¢o). These are the two gravity
waves. Next substitute the particular solution in the equations and we get for each wave
number k:

kup k Ty _— 0 :
[ kdo kuo ] [ ép ] exptkz = { kuods } expikz,
‘ (A.3.3)
which, solving for (4, qAS,,), yields
by = —bofus; By = g A34
Up = ¢p/“07 ¢p— 2 &5 ( )
u§ — %o
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What changes are caused by the semi-Lagrangian discretization? Using Eq. (A.3.1),

Yr(z,t + At) — p(z — uAt,t) =

\/% /_o; i expi(ke — wt) 2isinq (ko — w)At/2} exp {—ilkuo + w)At/Z}] (A.3.5)

L

'lﬁh(.’l},t + At) -+ d)h(:v — qut,t) =

1 /oo dkiy, expi(kz — wt) |2 cos{(kuo — w)At/2} exp {—i(kuo + w)At/Z}] (A.3.6)
V21 J-o0 i :
The formulae for 1, can be obtained by putting w = 0 in Eqs. (A.3.5)-(A.3.6).

When these are substituted in Eqgs. (2.29)-(2.30) then for each wave number k the homo-
geneous system now gives rise to

[ (2/At)sin{(kuo — w)At/2} keos{(kuo — w)At/2} ] [ U ] _ [ 0 ]
kdocos{(kug — w)At/2} (2/At)sin{(kuo — w)AL/2} | | &4 0}’

(A.3.7)

which only has a non-trivial solution if the determinant of the matrix is zero. Next
substitute the particular solution in the equations and we get for each wave number k:

[ (2/ At)sin{kuoAt/2} keos{kupAt/2} ] [ i, } _ [ oy 0 ] |

kdocos{kuoAt/2} (2/At)sin{kuocAt/2} | | &, sin{kuoAt/2}d,
| (A.3.8)
which results in
o | sin?{kuoAt/2} 5
% = sin?{kuoAt/2} — <}50(k‘At/Z)26032{ku0At/2}qu (4.3.9)
In order to make the comparison with Eq. (A.3.4) more transparent define
sin{kuoAt/2} ' |
S = TR C = cos{kuoAt/2} (A.3.10)
Then Eq. (A.3.9) becomes
¢p = ——1‘5-51——55 (A3
P U382 — ¢C27° s

What happens when we replace Eq. (2.30) with the Ritchie-Tanguay (1996) discretization,
Eq. (2.33)? Only the right hand side of Eq. (A.3.8) is changed:

(2/ At)sin{kuoAt/2} kcos{kuom/z}] [qp ] _ [ -0 )
kgocos{kuoAt/2} (2/At)sin{kuoAt/2} by kugcos{kuoAt/2}¢s |’

(4.3.12)
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leading to )
i UOSC 4
= e 3.1
¢P U%SZ _ ¢002 ¢s (A 3 3)
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