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1 INTRODUCTION

Haugen and Machenhauer (1993) developed a spectral integration technique for limited area models
based on an extension of the integration area to obtain periodic variations in both horizontal directions,
and they also applied the technique successfully to a shallow water model. The same technique
was implemented for the full 3-dimensional primitive equations by Gustafsson (1991). The same
basic forecast model equations, the same vertical hybrid pressure/sigma coordinate and the same
physical paramneterization schemes as in the gridpoint HIRLAM (Kallén 1996) are utilized. All basic
variables invelved in the dynamical model equations are represented by the complex-valued coefficients
of truncated 2-dimensional Fourier series. An elliptic truncation in wavenumber space is utilized to
ensure an isotropic representation. Since calculations of non-linear terms are carried out in grid-point
space, Fast Fourier Transforms (FFT) are utilized for the transformations between gridpoint space
and spectral space. '

The spectral HIRLAM includes a three time level Eulerian semi-implicit time integration scheme as
well as a two time level semi-Lagrangian semi-implicit time integration scheme. A comparison between
the gridpoint and the spectral semi-Lagrangian HIRLAM models was carried out by Gustafsson and
McDonald (1996). They concluded that both model formulations had improved from the model
comparison exercise, that both model versions produce equally good forecasts for the cases studied and
that the computer costs for the two model formulations are almost identical. The spectral HIRLAM has
been coded for distributed memory parallel computers using a message passing technique (Gustafsson
and Salmond 1994). This parallel version of the spectral HIRLAM has been utilized as the model
framework for development of a variational data assimilation for HIRLAM (Gustafsson and Huang
1996, Gustafsson et al., 1999). ' : -

The aim with these lecture notes is to presént a fairly complete description of the Eulerian version of
spectral HIRLAM and to discuss the use of this model as a framework for development of a variational
data assimilation system for HIRLAM.

2 SPECTRAL FORMULATION OF YHIRLAM

2.1 Area extension to obtain bi-periodic variations

The geometry of using an extension zone to obtain periodic variations in both horizontal dimensions is
illustrated in Figure 1. Assume that we want to represent initial and lateral boundary fields, given in
the gridpoints of the inner integration area only, by bi-periodic Fourier series. To do so, extrapolated
gridpoint values are determined in the extension zone in such a way that the subsequent Fourier
transforms will give a smooth representation in the inner area with preserved normal gradients along
the lateral boundaries. This is achieved by an extrapolation, first along each row of gridpoint values in
the x-direction and then along each column of gridpoint values in the extended area in the y-direction.
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Figure 1: Geometry of the extension and boundary relaxation zones

The extrapolation is carried out with the constraint that the normal gradients and the absolute values
are preserved at the boundaries of the inner integration area. To achieve best possible consistency with
‘the spectral Fourier series representation, sine- and cosine-functions are utilized for the extrapolation.
Let f;_j, denote the gridpoint values of any boundary or initial field in the inner computational area
(with grid indices 1 < i, < n, and 1 < j, < ny). Let the extended area have grid indices 1 < i, < ngy
and 1 < j, < ny. Gridpoint values in the extension zone are first calculated for each row of grxdpomts
of the inner computational area (grid indices n, +1 <4, <y and 1 < j, <ny ):

fiziy, = Giy0 + 851 cos(0.5z;) + gj,2sin(0.5z;) + gj,3sin(z;) (1)

where z; = %I%_’—E-';:% and the coefficients g;, » (k=0,1,2 and 3) are determined to make the extrapolation
expression fit the original gridpoint-values exactly for i,=1,2,n.-1 and n,. The extrapolation to
.obtain gridpoint values in the "upper” part of the extension zone (grid indices 1 < i, < n and
ny +1 < jy < ny) is carried out similarly: '

Jiciy = 8i.0 + gi.1 cos(0.5y;) + gi,25in(0.5y;) + gi.3 sin(y;) (2

where y; = %ﬂ#‘i—_—n”)- and the coefficients g;_j (k=0,1,2 and 3) are determined to make the extrapolation

expression fit the original and prevmusly fitted gridpoint values exactly for j,=1, 2, ny-1 and n,.

This procedure to obtain bl-penodlc variations include a certain degree of arbitrariness since there
is no single unique way of doing the extrapolation. Results of experiments to test the sensitivity to

details in the extrapolation, have indicated that this arbitrariness only has a very minor impact on
forecast results.

2.2 Fourier transforms and spectral truncation
Once the area extension algorithm has been applied, 2-dimensional forward discrete Fourier truncated

transforms can be used to obtain the time-dependent spectral coefficient fields to be integrated forward
in time by the spectral forecast model:
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Similarly, needed gridpoint values of the transform grid to be used during the forecast mode] integra-
tions, may be obtained by 2-dimensional inverse truncated Fourier transforms:

2,,.,'(&14_2'1)

k. i, , 13
1 mae ma,z n +21r'i(ﬁ=-+-'71-)
.fizjy = _—-—n - Z Z .fk gl Tyl (4)
zl yl k—_-“‘kmar. I=— lmau:

To obtain an aliasing-free representation of quadratic terms in the transform grid, this grid should
include at least 3*M+1 grid-points in one direction, if M is the number of complex Fourier-components
of the spectral model in that particular direction. However, in the present formulation of the spectral
HIRLAM model, these quadratic terms also include map-factors. These need to be considered in
the determination of the transform grid. Thus if the inverse map factors are truncated by N waves,
the transform grid (covering the extended area) should contain at least 3*M+N+1 gridpoints for a
completely aliasing-free representation of these quadratic terms. In addition, an elliptic” spectral

truncation defined by
)+ ()
+ <1 ' 5
(kmaz l'ma.z - ( )

is utilized. k and ! are any wave numbers in the z- and the y-directions respectively; kmaz and Lyqz
are the maximum wavenumbers in the x- and y-directions respectively. This gives an isotropic and
homogeneous resolution over the extended integration area, provided these maximum wave numbers
correspond to waves of equal lengths in the two horizontal directions.

2.3 Continuous equations

The spectral HIRLAM model is based on the moist primitive equations, formulated for the pressure-
based and terrain-following hybrid vertical coordinate system introduced by Simmons and Burridge
(1981). This vertical coordinate 7(p,p;) depends on pressure p and surface pressure p, and it has the
properties (0, p,) = 0 and 7(ps, ps) = 1. The model equations have been written for general horizontal
coordinate systems. Map-factors (h;,h,) have been introduced in both horizontal directions. For a
distance (§X,8Y) it yields that X = h,dz and 6Y = hydy. The horizontal momentum equations are

du _ RT,0lp 1 6% ok,  Oh, |
i~ h, Oz  heOs +f”+hh( 5z Yoy THtEK O
and |
dv  RjT,0lnp 1092 U Ohy Ohg ‘
&= hy By iy VT REVE Ve THTE (@)
where |
_dn :
= (8)
and

9
oy *5g ©

u
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The thermodynamic equation is given by

dT KW

@ " aA@-Dap T "

where § = ?;;i. The moisture equation is given by

dq
In all the equations given above, P, is the tendency of variable x due to physical parameterization

and K is the tendency of variable x due horizontal diffusion. The hydrostatic equation is given by

% RyT, 8p
— = — (12)
| n p Oy |
The continuity equation is given by
0 Op S 3p) 5} (.317)
B ot (”"an * o0 oy (13)
where the divergence operator is defined by
‘ 1 (0 0
N - —(h —(hgy 14
V-t = o { g ) + g ) (14

Integrating the continuity equation, with boundary conditions 7 = 0 at = 0 and n = 1, results in
the surface pressure tendency equation

9ps ! L Bp) ,
=— ]| v. et 2 I 1
ot ./0‘ <vh On " (15)
and the equation for 7 will be given by
.Op Op ) Ops /‘1 (_, 8p>
= _(1- +/ v ZL\4 1
"oy (1 ops,/ 0t " Jy o) ‘ 16)

2.4 Vertical discretization

For the discretization in the vertical derivatives, the vertical staggering and the second order vertical

finite difference scheme of Simmons and Burridge (1981) is utilized. Pressure is defined at model
"half” levels by

Prt1/2 = Ary1/2 + Bry1/2ps(2,y) 5 k = 0,nlev (17)

Where nlev is the number of model "full” levels. Model variables T, ¢, u and v are defined at these
model full levels, while vertical velocity 7 is defined at the model half levels. Pressures at model full
levels are defined as averages of pressures at the model half levels

L= Pr—1/2 + Pk+1/2

5 s k=1,nlev (18)

The surface pressure tendency equation is approximated by introduction of vertical finite differences

PR Pene S P ISR gy [ Y.
a vertical numerical integration
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nlev nlev
‘ZS == 3 V- ((@)rdpr) = — > (Tr)r - V(ABps) + ApeV - (¥h)k) (19)
k=1 k=1

where the vertical finite difference operator is defined by

Azp = Tpp1/2 — Tr—1/2 ; k =1, nlev (20)

Introducing
Dy, =V - (%h)k . (21)

and
AppD

Sp = ((Bn)k - Vinp,)ABy, + —Dk—k (22)

we will have

nlev .

Blnp,, = - Z Sk (23)

It may be noticed that this discrete form of the pressure tendency equation follows the Eulerian version
of the ECMWF spectral model. It deviates from the gridpoint HIRLAM formulation, designed to
preserve total mass with second order finite difference approximations in the horizontal. From the
continuity equation in finite difference form we have

(ap) =ps{(1-B )alnp”+7§:vs (24)
877 k+1/2 ’ EH1/2

j=k+1

and the vertical advection term is given by

-am) 1 ( ap) ( .6p) |
o)y — k) T\, - Tp— 25
(?7677 . 2Apk{ = . (Trt1 — k) r» . (zk — Th—1) (25)

Geopotential gradients at model half levels are obtained by integrating the hydrostatic equation up-
wards

nlev

V2= VE+ Y. RyV(T,);Alnp; » (26)

To get model full level values of geopotential gradients, the following approximation is utilized

V&, = V®;11/2 + V(erRa(To)r) (27)
where
] In2 k=1
T\ 1B Amp, k>1 (28)

Following Simmons and Burridge (1981), the second part of the pressure gradient term is approximated
by 339
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Rd(TV)k

(RdTvV In p)k = Aps

(AlnpxVpe_1/2+axVAps) (29)

with oy, given by the general expression for all k. Utilizing the mass continuity equation, the energy
conversion term of the thermodynamic equation may be written ‘

(553, = T ), =

K(To) { 1/11 <4 ap) . }
] v. —}dn + ¥, -V1 30
1+4(0—-1a L pJo ™ U (30)

For energy consistency reasons, this term is approximated by finite differences in the vertical as follows

(' kT,w ) _
1+ (@ -1Dap/y
K’(Tv)k Ds panty
- Aln S; + apS
1+(6—1)qk{ Apk[ k2 5
Ds CkAlnPk] " }
+ [AB 4 ————— | (Up)p - Vinp, 31
Av k Ape (Tn)n 2 (31)
where
Cr = Apy1/2Br_1/2 — Ak-1/2Br+1/2 (32)

2.5 Linearized model equations

We will linearize the model around a dry basic state at rest, with a constant surface pressure and with
a constant temperature at each model level. In addition, the basic state Coriolis parameter and the

inverse map factors are assumed constant for the linearization. The following substitutions are thus
introduced

Ty =Tr+(Tx) Inp,=Tnp,+(np.) f=F+f
hl=hat+ (h7Y  hyl=hyt+ (R (33)

By linearization of the pressure gradient and Coriolis terms of the horizontal momentum equations

and by keeping non-linear terms and deviations form the linearized terms on the right hand side, we
will have for 1 < k < nlev

du - — 0P
__at’“ —Fop+hat _Bmk = Ny, (34)
Ov _ —5 AP,
—~—3: +F up+ by —ay’“ = N, (35)

where N, and NV, denotes remaining terms of the horizontal momentum equations including deviations
of non-linear terms from linearized terms. Pj denotes an efficient geopotential of the linearized pressure
gradient term and is given by
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nlev
Py =y Gij(Ty)' + RaTi (Inps)’ (36)
i=1
where the coefficients for summation of the temperature and pressure deviations from the basic state
have been determined in accordance with the vertical finite difference schemes, i.e.

0 i<k ,
Grj = { Raaj i=k (37)
Ry(Alnd); 7>k
where
. In2 j=1 . (38)
a; = _ Ino); .
T gantayt i1
_ Ajyae
Oj+1/2 = J;_s/ + Bji1/2 (39)
__ _B nev __ TI'B. B;_
Ty =Tk kA2 T; [_’“’ 2 _ il 2] (40)
Tk+1/2  jijy1 Oj+1/2 . T5-1/2 :

Similarly, by linearization of the divergence term of the pressure tendency equation we will have

3(111 pa)] nlev

B = Z AGdy, = Np, (41)
where d}, is the linearized divergence
Ou ——7 Ov
dp =hzt — +hy' — 4
k Oz + iy Sy (42)

In the thermodynamic equation we need to linearize the term describing advection of mean state
temperature and the energy conversion term. These linearizations will give

a(Tk)’ nlev

-+ Z ijdj = -NTk (43)
ot =1
where
= (Alng 8k niewAT, Sp 1 AT, _ _ .
BT a0 — oty s +o] (@0 i<k
Dii =\ kThan — 30k nlev ATy 172 + b (AT)k i=k (44)
br(AF); - i>k
and
) B AT, 81 1.Br—1 /90T
by = k nlevDk+1/2 k+1/2j‘ k1Dk-1/2081k-1/2 (45)
2(A8)k
and '
Iy — f 1 k =l £ AN
0k1_10 k£l (46)
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The pressure tendency equation and the thermodynamic equation may be combined to form an equa-
tion for the linearized geopotential Py’

aPk nlev
T Z C@,d = Np, (47)
where
nlev ~
Ck_., = Z leDlj + RdT,:‘(A&),- (48)
=1

2.6 Implicit horizontal diffusion

Fourth order implicit horizontal diffusion is applied, which means that the following equation is solved
implicitly

04
Bt

This equation is solved in spectral space and to s1mp11fy the solution the map-factors are assumed to
be constant. For a particular wave-number (m,n), this equation becomes

KV4A 0 ' (49)

a-f'im'n
ot

+ KmnAmn = 0 (50)

where

\ :
2 2
K = K (27rm> + 27rzz (51)
ngrh Nyrhy
After discretization in time, we will have the following expression for the modifications 5Amn (t+ At)
to be added to the field Amn(t + At) at time t+ At

AtK

6 Amn(t+ At) = — o —

Amn(t + At) (52)
The implicit horizontal diffusion of the wind field includes the possibility to have different horizontal
diffusion coefficients for the divergent and the rotational parts of the wind field. The solution of this

diffusion problem is obtained without exphc1t splitting of the full wind field to the divergent and
rotational parts. ~

2.7 Eulerian semi-implicit time integration scheme and lateral boundary condi-
tions

The spectral HIRLAM model uses a semi-implicit time stepping scheme to allow for longer time-
steps than those determined by fastest gravity waves. In the semi-implicit scheme for the Eulerian
time-stepping scheme, the pressure gradient terms of the horizontal momentum equations and terms
containing divergences in the pressure tendency equation and in the thermodynamic equation are
linearized and treated implicitly. Utilizing the spectral form of the linearized equations, derived in the
previous section, and introducing time averaging and time differences, these linearized equations may

| NN
(31 Wl.lleCJ.l
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A 2t a'&rrmk

Stttk +im' bz ! Ponk = ( t )ez?z +im/ —fE Prnn() (53)
1ot -+ i T7L B = (‘9”3”;“ Jeapt + i1 by " Pk (2) (54)
8Pk + %ef C’k]-cimn,-m = (aPm"k " )eapl + n‘ljzckg drmnj (2) (55)

i=1 ;
(lnpg)m,1 + ffj AG;d mn,m = (leipi)—m—n Yeapl + rfj Aﬁjcjmnj(t) (56)
j=1 i= '
é}Tmnk + %ef Dyjd F (6Tm"k Jeapl + an Dijdmnj (t) - (57)
, =1

where m and n are horizontal wave-numbers in the z- and y-directions respectively and k the number
of the vertical level. Explicitly computed tendencies are denoted by ()egpi. Furthermore m' = = 2mm

Ml ?
n = 28 and
iyl
_A(t+ AR — At — At)
5 A = 7 (58)
and
—2 A t— At) + A(t + At

2

The Ctl—)_zt-terms have been formed by averaging the linearized terms over time-steps £+ At and t — At
and by subtraction of the same terms at time t from the explicitly computed tendencies. Taking the
divergence of linearized momentum equations and eliminating the linearized geopotential by the the
third equation will give k ‘ 1

nlev
dmnk (t + At) + (At am'n)2 Z ij‘jmnj (t + At) = ank (60)
i=1
where
2 2 . )
Oy = \/ (m' 1)+ (n' e (61)
and

admn >
Qrant = drank (£ = AE) + 208 ZT2E) 1 — Atal,, (2Prani(t) = Prom(t = At) +
& nlev
Ata?, | Ponk(t — At) +2At( Frn Jeapl + At Y Crj(2 drmni(t) = dmnj(t — At) (62)
j=1

The divergence equation can be solved by the aid of the eigenvectors ef the vertical structure matrix

C = {\(J;.]} Let us write the divergence equatmn in matrix form for each horizontal wave number

couplé m and n: 43
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A (t + A) + (At Amn)? C dpn(t+ AL) = O, (63)

Let the matrix F contain the eigen-vectors of the vertical structure matrix C, let & denote the vector
of the corresponding eigen-values and we may transform the divergence equation in the following way:

B dpn(t+ AY) + (At n)? ET'CEE  dpn(t + At) = B0, (64)

Since E~1CE = & is diagonal, the solution for the vector of the divergence transformed to normal mode
space by the transformation matrix E~! can be immediately obtained. Final model level divergences
at the new time-step can then be obtained by transformation with E back to model levels.

The time history of the forecast model variables involved in the dynamical equations is given in spectral
space. In addition, some forecast model variables like surface temperature, soil wetness and cloud water
are defined in gridpoints of the inner integration area only. This means that model tendencies can
be computed for this inner area only. To make it possible to integrate the spectral forecast model
forward in time, the semi-implicit model solution is forced towards the lateral boundary conditions
extrapolated to the extension zone. Following Radnoty (1995), this is achieved through a relaxation
of the right hand sides of the semi-implicit equations towards the left hand sides determined from
the lateral boundary conditions in the boundary relaxation zone. For example, for the u momentum
equation in gridpoinﬁ space we will schematically have: 4 ‘

. At OP(iz,3y,t + At
u(zm,jy,t+At)+7L—— \ ‘g’m )

. . At OPB(iz,j,,
(1~ @iz, y)) (B (izs dy, t + At) + §2 22 Cedutt00)) (65)

= iz, Jy)uT (Ga, Jy, t + At)+

where u and P are included in the semi-implicit model solution to be determined and u? is the right
hand side for the semi-implicit u momentum equation as calculated in the inner integration area. u®
and P® are the lateral boundary fields, also extrapolated to the extension zone.

The boundary relaxation of the right hand sides of the semi-implicit model equations is carried out by
the Davies (1983) boundary relaxation scheme. The weighting factor a(i, Jy) depends on the distance
7(izjy) (in gridpoint-units) from the grid-point (iz,7y) to the boundary of the inner integration area

a(izjy) = 0.5 (1 - cos('ww)> (66)
ny

where 7(izjy) is the distance in grid-units between grid-point (i, Jy) and the lateral boundary and n,

is the width of the boundary relaxation zone.

It should be noted that, although the area extension algorithm (bi-periodization) involves a certain
degree of arbitrariness, the algorithm is only applied once for each initial and boundary model state
only. During the forecast model integrations, the right hand sides of the semi-implicit forecast model

equations are obtained for the fully extended area by relaxation towards the pre-calculated boundary
fields.

3 NON-LINEAR NORMAL MODE INITIALIZATION

3.1 Derivation of the normal modes

The normal modes used implicitly for the initialization of the spectral HIRLAM are eigen-functions
of the linearized equations for momentum and linearized geopotential derived above. For horizontal

spectral components m,n and for vertical level k these equations in spectral space may be written
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di . im' .
"ﬁ'ﬂl - .kamn + "EPkmn =0 (67)
dOknm . za. in' »
dt +.fuk + hy kmn ( )
dBPepm e <im’ . in' )
5 +§Ckl 7 nt 3 Omn 0 (69)

This system of linear equations is coupled in the vertical through the vertical structure matrix C =
{Ck;}. We may de-couple the system in the vertical by projection of figmn, kmn and By on the
eigen-vectors of C. We will then obtain a system of vertically de-coupled equations for the model state
variables in vertical normal mode space. For vertical mode [ we will have:

ditym - im' |

uc;':m - f'ﬁlmn + E’%’lﬂmn =0 (70)
diyy, - in' -
;tm + .fulmn + TL_len =0 (71)
Yy
dp, = [(im' in'
;:m + @ (B_‘ulmn + B_"Ulmn) =0 (72)
@ z

Where &; is the I'th eigenvalue (vertical equivalent depth) of the vertical structure matrix C. In order
to facilitate the derivation of the horizontal eigen-values, the horizontal eigen-vectors and the non-
linear normal mode initialization scheme, we will introduce the vorticity and divergence equations.
If we express this system of linear equations in matrix form for the stream-function and the velocity
potential, we will have

d "Zlmn 0 _.f 0 ﬁzlmn
E )zlmn = +.f _ 0 -1 )-élmn (73)
-len 0 Qlamﬂ 0 -len

2 _ m? n'?
where Oy = -B-g- + —B—{

For a particular ve-x"tica.l mode [ and a particular horizontal wave-number (m,n), the eigen-values A
and eigen-vectors ¢, (k=1,2,3) are given by the eigen-value problem

0 ~f U .
+f 0 =1 |dk= Dt (74)
0 &a2, 0

The eigen-values will be obtained by requiring the determinant of the eigen-value problem to be zero:

AL = 0
AZ = ialmn (75) .
A3 = —i0imn

where Opmn = {/ 02, + f2. If we utilize the following orthonormalization definition

o2, B r1 w1 + Dradrra) + Dradrs = Ori (76)

the normalized eigen-vectors are given by
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- 1
| = 0 (77)
Olmn ]F
- 1 —f
2 = ialmn (78)
\ 28102, 01mn | &102,
1 _f

$s = (79)

| ~i0lmn | = b3
V 2§la?nn0'lmn Q[a,%.m
Note that the first eigen-mode corresponds to a stationary Rossby-mode in geostrophic balance with

a constant Coriolis-parameter and that the second and third eigen-modes corresponds to west-ward
and eastward travelling gravity modes.

3.2 Transformation to normal mode space

Introduce the following vector notation for a model solution of vertical mode / and horizontal wavenum-
bers m and n '

- ":Zlmn .
len - )Zlmﬁ (80)
‘ Pin v

We may also express this model solution as a linear combination of the eigen-vectors derived in the
previous section

2 3. . -
len = Z 1’1mni¢i (81)
i=1 :

or in matrix notation

len = 5lmni}‘l'rnn ’ (82)
where

5lmn = 51 9;2 &’- (83)

This means that |

1‘;'-lmn = élmnlen (84)

and it may be verified that
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3.3 Initialization scheme

Machenhauer(1977) introduced the non-linear normal mode initialization technique for shallow water
equation models. For a description of the non-linear normal mode initialization, it is convenient to
express the primitive equations in their normal mode form (for simplicity of notation we have dropped
the indices denoting horizontal wavenumber and vertical mode number):

%1' — Yl = -+ Nl(YI)Y21Y3)
d_dlgl = YZ = id0Ye, + N2(Y1,Y2, Y3) (86)
G _ ¥, = —icYy + N3(Y1,Ys,Y3)

The basic idea of the normal mode initialization is that the gravity modes (Y2 and Y3) are slowly
varying and that there is a balance between the linear term and the non-linear terms in the equations
given above for these gravity modes. Machenhauer proposed an iteration scheme for obtaining this
balance by calculation of a new value (iteration 7 + 1) of the linear terms from the non-linear terms
at the present iteration (7):

0 = ioYyt + N2(Y7,Y7,Ys)
(87)
0 = —igYy™ + N3(Y7,Y7, YY)

By subtraction of the gravity mode tendencies calculated at iteration 7 from this iterative equation
we obtain the following equation for modification of the gravity modes at iteration 7 + 1:

. . _ Y
AT = vty = %
. (88)
AYa-r-l—l — Y37'+1 - Y3-r —_ %’3%
We may write this equation in matrix form
AYv-+1 —_ Y1-+1 ~Y™=10 % 0 Y =NY : (89)
0 0 —=

-0

We may now transform this equation to an equation for modification of streamfunction, velocity
potential and linearized geopotential. This equation may be written in component form

f .. |

A"/J{'r:i = "= Ximn (90)

Ttmn
T 1 o ST
AX},:},, = ?—(fd){mn " Llmn (91)
Imn
r1_ B0k, |

AP = — " % (92)

Olmn

By further transforming from streamfunction and velocity potential to wind components we obtain
our final equation for the iterative changes in vertical normal mode space:

+1 _
Auimn_ 3 \J “imn
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1 reT . n' . T
A'U;;;l;i = T(_fulmn - zE_*len) (94)
. Oimn Yy
’L‘i m' P n' . .
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In general, 2-3 iterations of correcting the 3-4 gravest vertical modes turns out to be an efficient
initialization procedure. Note that no transformation to horizontal normal modes is needed in the
initialization scheme described above. This was made possible due to the linearization around a
constant Coriolis parameter and constant map factors.

4 HIRLAM VARIATIONAL DATA ASSIMILATION.

The present HIRLAM data assimilation is a forward intermittent data assimilation based on Optimum
Interpolation (OI). Weaknesses of this data assimilation are the lack of a full utilization of the time
dimension during the data assimilation in addition to the requirement that relations between observed
quantities and model state variables must be linear. Gustafsson et al. (1997) suggested that a new
data assimilation system for HIRLAM should be based on 4D-Var, 4-dimensional variational data
assimilation (Le Dimet and Talagrand, 1986, Lewis and Derber, 1985).

A necessary component of any 4-dimensional data assimilation based on variational techniques is the
adjoint of the tangent linear forecast model. When the adjoint of the forecast model is available, it is
possible to relate forecast errors, as determined by observations at any future time within the forecast
range, back to possible errors in the initial conditions for the forecast. For the development of the first
version of the adjoint HIRLAM), we decided to use the spectral formulation of the model. In general,
it is easier to develop adjoints of spectral models since Fourier transforms are self-adjoint and since
no efforts are needed to develop adjoints of complicated finite difference operators.

A first step in the development of 4D-Var is 3D-Var, 3-dimensional variational data assimilation. An
important component of 3D-Var, as well as of 4D-Var, is the background error constraint. The back-
ground error constraint involves the inversion of the background error covariance matrix, the dimension
of which is the squared number of model variables. One possibility to make this problem manageable
is to consider the model variable assimilation increments in spectral space. For the development of
the HIRLLAM 3D-Var, the same area extension idea as is used for the spectral HIRLAM model has
been applied (Gustafsson et al., 1999). It should be noted, however, that this does not necessarily
mean that the spectral HIRLAM has to be applied in addition. Since the spectral representation and
truncation is only concerned with the 3D-Var analysis increments, these increments may as well be
added to an analysis background field in gridpoint space produced by the gridpoint HIRLAM.

5 THE ADJOINT OF THE SPECTRAL HIRLAM

5.1 The adjoint of the adiabatic part

We will introduce the concepts of tangent linear and adjoint models in a symbolic form only to be able
to discuss our technique for derivation of the adjoint of the spectral HIRLAM, more comprehensive
introductions to adjoint models may be found elsewhere (Thepaut and Courtier, 1991). We will use

the standard notations suggested by Ide et al. (1997). Consider a non-linear model M for the forecast
of a model state vector x(t) from time ¢ = ¢y until time ¢ = #;:

x(t1) = M(x(to)) (96)

Provided we know a non-linear solution x(t), we may introduce a tangent-linear model M(tg,;) for
small perturbations §x(¢) added te this non-linear solution:
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6x(t1) = M(to, t1)dx(to) . (97)

Assume that we have observations available at time t = ¢;. As a measure of the forecast error at
time t; we introduce a cost function J. For the 4-dimensional variational data assimilation problem,
we need to calculate gradients of this cost function with respect to the initial conditions. Introducing
a scalar product (x,y), first order variations §J of this cost function with respect to a perturbation
0x(t) may be expressed by the gradient of the cost function with respect to initial conditions x(tp) or
with respect to the forecast x(t1) at the observation time £;:

87 = (Viro)J: 6x(to) ) (98)

8T = (V) 8x(t1)) = (Vieny, Mi{to, 11)5x(to)) (99)

Introducing the adjoint M*(#q,t;) of the tangent-linear model M(to,tl) the second expression may
be modified as follows: : _ :

07 = (M (to,t) Vi Jx(t0)) 100

Identification between the two expressions for the first order variation §J gives us the equation for
calculation of the gradient of the cost function with respect to the initial conditions:

V(o) = M*(t0, 1) V(1) J ' o (101)

The time integration of the tangent-linear model normally is carried out by a number of timesteps
forward in time. This can be considered as a sequence of matrix multiplications, one for each time-
step. Due to the matrix transpose, this means that the adjoint model runs backward in time from
time t1 to time tg.

We used a manual coding technique to develop the first version of the adjoint of the adiabatic part
of the spectral HIRLAM including horizontal diffusion and the non-linear normal mode initialization.
For each subroutine containing any non-linear expressions, we first coded the corresponding tangent-
linear subroutine. Then the adjoints of each tangent-linear (and originally linear) subroutine were
coded in a statement-by-statement fashion. By considering each statement of the tangent-linear and
linear subroutines as a complex matrix operator, the corresponding adjoint statement(s) were derived
by taking the complex conjugate and transpose of this matrix operator. All tangent -linear and adjoint
subroutines were tested for the scalar product identity

< Tox,Téx >=< T*Téx, éx > , (102)

where T is the tangent-linear operator of a particular subroutine, T* the corresponding adjoint oper-
ator and éx a perturbation that is applied in different directions. The same scalar product identity
test was also applied successfully for complete tangent-linear and adjoint model timesteps as well as
to a sequence of such timesteps over a 6 hour period. The tangent-linear model was simply verified
by comparing the evolution of a small perturbation in the non-linear and the tangent-linear models.

(From a technical point of view, it is straight-forward to extend the idea of the adjoint model to the
treatment of the lateral boundaries (Errico et al., 1993). The boundary relaxation is a simple linear
weighting, and thus the tangent linear equations for relaxation of lateral boundary perturbations are
identical to forward full model boundary relaxation. Consider as an example, the boundary relaxation
expression on the right hand side (=RHS) of (65):
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RHS = a(iz, jy)u" iz, jy, t + Ab)+

' Biz,jy,
(1= alie, dy)) (uP (i, dy,t + AF) + £ 2Elagutt 20} (103)

The corresponding adjoint boundary relaxation is easily derived:

§(uR(ia, Gy, t + AL))AD = alis, j,) (RHS)AP | (104)
§(uP (iay Gys t + At))AP = (1 — alia, jy)) (RHS)*P (105)
. . AD ;
5 (ap ’ (”’;fv’t i At))_ =(1- a(iz,jy))%(RHS)AD (106)

It is not obvious how to proceed with the practical implementation of the adjoint of the lateral
boundary relaxation scheme. In principle, the equation above will give adjoint boundary perturbations, ‘
‘representing a gradient of the error norm with respect to the lateral boundary condition, for each time-
step of the model integration. A technical drawback of this solution is that it requires storing of the
adjoint boundary values from all time-steps in the computer. An alternative is therefore to include
also the adjoint of the linear time-interpolation of the boundary values.

5.2 Adjoints of HIRLAM physical parameterization schemes

Two strategies have been adopted for the development of tangent linear and adjoints of physical
parameterization schemes for the HIRLAM 4D-Var. The first strategy is to use the automatic code
generator TAMC of Ralf Giering for derivation of tangent linear and adjoints of various versions of the
reference HIRLAM physics. TAMC is not yet perfect, which means that additional manual coding is
needed for most occasions. The second strategy is to use some form of simplified physics for HIRLAM
4D-Var. A package of simplified physics is being developed by the ARPEGE- and ALADIN-groups
(M. Janiskova, personal communication) and it is the intention to apply this package to HIRLAM
4D-Var.

Physical parameterization schemes with strong non-linear behavior have been a long lasting problems
for HIRLAM. Recently a new version (4.2) of the HIRLAM forecast system was introduced. This new
version include a new condensation, precipitation and convection scheme (STRACO), developed by
Bent Hanssen Sass on the basis of the Sundquist scheme. Much effort has been spent on making the
behavior of the new scheme more smooth and regular both in time and in space. In addition to the new
condensation scheme, also a new non-local vertical diffusion scheme (Holtslag) has been introduced
to HIRLAM 4.2. The effects of these modifications were clearly reflected in RMS-differences between
un-perturbed and perturbed non-linear model runs with the two different versions of the HIRLAM
model. The new physics, HIRLAM 4.2, turned out to have a much more regular behavior with regard
to the sensitivity to very small initial perturbations. Tangent linear and adjoint of the STRACO,
the Holtslag scheme and the other components of the HIRLAM 4.2 physics have been developed.
Validation will continue with sensitivity experiments.

6 SENSITIVITY EXPERIMENTS

6.1 Design of the experiments

The adjoint model technique is a powerful tool to relate the origin of numerical forecast errors to
errors in the initial data (Rabier et al., 1996, Gustafsson and Huang, 1996). The idea is to identify a
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case with large forecast errors and then to trace the errors back to the initial state by calculating the
gradient of the forecast error norm with respect to the initial conditions. For this purpose, the adjoint
model is utilized to project the gradient of the forecast error norm from the forecast time back to the
initial data time. Subtracting a fraction of the gradient of the forecast error norm from the initial
condition and performing a new (sensitivity) forecast run with changed initial conditions would lead
to an improved forecast.

For limited area models, poor lateral boundary conditions is another important error source distinct
from the initial state errors. In addition to the direct negative effect of poor lateral boundary data
during the forecast model integration, there may also be an accumulated negative effect during data
assimilation forecast cycles, in particular if the lateral boundaries are situated upstream of data-sparse
areas within the model integration area (Gustafsson, 1990). To distinguish between errors caused
by erroneous boundary conditions and inaccuracies in the initial state, we will carry out sensitivity
experiments using the adjoint of the HIRLAM forecast model. We will use the same experimentation
technique as described by Gustafsson and Huang (1996), extended to take possible errors of the
lateral boundary conditions also into account (Gustafsson et al., 1998). Thus, the adjoint backward
integration provides us with an estimate of the gradient of a quadratic cost function of the forecast
errors with respect to the initial conditions as well as to the lateral boundary conditions. Sensitivity
forecast experiments are carried out by perturbing the initial as well as lateral boundary conditions
with fractions of the respective cost function gradients. A fraction «; of the cost function gradient with
respect the initial conditions was subtracted from the original initial data in the sensitivity forecast,
while the scaling factor o was similarly applied to the lateral boundary conditions.

Some preliminary sensitivity experiments with regard to errors in the lateral boundary conditions
indicated that it is advantageous to apply individual lateral boundary perturbations for each timestep
of the forward model integration. The spatial structures introduced by the lateral boundary relaxation
appeared to become more accurate with perturbations available for every timestep, and this can be
understood from the non-linear time variations of the lateral boundary perturbations over a 6 hour
period. On the other hand, it is also known that the boundary relaxation scheme creates artificial
divergent winds and related gravity wave oscillations in the boundary relaxation zone. In order to
avoid enhanced gravity wave oscillations in the sensitivity forecast runs, a simple time filter was applied
to the lateral boundary perturbations obtained by the adjoint model integration. Experimentation
indicated that time averaging over £1 hour gave satisfactory results.

We carried out several experiments to study the sensitivity of forecast errors to the specification of
the initial as well as the lateral boundary data. The experiments were run with the spectral version of
HIRLAM, with a shortest resolved wave-length of approximately 180 km and with 16 vertical hybrid
levels. The experiments were started from operational SMHI HIRLAM analysis fields, valid 12 hours
before the verification time. For the lateral boundary conditions, ECMWF forecast fields based on
initial data 24 hours before the verification time, were utilized. The frequency for updating of the
lateral boundary conditions was once every 6 hours. Linear interpolation was used for the time-
interpolation of the lateral boundary data. For calculation of the quadratic forecast error norm and
its gradient at the verification time, operational SMHI HIRLAM analysis fields were used.

6.2 Resulis

A case occurring on 16 February 1995 was chosen. This case turned out to be particularly sensitive
to lateral boundary conditions over eastern Canada, i.e. in an area with good data coverage. The
300 hPa height errors (verification analysis - forecast from the operational SMHI HIRLAM) starting
from initial data valid at 0000 UTC on 16 February 1995, have been plotted in Figs. 2a—b for forecast
lengths of 12 and 24 h. Note that the operational forecast grossly underestimates the forecast depth
of a low propagating through and from the west side boundary over Newfoundland and later over
the NW Atlantic. This indicates that the forecast error is likely to be related to poorly described
structures in the lateral boundary conditions provided by the coarser resolution global model.
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Figure 2: 300 hPa height error fields (verification analysis - forecasts from operational SMHI HIRLAM)
for forecast lengths of 12 h and 24 h from 0000 UTC on 16 February 1995. Positive (negative) values
are represented by solid (dashed) contours. Contours every 20 m. The shaded areas correspond to
errors < -20 m. The sector-formed area in a) is used for calculation of the area-concentrated 12 h
forecast error norm.

Sensitivity experiments were carried out for the period between 0000 and 1200 UTC on 16 February
1995. Since the purpose of this investigation is to detect the origin of the forecast error over New-
foundland, the area-concentrated forecast error norm at +12 h, indicated in Fig. 2a by heavy lines,
was used. The first sensitivity experiment was carried out using only the initial data perturbation.
The results are shown in Figs. 3a-b for 300 hPa height and wind differences between the sensitivity
and reference +0 h and +12 h forecasts. Comparing Figs. 2a and 3b, it is obvious that the +12
h forecast error is only partly retrieved by the initial data sensitivity experiment. Considering that
the initial perturbation, introduced by the aid of the adjoint model integration, at the initial time of
the forecast is placed very close to the lateral boundaries, we may presume that errors in the lateral
boundary conditions are also needed for a full explanation of the +12 h forecast errors.

a)00h L b)12h L=

Figure 3: 300 hPa height and wind differences between the sensitivity and reference 0 h and 12 h
forecasts from 0000 UTC on 16 February 1995 using initial perturbations only with o; = 0.1 and
the area-concentrated 12 h forecast error norm. Positive (negative) values are represented by solid
(dashed) contours. Contours every 10 m. The shaded areas correspond to retrieved forecast errors <
-5 m. The western boundary of the model integration area coincides with the left side of the maps.

The second sensitivity experiment was carried out using only the lateral boundary perturbations for
the sensitivity forecast run. It turned out to be necessary to utilize a scaling coefficient oy, = 5.0 for
the lateral boundary perturbations in order to achieve the successful results, as illustrated in Fig. 4b
for the +12 h forecasts. The needed magnitude of this scaling coefficient may partly be justified by
the shorter time-period over which the lateral boundary perturbations in the average are allowed to
grow, as compared to the initial data perturbations. More important, however, is that the adjoint

ALY O Ay 3
352



GusTAFssON, NILs: THE NUMERICAL SCHEME AND LATERAL BOUNDARY CONDITIONS FOR THE SPECTRAL HIRLAM ........ k

boundary relaxation expressions also efficiently act as a down-scaling of the gradient of the forecast
error norm with respect to the lateral boundary conditions.

Figure 4: As in Fig. 3, but'using only the lateral boundary perturbatiohs for the sensitivity forecast
run with e = 5.0 and with a time-averaging period of +£1 h: a) 0 h (boundary perturbatlon) b) 12
h. (a) Contour interval of 2 m, (b) contour interval of 10 m.

Since the initial data perturbation is zero for this particular forecast sensitivity run, we have included
the lateral boundary perturbation, i.e. the scaled gradient of the forecast error norm with respect
to the lateral boundary conditions, at time 40 h in Fig. 4a. We may notice that non-zero values
of the lateral boundary perturbations are restricted to the interior of the boundary relaxation zone,
as explained by a simple analysis to be presented below. We may also notice a significant boundary
perturbation in the area of strong inflow upstream of the +12 h forecast error area of interest for this
case study. It should be pointed out, however, that the whole time-series of boundary perturbations
between +0 h and +12 h influence the sensitivity forecast run in this particular forecast model setup.

Comparing the sensitivity difference fields of the initial data and the lateral boundary data sensitivity
experiments (Figs. 3b and 4b) with the real forecast error field (Fig. 2a) at +12 h, we may conclude
that the sensitivity difference field in the lateral boundary data experiment has a significantly better
position than the sensitivity difference field in the initial data experiment. At the same time the results
from the initial data experiment include sensitivity difference field structures which are not recovered
by the boundary data experiment. We may thus conclude that the forecast errors for this particular
case are likely to be related to initial as well as lateral boundary data errors. This is confirmed by
running a sensitivity experiment with regard to both initial and lateral boundary data errors (see
results for +1 h, 46 h, +12 h and +24 h in Fig. 5). This experiment was carried out with a time
interval of &1 h for the averaging of the lateral boundary perturbations, with a scaling coefficient
of ap = 5.0 for the lateral boundary perturbations and with a scaling coefficient of a;; = 0.1 for the
initial data perturbations. The sensitivity difference field pattern in Fig. 5c at +12 h results in a
sharper upper air trough over eastern Canada, which agrees very well with the forecast error pattern
in Fig. 2a. We may also notice that the retrieved forecast error pattern at +1 h reflects the initial

data perturbation (see Fig. 3a) as well as the lateral boundary data perturbation at the initial time
(Fig. 4a).

The sensitivity forecast experiment utilizing initial data perturbations and lateral boundary data
perturbations during the first 12 h of the model integration was continued up to +24 h, using the
original lateral boundary conditions between +12 h and +24 h. The results of this experiment are
included for +24 h in Figs. 5d. It is obvious that also the +24 h forecast is significantly improved in
the critical area south of Greenland due to the initial and boundary data perturbations provided by
the +12 h sensitivity experiment.

The successful application of the adjoint of the lateral boundary treatment for forecast sensitivity
experiments described here, can simply be interpreted to mean that we are using observed information

maot
AN

ide the model integration area to improve poor lateral boundary conditions. This resuit may be
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Figure 5: As in Fig. 3, but using initial as well as lateral boundary perturbations for the sensitivity
forecast run with a; = 0.1 and a3 = 5.0 and with a time-averaging period of +1 h: a) 1 h, b) 6 h, c)
12 h,d) 24 h. '

directly applied in four dimensional variational data assimilation (4D-Var); during the assimilation
period the boundary values can be modified together with modifications in the initial state. 4D-Var
assimilation of rainfall observations, including a similar control of lateral boundary conditions, has
been tested by Zou and Kuo (1996).

6.3 Limitations of present lateral boundary conditions.

A basic weakness of the lateral boundary relaxation technique was revealed during the experimentation
with the adjoint of the scheme. The strongest sensitivity of the forecast errors to the lateral boundary
conditions occurred in a region of strong physical inflow with a low pressure system passing the lateral
boundaries during the time period of the sensitivity experiment. During the forward model integration,
the lateral boundary relaxation scheme managed quite well in this inflow region to introduce the time
variation of the meteorological fields as given by the coarser resolution model providing the lateral
boundary conditions. During the adjoint model backward integration, however, this region of physical
inflow becomes an area of outflow of forecast error gradient information. In the present construction
of the HIRLAM boundary relaxation scheme both inflow and outflow points are handled identically.
Davies (1983) has shown that inflow of information is handled reasonably well at the same time as
outflow information is reasonably well absorbed by the boundary zone damping.

To demonstrate the propagation properties of the boundary zone scheme we have found that the
following very simple model system can be used. Consider a linear advection equation where A(z,?)
is linearly advected with a U > 0. Assume a semi-Lagrangian time stepping scheme with a time step
such that the CFL number is equal to one, At = Az /U. This implies that

Alz,t+ At) = A(z — Az, t) (107)
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If we now apply a relaxation boundary zone to this problem we may write

A(z,t+ At) = g(z) Ap(z,t+ At) + (1 — g(z)) Ai(z,t+ At) (108)

where Aj is the externally prescribed boundary forcing field and A; is the interior domain field. The
boundary zone relaxation function is given by g(z) and we assume the outermost boundary point to
be located at £ = 0. Let us now determine the relative weights of the different external boundary
point values at the first fully interior point of the computational domain, i.e. the first point where
g(z) = 0. Let us call this point ;. A successive insertion of (107) into (108) gives

Ay, kAL) = Az — Az, (k- 1At = ; '
g(zr — Az)Ap(zy, — Az, (k — 1)AL) + (1 — g(zg, — Az))Ai(zp — Az, (k —1)At) =
g(xr — Az)Ap(zy, — Az, (kK — 1)At) + (1 — g(zp — Az)) Az — 202, (k — 2)At) (109)

We may continue with such insertions and we will find that the relative weight of each externally
prescribed boundary point depends on the form of g(z). Let us assume a four point boundary zone
where g(0) = 1. ; g(Az) =0.9 ; g(2Az) = 0.5 ; and g(3Az) = 0.1. We will then obtain

A(4Dz,4A8) = 0.145(3Az, 3AL) + 0.454;,(2A2, 2At) + 0.405 Ay (Az, At) + 0.0454;(0,0)  (110)

thus showing that at the time when the information from the outermost boundary point has reached
the interior of the domain very little of the original amplitude remains. Most of the information at
the first fully interior point comes from boundary value information at the second and third boundary
zone points. This statement may be generalized to other boundary zone functions. The weight of the
outer-most boundary point is always a product of several weighting factors significantly less than one
and thus will be a small number, while the information coming from the boundary zone point adjacent
to the first fully interior point must also be small as the weighting factor must be near zero at this
point. Larger values occur at intermediate boundary zone points.

The boundary zone relaxation function used in this study is cosine-shaped and the width of the
boundary relaxation zone is 8 gridpoints. A similar advection scheme as in the demonstration above,
extended to CFL numbers also smaller than one, was applied to obtain the weights given to the
externally prescribed boundary points in the solution just inside the boundary relaxation zone. These
sensitivity weights obtained for CFL numbers 1.0 and 0.5 are illustrated in Fig. 6. The general
conclusion reached with the help of equation (110) still holds, most of the information comes from
the middle of the boundary relaxation zone. It can also be seen that the area of sensitivity is shifted
towards the inner integration area for smaller CFL numbers.

In our sensitivity experiments we see clearly that the gradient of the forecast error norm with respect
to the boundary conditions will be near zero at the outermost boundary zone points. On the other
hand, immediately inside the lateral boundary, within the boundary relaxation zone, the calculated
boundary perturbation may well achieve a significant magnitude. Such discontinuities of a pertur-
bation introduced in the lateral boundary relaxation zone will contribute to an enhanced generation
of gravity wave noise. Thus we may find that boundary zone perturbations give rise not only to
geostrophically well balanced perturbations which propagate into the interior domain, but also to un-
desired gravity waves which are quickly damped out by horizontal diffusion and the semi-implicit time
stepping scheme. This result shows that the lateral boundary relaxation scheme needs to be modified
to take the occurrence of inflow and outflow regions into account (Orlanski, 1976).
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Figure 6: Efficient weights of lateral boundary values as determined by linear advection over the entire

boundary relaxation zone to form the model value just inside this zone. Fast advection (CFL=1, full
line) and slow advection (CFL=0.5, dashed line).

7 LIMITED AREA 3D-Var.

The variational data assimilation problem may be formulated as the minimization of a cost-function
J with respect to the assimilation increments §x = (x —xP), where x denotes the model state analysis
vector and x® a model state background vector, normally a short range forecast. In the HIRLAM
3D-Var formulation, the cost function consists of one term Jj, the background error constraint, that
measures the distance between the analysis and a background field, and J,, the observational error
constraint that measures the distance between the analysis and the observations:

J=Jy+Jo= 1(x *BYTB1(x — x®) 4 = Sy - Hx)"R™\(y ~ Hx) (111)

Here y denotes the vector of observed values, H the transformation from model state variables to
the observed quantities, B a matrix with the covariances of background errors and R a matrix with
covariances of observational and representativity errors. The observation operator H may in general
be non-linear.

7.1 Analytical balance structure functions.

The spectral HIRLAM provides a good framework for construction of a first version of HIRLAM
3D-Var. The introduction of statistical assumptions like homogeneity and isotropy with regard to the
spatial correlations included in B takes a very simple form in spectral space. The following ideas were
thus applied for the first version of the HIRLAM 3D-Var background error constraint Jj:

e By 2-dimensional horizontal Fourier transforms to control variables in spectral space, it is pos-

sible to assume that spectral components representmg d1ﬂ'erent horizontal wave-numbers are
statistically independent.

e For the HIRLAM 3D-Var we have chosen to apply an area-extension to obtain periodic variations
in both horizontal dimensions.

e By subtraction of the geostrophic analysis increments, as calculated from the mass field analysis

increments, it is possible to assume that the mass field and the ageostrophic wind field analyms
increments are statistically independent.

e By projection on eigen-vectors of vertical background error correlation matrices, it is possible to
assume that coefficients of different vertical eigen-vectors are statistically independent.

356




GUsTAFSSON, NILS: THE NUMERICAL SCHEME AND LATERAL BOUNDARY CONDITIONS FOR THE SPECTRAL HIRLAM ........

Through such transformations of a model state increment vector dx, it is possible to obtain an as-
similation control vector x for which the error covariance matrix is a unit matrix. This also gives an
efficient pre-conditioning of the minimization problem. Non-separable analysis structure functions,
based on the model assumptions described above, have been derived by the NMC-technique from
the time history of 4+-24h and +48h HIRLAM forecasts (Berre, 1997). The basic idea of the NMC-
technique is that spatial structures of differences between e.g. +24h and +48 h forecasts valid at the
same time are similar to the spatial structures of +6h forecast errors. The derived analysis structure
functions indicated a clear vertical-horizontal non-separability, for example with regard to horizontal
length-scales of different variables at different levels. '

7.2 Empirical balance structure functions.

A more general Jj based on empirical balance relationships (Parrish et al., 1997) has been implemented
for the HIRLAM 3D-Var (Berre, 1998). The balance relationships take the following general form:

¢ = ¢
n = MH(+n
(T,ps) = NHEAPiu+ (T,ps)u
g = QH(+Rnu+S(T,ps)u+ qu

where ((,,(T, ps),q) are the forecast errors of vorticity, divergence, temperature, surface pressure and
specific humidity and where (7y,(T,ps)u,qu) are the un-balanced parts of 5, (T,p;) and q. # is a
horizontal balance operator that relates vorticity to a balanced geopotential P,. M, N, P, Q, R
and § are all vertical balance operators relating the spectral coefficients of the predictors with the
spectral coeflicients of the predictands. A novel feature of the scheme is the possibility to utilize fully
multivariate relationships for the assimilation of moisture together with the other model variables.

The NMC method was applied to derive coefficients in the empirical model for forecast errors described
above. It was first applied to +12h and +36h forecasts from the Aladin limited area model (Berre,
1998) and later on to +24h and +48h HIRLAM model forecasts (Berre, personal communication).
Results from the two trial applications are consistent. Horizontally averaged covariances between
balanced geopotential and moisture forecast errors are plotted as a function of level number pair
in Figure 7. We can notice a strong negative covariance between low level balanced geopotential
and low level moisture forecast errors. Efficiently this means that under-prediction of a low pressure
development is associated with under-prediction of moistening in the lower troposphere. The full
multivariate relationships include also other significant contributions. The total average variance of
moisture forecast errors explained statistically by other forecast variable errors is of the order of 30%.
Assimilation experiments to investigate the impact of these multivariate relationships are carried out
at present. ' o :

7.3 Single observation impact studies.

A first validation of the HIRLAM 3D-Var structure function formulation is to study the impact of
single observations. The analysis increments resulting from a single 500 hPa temperature observation
increment of +1 K in a position close to the right lateral boundary have been plotted for temperature
increments on model level 8 in Figure 8a and for wind increments on model level 8 in Figure 8b. The
analytical balance formulation for 16 vertical levels was used in this particular study with model level
8 being close to the observation level 500 hPa. We may notice the rather strict isotropic influence
of the temperature observation, the corresponding wind increments in near geostrophic balance and
the lateral boundary formulation causing no obvious detrimental effects. The width of the boundary
extension zone is an important parameter in this respect, it was chosen to be 18 grid-lengths or 900 km
in the x-direction in this case, and this seems to be sufficient to avoid any influence of an observation

close to the right boundary on analysis increments close to the left boundary of the area.
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Figure 7: Spectral averages of vertical cross-covariances between balanced geopotential (derived from
vorticity) and specific humidity.
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Figure 8: Impact of a single 500 hPa temperature observation on a) model level 8 temperature analysis
increments, b)model level 8 wind analysis increments. Wind arrows have been plotted in every 2nd
gridpoint. Isoline spacing is 0.2 K.

7.4 Short parallel run to compare OI and 3D-Var.

As a first test for HIRLAM 3D-Var, we selected a case with a forecast failure experienced with the
operational HIRLAM at INM in Madrid. Forecasts valid at 00 UTC on the 6th of November 1997
for an explosive cyclogenesis over Spain were rather poor for forecast lengths longer than +12 h. For
the data assimilation experiment with the HIRLAM 3D-Var, we used the SMHI 55 km forecast area.
Furthermore, the non-separable analysis structure functions derived from operational forecasts were
used. In order to apply background error standard deviations representative of 6 h forecast errors, the
standard deviations derived by the NMC method were scaled by a factor of 0.8 for the temperature,
surface pressure and specific humidity and with a factor of 0.5 for the ageostrophic wind components.
TEMP, PILOT, AIREP, SYNOP, SHIP and DRIBU observations were utilized. Data assimilation
started from 3 November 1997 00 UTC with a 6 h data assimilation cycle. Data assimilation was
carried out until 7 November 12 UTC. The spectral HIRLAM with HIRLAM 2.4 physics was used for
assimilation as well as forecast cycles. ECMWF analyses every 6th hour were used as lateral boundary

conditiong
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A HIRLAM reference system experiment was carried out in addition. This experiment differed from
the 3D-Var experiment in the following aspects: (1) The HIRLAM reference system Optimum Inter-
polation (OI) analysis was used. (2) The grid point HIRLAM with HIRLAM 2.4 physms was used for

assimilation as well as forecast cycles.

There are several important differences between the two experiments. The forecast model in 3D-Var
experiment is the spectral version of HIRLAM, while the grid point HIRLAM is used for the OI
experiment. The 3D-Var has not yet been adapted to the grid point HIRLAM, and we considered it
more important to carry out a first demonstration of 3D-Var than to wait for the grid point model
adaptation of 3D-Var. In order to put some light on the degree of impact from the forecast model
formulation, we have carried out some spectral model integrations from the OI initial data in addition.
Thus, the following combinations of experiments will be briefly validated below:

A : OI analysis. Grid point model for assimilation cycles as well as for the forecasts. Verification
against its own analysis. ‘

B 3D Var analysis. Spectral model for ass1m1lat10n cycles as well as for the forecasts. Verification
against its own analysis.

C : Spectral model forecasts with initial analyses taken from A. Verification against A analyses.

D : Spectral model forecasts with initial a.nalyseé taken from A.. Verification against B analyses.

Forecasts up to +48 h were cafried out for 5 different cases - 3 Novembér 1997 12 UTC, 4 - 5 November
1997 00 and 12 UTC. These forecasts were verified against analysis fields over a European area. RMS
verification scores are presented for +24 h and +48 h forecasts in Table 1 below.

Table 1: Verification against analyses over a European area.. Root Mean Square (RMS) verification
scores for +24 h and + 48 h :

+24 h forecast A B |C D
Mean sea level pressure (hPa) | 2.0 | 2.0 | 2.0 | 2.0
500 hPa height (m) 19. |16. | 18. | 18.
300 hPa height (m) 27. | 24. | 27. | 26.
925 hPa temperature (K) 1.7 |12 |17 |14
700 hPa temperature (K) 1.1 |11 |12 |12
850 hPa relative humidity 14% | 14% | 16% | 16%
+48 h forecast A B C D
Mean sea level pressure (hPa) | 3.7 (3.2 | 3.7 | 3.6
500 hPa height (m) 32. | 27. | 3L | 3L
300 hPa height (m) 45. | 40. | 44. | 44.
925 hPa temperature (K) 23 (18 |24 |20
700 hPa temperature (K) 1.7 |16 |1.7 |17
850 hPa relative humidity 20% | 19% | 20% | 19%

;From these forecast verification scores, we can first notice that the RMS values for experiment B
(3D-Var + spectral model) are always smaller than or equal to the RMS values for experiment A
(OI + grid point model). Let us first consider the differences in verification scores for mean sea level
pressure, 500 hPa height and 300 hPa height. These may be taken as representative of forecasting
ability for synoptic scale developments. It is encouraging that these scores are better for the 3D-Var
based forecasts than for the OI based forecasts. Considering also the verification scores for the -+48
h spectral model forecasts based on the OI analyses (experiments C and D), it appears reasonable
to conclude that this positive impact originates from assimilation technique and not from the model

formulation. Certainly, it is necessary to be careful and not to make too firm conclusions, since the
forecast sample is small.
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It is also interesting to note the lower RMS verification scores for the 3D-Var based forecasts of low
level temperatures. One may speculate whether this is a result of real forecast improvements, for
example, due to the use of significant level data in 3D-Var. It may be, however, that this verification
result is simply caused by the 3D-Var verification analyses being too biased towards the analysis
background field (a 6 h forecast). Again considering the scores for the spectral model forecasts based
on Ol initial data, we see that RMS scores for low level temperature forecasts are smaller when 3D-Var
analyses are used for the verification than if Ol-analyses are used. Thus, we cannot exclude that the
improved verification scores for 3D-Var-based lower level temperature forecasts are just artifacts of
biased verification analysis fields. ‘

8 COMPUTATIONAL EFFICIENCY AND PARALLELIZATION.

Gustafsson and McDonald (1996) compared the computational costs of the gridpoint and spectral
semi-Lagrangian HIRLAM models. Table 2 below includes measurements of CPU-time in seconds for
an average time-step and the average time spent in various parts of the codes on a CONVEX C-3810
vector processor.

Table 2: CPU-time in seconds, measured on a single processor CONVEX C-3810 computer, for the
various types of calculations during one time-step of the gridpoint and spectral HIRLAM models.

TYPE OF CALCULATION GRIDPOINT | SPECTRAL
, MODEL MODEL
Fourier transforms 4.2
Non-linear dynamics 1.2 1.0
Semi-Lagrangian interpolations | 7.6 7.3

Physics 6.6 6.5
Semi-implicit part : 1.8 0.5

Implicit horizontal diffusion 2.7 0.1
Boundary relaxation 0.2 0.2

Total per time-step : 20.2 19.8

We may notice that the total time for a time-step is almost identical for the two model versions. Time
spent in Fourier transforms by the spéctral version is balanced by larger time spent in the semi-implicit
solver and in implicit horizontal diffusion by the gridpoint version. We may conclude that there is no
difference between the two model versions from a computational economy point of view.

The spectral version of the HIRLAM model was implemented on distributed memory parallel com-
puters by Gustafsson and Salmond (1994). The basic parallelization strategy, utilized for forecast
model integrations as well as for the calculation of the spatial transforms in the 3D-Var is briefly
illustrated in Figure 9. The calculations include three different types of transforms that have to be
considered in the parallelization strategy: (1) FFTs in the x-direction, (2) FTTs in the y-direction
and (3) vertical transforms. The basic data transposition ideas applied are that each one-dimensional
transform should be calculated on a single processor only, that the number of transforms calculated
on each processor should be as near equal as possible to balance the work load, and that data should
be re-distributed among the processors between the transforms in the different spatial directions. The
data transposition scheme is illustrated for a four (4) processor parallel computer in Figure 9.
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‘Figure 9: Data distribution over four processors pl, p2, p3 and p4 during transform calculations in the
spectral HIRLAM and in HIRLAM variational data assimilation: (a) x-direction Fourier transforms,
(b) y-direction Fourier transforms and (c) vertical transforms. The three spatial dimensions of the
HIRLAM model domain are indicated by (z,y, z), the wave number in the x-directions by k and the
wave number in the y-direction by . ’ '

The spectral parallel HIRLAM scales well with the number computational processors as is illustrated
in Table 3 for test runs on a Cray T3D computer carried out by Gustafsson and Salmond (1994).

Table 3: Performance of the parallel spectral HIRLAM with 256 x 256 horizontal gridpoints and 16
levels on the CRAY T3D. :

NPE’s | Typical Step Time (Seconds) | Speed-up over 16 PE’s
16 10.219 1.00 ‘

32 5.265 1.94

64 2.645 3.86

128 1.344 7.60

256 0.720 14.20

9 CONCLUDING REMARKS

A spectral version of the HIRLAM forecast model has been developed. This model uses the same con-
tinuous model equations, the same vertical discretization and the same physical parameterizations as
the grid-point version of HIRLAM. Gustafsson and McDonald (1996) compared the semi-Lagrangian

versions of the spectral and grid-point HIRLAM in a number of model test integrations. They con

Ons. 108y <on-

cluded that the competition between the two model versions had been very productive and ended in a
361



GusTAFSSON, NILs: THE NUMERICAL SCHEME AND LATERAL BOUNDARY CONDITIONS FOR THE SPECTRAL HIRLAM ........

draw. By a systematic comparisons of results from the two different models, both models may be tuned
and improved to provide a similar forecast quality on the basis of an almost identical computational
cost. The strategy of the HIRLAM Project is therefore to keep both model versions up-to-date.

The spectral HIRLAM is being used as a framework for development of a variational data assimilation
system. The tangent linear and the adjoint of the adiabatic version of the model have been used in
sensitivity experiments. Experiments to test the sens1t1v1ty of forecast errors with respect to lateral
boundary conditions have indicated the potential of controlling lateral boundary conditions during
limited area 4D-Var but have also revealed serious weaknesses in the present mathematical formulation
of the lateral boundary conditions.

The development of a 3-dimensional variational data assimilation (3D-Var) has almost been completed.
Non-separable analysis structure functions have been derived by the NMC-technique. The first version-
is based on analytical expressions for the balance between the mass field and the wind field analysis
increments while further developments are based on empirical balance conditions and multivariate
relationships including also the moisture field. The first full scale tests with the HIRLAM 3D-Var
indicates highly promising results.

The application of high resolution global foreca.st models with sophisticated 4-dimensional data as-
similation schemes at forecasting centers like ECMWTF naturally raises several questions related to the
future of limited area modelling activities at smaller weather services. High resolution modelling, i.e.
mesoscale modelling with non-hydrostatic models, will certainly be meaningful, but how do we acquire
fresh and high quality lateral boundaries for these high resolution models? Is limited area 4D-Var, and
in particular control of lateral boundary conditions, meaningful? Would it not be more meaningful for
the smaller weather services to apply global models in a joint project to produce best possible initial
and lateral boundary conditions for the mesoscale model runs? The answers to these questions are
not obvious. However, international numerical modelling centers like ECMWF should also take into
account that they are highly dependent on NWP activities in the smaller weather services, when it
comes to, for example, recruitment of competent staff.
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