ADAPTATION OF SPECTRAL METHODS TO NON-UNIFORM MAPPING
(GLOBAL AND LOCAL)

J-F Geleyn
Météo-France - CNRM/GMAP
Toulouse, France

Summary: This lecture note is serving two purposes. First it attempts to be a brief
introduction to spectral methods in general, insisting more on their links with other
aspects of NWP than on their intrinsic properties. Second it shows, theoretically as well as
practically, how they can be applied to two problems of non-uniform mapping-type,
namely a global zoom and an imbedded LAM.

1. INTRODUCTION

1.1 Foreword

The structure of this lecture note is not very usual. It is neither a full course on spectral methods with
historical background, full mathematical justifications of their properties and details about their algorithmics
nor a justification of their operational use through comparative results with respect to other horizontal
discretisation techniques. Indeed it was thought that spectral methods, at least in their global homogeneous
«classical» variant, are now rather well known and that their use in a clear majority of global NWP or GCM
applications speaks for itself. We rather elected to concentrate on two aspects: (i) the link with other numerical
constraints in NWP (time schemes and horizontal diffusion; parameterisation schemes; data assimilation) and,
as the core part of this lecture, (ii) the more recent use of spectral techniques for inhomogeneous
representations of the earth, be it globally (zoom) or locally (LAM). Of course, some quick review of the basic
properties of spectral modelling is still necessary, even in this particular framework; we simply tried to keep it
to a minimum and to make it as intuitive as possible. For instance neither precision, convergence nor
consistency will be studied here; the same applies to the cumbersome question of the wind vector
representation and of the associated choice of spectral transforms. To justify these by-passes let us recall here
the words of Temperton (1991a) in an otherwise very specialised article: «This illustrates one of the nice
features of the spectral method: although there is certainly more than one way to organise the
computations, there is fundamentally no argument about what is to be done»! On may indeed wonder
whether the observed very strong pro and con opinions with respect to spectral methods do not simply depend
whether one feels relieved or jobless at the idea not to handle the link between a Jacobian’s stencil and energy

. or enstrophy conservation!
The reader interested in more details about the intrinsic properties of the spectral technique is anyhow referred

to two previous ECMWF Seminar Lectures (Jarraud and Simmons, 1983, Machenhauer, 1991) and to
technical documents like Machenhauer (1979) or Rochas and Courtier (1992).
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Given the above-mentioned choices about the subject of this lecture, it was rather natural to try and mix all
types of information, from basic equations up to very practical implementation details. Since the author has
been heavily involved with both (zoom and LAM) parts of operational non-uniform spectral applications, the
practical aspects will be drawn from experiences obtained with ARPEGE (the «French» side of the joint
ECMWEF/Météo-France IFS/ARPEGE project, operational in its variable mesh version since October 1993,
Bénichou and Legrand (1992)) and ALADIN (the LAM counterpart of ARPEGE, operational in several
partner National Meteorological Services from 1996 onwards, Members of the ALADIN international team
(1997)). This deliberate choice to link the obviously pro-spectral argumentation of the discussions with
operational aspects is in itself a guarantee of sincérity: nothing will be said that has not been put to the acid

test of a decision process with operational consequences.

The associated drawback for the lecture will be a rather fragmented structure (19 Sections!) and the implied
need to frequently anticipate some results to be justified later. In this sense, the main tutorial challenge is to
keep the reader interested enough to reach the point where an overview of the patchwork of rather simple items
will hopefully start to make sense. If this fails, let us hope that at least a few of the most practical aspects of
the text will be of some use.

Finally, the question about the adequacy of spectral methods to distributed memory computers will not be
treated here. Indeed the proof made by ECMWF when converting IFS to its new computing platform was
hopefully convincing enough to stop a debate that should never have been launched, but for the above-

mentioned too emotional reactions prompted by the word «spectral».

1.2 Basic theorem

The use of a spectral method simply amounts to do grid-point calculations with an infinite precision in the

computation of derivatives and to automatically eliminate aliasing-generated noise.

1.3 Classification of the space discretisation methods for partial derivative equations

1.3.1 Question number one:

Do we express the searched solution as the expansion of a sum of functions defined everywhere (Galerkin
method) or do we express the solution only at the computational nodes (discrete method)?

Remark 1. a discrete method may be considered as a Galerkin method using Dirac functions, but this
semantic exercise does not have any practical application,;
Remark 2: by construction, a Galerkin method will always involve some inversion of a linear

operator, in opposition to the basic explicit character of a discrete method;
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Remark 3: in principle, in the case of a Galerkin method, most operators necessary for the solution of
meteorological equations (so-called «primitive equations» or Euler equations) could be computed in the
mathematical space of the basic functions the combination of which creates the resulting fields; however this
«interaction coefficients» method is highly inefficient; Galerkin methods started to become useful when
Eliasen et al. (1970) and Orszag (1970) independently proposed the «transform method» recalled in the
above-mentioned theorem, the first practical full application being that of Bourke (1974).

1.3.2  Question number two:
Do we seck to have a global (i.e. the whole computational domain) or a local representation of the

discretisation operators?

" Remark 4- when one uses local methods, the question of accuracy is mainly determined through the
order of the approximation, i.c. the choice of a computational stencil; this problem automatically disappears in
spectral methods where the equivalent degree of freedom (the choice of the basic set of functions) is removed
because of the central character of the horizontal Laplacian operator in meteorological equations;

Remark 5: one usually makes a confusion between so-called «grid-point» methods and the use of local
discretisation operators; as already stated in «1.2», this is completely misleading;
Remark 6:the fact that the discretisation operators may have a global character does not mean that

the representation of the results on the model grid is less local than if the opposite choice had been made.

GALERKIN DISCRETE
GLOBAL Spectral | XXX
LOCAL Finite elements Finite differences

Table 1: Classification of the discretisation numerical methods

Since finite elements methods are a kind of compromise between the two other possibilities (as seen in Table 1,
the other intermediate alternative does not make sense) and since our aim is here mainly to describe spectral
methods, we shall compare the latter exclusively with finite differences methods, in order to obtain a clearer
distinction and a better evaluation of their advantages and disadvantages. For more details about the third and
very flexible approach offered by finite elements when applied in meteorological science, the reader is referred

to Temperton (1991b).

228



GELEYN, J.-F.: ADAPTATION OF SPECTRAL METHODS TO NON-UNIFORM ...

1.4 Separation of the horizontal and vertical discretisations

Attempts to do anything else than finite differences in the vertical have had little success up to now (finite
elements seem anyhow to be the only alternative) ; this is probably due (i) to the need to have a very irregular
level spacing and (ii) to the fact that the upper boundary condition (infinite geopotential gradients for a finite

pressure jump) cannot be fitted without distortion in any Galerkin method.

Hence we shall deal from now on only with the horizontal discretisation part of the problem. For the
complementing part see for example a previous ECMWF Seminar Lecture by Arakawa (1983) or Bubnova
(1998) in the same Proceedings.

The next introductory Section will be treated in one dimension, for the sake of simplicity, since the bi-
dimensional applications anyhow have characteristics that strongly depend on the geometry of the problem
(spherical or plane-transformed) and will be treated later on. Furthermore, only the case of Fourier series will
be treated, the irregular character of other representations (e.g. Chebyshev polynoms) bringing in general more

new problems than solving previous ones.

2. GENERALITIES
If one expresses any quantity involved in the solution of a 1-D version of the meteorological equations

following;

o
Y(x)= Zyj.e""" (1)

=M

with V., being complex conjugate numbers, the space derivation operator obviously becomes:

‘ j=M . .
ﬁY(x) - Zi'j.yj.et._/.x

o0x i

@
and the Laplacian operator:

27 ¥(x) - EZM_ ) ijx

J .y;.e 3)
x> !

The value M is called the truncation of the Fourier series that is used to obtain a set of basic functions for the
representation of ¥, provided the latter is periodic with respect to x on the interval [0 , 27].

Linear combinations and products of quantities ¥; and ¥; (or of n™ order derivatives of them) can in principle

L T S S S S PEPPUENU T S T~ SN S SHPIIT S
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is trivial. In the latter case it involves the classical trigonometric equations that link a product of sine/cosine

with the sine/cosine associated to the sum and to the difference of the wave numbers.

Since divisions and (when considering physical forcing functions) even more complicated mathematical
operators are involved in the solution of simulation problems with the meteorological equations, this very
cumberspme «interaction coefficients» method is anyhow never used. One rather uses the transform method
that can be described as follows:
.+ Choose a regular discretisation of the interval [, 2z] with L points per period (L =2 M + I so that

Fourier transforms can be performed in practice); ‘

+ Make the Fourier transforms that starts with the spectral representation of ¥; and ¥, and finish with
the set of values on the model grid ¥y (x; i=1,), preferably with a FFT (Fast Fourier Transforms) code;

+ Perform the mathematics of the operator that involves ¥; and ¥ independently in each grid-point
and put the result in Y3 (x; i=1,0);

+ Make the reverse Fourier transform that brings back ¥; to spectral space, again preferably with a
FFT code. |

Obviously the transform method is not used for each individual operation, but only once per time-step of the

model. .

Inverse Laplacian operators (see Sections 4 and 8) and advection operators -u.Jy/dx are the two main
mgredlents of the horizontal part of the meteorologlcal equatlons Since the advection operators correspond to
pure products in spectral space and have to be treated as exactly as possible, the number L must be chosen
such as the transform method gives then the same result as an analytical computation. One can show that this

suppression of any aliasing on quadratic terms is obtained if one has L >3 M + 1.

One can empirically show that it is unnecessary to further increase L for dealing with the infinite order aliasing
associated with divisions and other complex operators, probably owing to the dominant role of advection and

geostrophic adjustment in dynamical meteorology calculations.

With the more stringent condition on L expressed just above, the use of a forward-backward set of Fourier
transforms on a given quantity ¥ (without any other operation) will not bring back the original values on the
grid when applied for the first time (as it would have been the case with the less stringent first condition
linking M and L). This «spectral fitting» is sometimes considered as a handicap in terms of accuracy for the
spectral method. Since it is applied to the final result of complex computations that would otherwise suffer

from aliasing noise, it may however rather be considered as a distinct advantage of the method.
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The latter point is well illustrated on Figure 1 (obtained from a rerun under conditions as close as possible to
those of the first study). An early version of ALADIN was run (with a mesh size of 8.8 km) on the flash-flood
case of Vaison-la-Romaine (22/9/92), with the aim to study the sensitivity of the forecast rainfall pattern to the
intensity of the horizontal diffusion (Gabersek (personal communication)). While there are deficiencies in the
simulation of the event (the rainfall maximum is situated on the western side of the Rhone valley rather than on
the first slopes of the Alps, the timing is not fully satisfying, ...), the «warning» aspect about a localised risk of
very heavy precipitations must be put to the credit of the model. This quite local simulated structure is a first
answer to the recurrent claim that spectral methods cannot represent sharp atmospheric pattérns because of
their global algorithm. But the most interesting part of the story corresponds to the sensitivity study: opposite
to intuitive expectations, an increase of intensity in the horizontal diffusion (by factors of 2, 4 and 8) leads on
average to an even higher maximum of rainfall and hence to a sharper precipitation pattern (for the intense
spots only, otherwise the expected smoothing effect acts). This paradox, aé confirmed in the study of Marku
(1998), is intrinsically linked to the positive action of the «spectral fitting»: the latter, partly enhanced by the
application of the horizontal diffusion operator, destroys the most unstructured («noisy») part of the simulated
flow, thus allowing a better consistency (and hence efficiency) of the slightly larger scale motions. When

horizontal diffusion is enhanced (in reasonable proportions, of course) this effect becomes even more apparent.

The only place where there is a real disadvantage of spectral fitting is when representing orography, a field
that must be equivalent in grid-point and in spectral space. Hence the number of associated degrees of freedom
is reduced (by a factor 1.5 in the 1-D case and 9/ in the 2-D case) and Gibbs waves are thus affecting the
final field, this being particularly detrimental over the oceans whefe the orography is obviously known to be
exactly flat. A similar problem may arise when treating bounded fields like specific humidity and (even more)
liquid or ice water concentration. In the case of semi-Lagrangian modelling some solutions, avoiding the
spectral fitting for purely conservative parameters, are however already available, even if their implementation

may create new problems (see Section 17).

If one applies the spectral fitting operator a second time to any already fitted field, the result now remains
untouched. The spectral fitting operator is therefore called a «projector». In other words, doing a spectral
transform is equivalent to search for the set of complex spectral coefficients that will minimise in the least
square sense the distance between the original representation and the «fitted» one. This property is central to
several intrinsic advantages of the spectral method. It is also linked to the orthogonality of the set of Fourier
functions and to the fact that the spectral coefficients obtained by Fourier transform are the scaled integrals on

[0, 27] of the product of Y by the relevant basic functions.

The «projector» property has also a nice application to minimise the «Gibbs» detrimental effect explained just

before. Since the spectral fit of the orography is performed once and for ever for any model configuration, one
231
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Figure 1: 30 hour accumulated precipitations for the «Vaison-la-Romaine» case of 22/9/92 00 UTC. Forecasts with standard
horizontal diffusion coefficients (top left) and increased values by factors of 2 (top right), 4 (bottom left) and 8 (bottom right
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may replace the «equal weight» minimisation problem that corresponds to the orthogonal projection by a
complex «variable weight» minimisation problem that can be solved iteratively via an expensive adjoint
method. The new minimisation weights can then be chosen to alleviate the Gibbs problem (Bouteloup, 1995).
Provided one has indeed at disposal a minimisation procedure for variational applications, this method, very
similar in its aims to the one proposed by Navarra et al. (1994), offers a total flexibility of use and a stronger

theoretical background.

Equation (3) shows that the set of basic functions of the Fourier spectral representation are the eigen-vectors
of the 1-D Laplacian operator. Hence any Helmholtz operator will become diagonal in spéctral space. Given
the crucial role of this operator in eliminating or slowing down fast propagating waves (gravity and/or acoustic
ones), the time-stepping algorithm of a spectral model must be organised so that the. Helmholtz. equation is
solved in spectral space.

The eigen-values of the same Laplacian operator behave (see Equation (3)) like the squares of the wave
numbers. Hence any additional operation that must be scale-selective (like horizontal diffusion) is easily
implemented also in spectral space and with the maximum possible flexibility. It is sufficient to multiply the
final result of the other computations by a damping coefficient that depends on the wave number, either the
analytical counterpart of the exact use of the Laplacian, or in fact any arbitrary monotonous function of the
wave number. On the other hand this has the intrinsic disadvantage that the damping rate must then be the

same everywhere in real space.

3. COMPARED PROS & CONS WITH FINITE DIFFERENCES (Gustafsson and Mc Donald, 1996)

_ Following the two above-mentioned authors (from which this Section is almost entirely inspired), the question
of the ratio between accuracy and computing price will not be considered here. Indeed they claim that it is very
similar between both techniques. Other authors, however, give an advantage to spectral methods, for that very
crucial item of computing efficiency (Jarraud and Girard, 1983). The matter is delicate since it refers to the
equivalent finite difference resolution of a spectral truncation, a problem that can be solved in at least half a-
dozen equally valid manners. Since this is not in the scope of this summary about spectral methods, the matter
will not be further dealt with here.

3.1 Pros
* in Eulerian mode, the spectral method has no linear phase error;
* there is no source of non-linear instability in a spectral model,
* the problem of evaluating the pros and cons of grids A, B, C, D or E (in the Arakawa classification)

disappears in a spectral model; the most simple grid (the A one) is used without any negative impact; this
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creates additional benefits, when using the semi-Lagrangian technique, by avoiding different trajectories (and
hence interpolations) for differeﬁt prognostic quantities;

* on the sphere, and even more with a triangular truncation (see Section 4), there is no pole problem
with the spectral method; | ’

* the spectral method has no aliasing error for the computation of quadratic terms;

* Helmholtz equations are trivially solved in a spectral model and this «diagonalisation» property is
also useful for variational data assimilation;

* implicit (hence absolutely stablé) horizontal diffusion is also trivial and infinitely tunable in a
spectral model; ‘ ‘ ' :

* spectral fitting is a’n};how a powerful way to remove any numerical noise; -

* the reduction of the number of degrees of freedom in spectral space is a quite favourable property

for such various applications as post-processing or variational computations.

32 Cons

* sharp features may be less well represented (Gibbs effect) in a spectral model,

* spectral fitting of bounded quantities can lead to unrealistic results through over- or undershoot
through the Gibbs phenomenon (negative specific humidities for instance);

* the orography is less well represented in spectral models for the same accuracy of the «free-

atmospheric» part;

* it is impossible in practice to apply a flow dependent operator for horizontal diffusion in a spectral
model (too expensive transforms if one wants to get away from the linear selective mechanism of a diagonal
operator in spectral space); ' '

* the method cannot be efficiently applied in the global case for very high truncations (see Section 4).

4.  GLOBAL UNIFORM APPLICATION

The earth (assimilated to a sphere) beingkperiodic in all directions, it is easy to see that the spectral method is
ideally suited for global applications. However the need to efficiently perform 2-D spectral transforms imposes
a factorisation between two orthogonal directions: the longitude A and the sine of the latitude 4. The Fourier
functions are, like in the 1-D case, the natural expansion basis in A. The bounded character of the geometry in

i € [-1, 1] imposes another choice for the second component of the basic set of functions.

The property that the combined basic functions must be eigen-vectors of the spherical horizontal Laplacian
operator (spherical harmonics) imposes one Single choice. The «u» functions are the associated Legendre
polynoms. The transform grid is regular in A and follows the set of «North-South Gaussian latitudes» in 4.

The transforms in the North-South direction are performed by Gaussian quadrature, i.e. by matricial
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multiplication of the «fitted field» by the values of the associated Legendre polynoms evaluated on the

Gaussian grid.

The 2-D spherical equivalent of Equation (1) thus becomes:

n=N m=n )
Y(;\,u) — 2 zYnm.I)nm(u).ez.m.k @
n=0 m=—n

if one decides to use the so—ca]led «tr1angular truncaﬂon» for lnmtmg the expansmn series in both n (total

wave number) and m (zonal wave number)
Al

=
>

0 . ~ m

Figure 2: The triangular truncation’s arrangement of allowed bi-dimensional wave numbers

The eigenvalue of the spherical Laplacian for one «spherical harmonic» associated to the complex conjugate
coefficient ¥,™ is - n.(n+1)/d, a being the radius of the earth. One therefore understands the advantage of the
triangular truncation: the highest total wave number basic functions all have the same bi-dimensional scale,
whatever value the zonal wave number m takes. In other words, the representation with a triangular truncation

Ty is homogeneous and isotropic.

The special character of the triangular representation is made even more spectacular through its invariance by
rotation: a field exactly represented by Equation (4) and having been subject to d pole rotation on the sphere
can be exactly represented again by a similar expression m the new (A’, 1) coordinates, the only change being
that of the expansion coefficients. All this explains why nearly all spherical spectral applications are nowadays

using a triangular truncation and not a rhomboidal or trapezoidal one (earlier proposals).

The FFT algorithms require the number of grid points around any latitude circle to be of the arithmetic form
2°.3.5" to ensure good factorisation properties. Here is for example a list of those numbers up to 800, nicely
showing how irregular the distribution of such integers might be (there are sometimes frustrating jumps in the

search of a fitting truncation for a given problem!):

235



GELEYN, J.-F.: ADAPTATION OF SPECTRAL METHODS TO NON-UNIFORM ...

2,3,4,5,6,8,9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64,
72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225,
240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405, 432, 450, 480, 486, 500, 512,
540, 576, 600, 625, 640, 648, 675, 720, 729, 750, 768, 800.

Often, for symmetry reasons, it is decided to only use even FFT numbers (i > 0) In such a case the above list

reduces to:

2,4,6, 8,10, 12, 16, 18, 20, 24, 30, 32, 36, 40, 48, 50, 54, 60, 64, 72, 80, 90, 96, 100, 108,
120, 128, 144, 150, 160, 162, 180, 192, 200, 216, 240, 250, 256, 270, 288, 300, 320, 324, 360, 384,
400, 432, 450, 480, 486, 500, 512, 540, 576, 600, 640, 648, 720, 750, 768, 800.
In fact the number of grid points around a given latitude circle may not be the same for gll latitudes. Indeed in
IFS there is a reduction of the number of such points as one goes towards each pole (Hortal and Simmons,

1991) without any practical loss of accuracy.

The FFTs have a computing cost proportional to N°.In(N) while the chendre transforms (made without any
«fast» algorithm using factorisation properties) have a cost prooortional to NP, Since the rest of the model’s
computations are scaled in N, one sees that the spectral method cannot be applied efficiently for very high
resolutions. However the practical problem is not so serious. The FFTs’ price growth is of little concern, that
of Legendre transforms looks like becommg serious for N of the order of 1000 and mathematicians are
anyhow working hard to produce FLT (Fast Legendre Transforms) algonthms (see for instance Mohlenkamp
(1997))

5. GLOBAL VARIABLE RESOLUTION APPLICATION

There exists one and only one non-trivial conformal sphere to sphere projection (Courtier and Geleyn, 1988),
the one proposed by Schmidt (1977), with only three degrees of freedom: the latitude and longitude on the real
sphere of the so-called pole of dilatation (i.. the centre of interest in the case of a meteorological application
like the ARPEGE one at Météo-France (Courtier et al., 1991)) and the stretching coefficient «e» (map factor
value at the pole of dilatation and inverse of the map factor value at the antipode). The associated transform
possesses a number of very interesting mathematical properties, detailed in the two above-mentioned papers,
but for the purpose of this lecture note it is surely better to start with a quasi-graphical explanation (that
surprisingly enough was absent from the original paper of Schmidt). In the following, primed values usually
correspond to the so-called «transformed sphere» and non-primed ones to the real sphere.

The geometrical transform can best be expressed, after rotation of the coordinate’s «pseudo north pole» to the

real pole of dilatation by:

tan(cos™ (1)/2) = c. tan(cos™ (u)/2) o (5)
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Figure 3: Geometrical interpretation of the Schmidt transform or how to go from
P on the real sphere to P’ on the transformed sphere (Courtier and Geleyn, 1988)

While it would be easy to also apply this transform for a «zoom» effect in finite differences (or finite elements)
modelling, it has two special properties that make it particularly suitable for spectral applications:

+ the conformal property of the geometrical transform implicit in Equation (5) (polar stereographic
projection, homothecy of factor «c» in the tangenf plane and inverse stereographic projection all being
conformal operations) ensures that the homogeneity and isotropy properties of a triangular spectral
representation will be locally preserved,

+ the map factor is a spherical harmonic of degree «one» (no A’ variation, linear variation in g’ from

1/c at -1 to c at +I) on the so-called «transformed sphere».

One can therefore either write the horizontal part of the meteorological equations (with transformed operators)
on the transformed sphere defined by (4°4’) or still on the (4,4) sphere with the classical formalism of a map
factor introduced in the derivatives and in the wind components. Since the advective terms then involve the
square of the map factor (of order two), the only additional need for the anti-aliasing choice of the truncation is
to replace the value one by the value three in the formula linking L to M (if one returns for a second to the 1-D
framework and to its notations), i.c. .M + I + 2 =s.M + 3 replaces s.M + 1, whatever the choice for s might

be (3, 2, 2.5, ...), the underlined term corresponding to the square of the map factor.

Another problem linked to the variation of the map factor is the choice of the linearisation procedure for the
semi-implicit scheme. One may (like for instance in ALADIN) choose to have a constant map factor (equal to
its maximum value and hence here to «c») in the linear model, but this creates accuracy problems at the
antipode even for reasonable values of the stretching parameter, especially when using the relatively long time-
steps allowed by the semi-Lagrangian algorithms. Alternatively, the map factor may enter the Laplacian-type
operator to be inverted but the latter then ceases to be purely diagonal (Yessad and Bénard, 1996).
Fortunately, thanks again to the order one representation of m, the North/South part of the matricial operator
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becomes only pentadiagonal, while the East/West part obviously remains diagonal. Hence, the computational

overhead is of the order of a few percents only.

Provided one is carefully choosing which parts of the calculations have to be done in the (4,4') framework
and which ones in the (4,4) one, a global spectral variable resolution model can be created in a rather simple
way, while preserving all importaﬁt characteristics of the unstretched version, including for instance the use of
a reduced grid near the poles (see Section 5), even if the latter are not anymore the geographical ones.

Hardiker (1997) describes another implementation of basically the same idea at FSU Talahassee.

6. DEGREES OF FREEDOM OF THE SCHMIDT TRANSFORM
As already mentioned there are only three of them: ‘
- Stretching factor «c» (map factor at the pole of dilatation);
- Sine of the latitude of the pole of dilatation;
- Longitude of the pole of dilatation.

With the additional choice that the reference meridian in the projection is the one pointing to the (geographical)
south, the geometry of the transformed earth is perfectly defined with the three above-mentioned parameters.

Technical details about the grid-point (Geleyn, 1988; Clochard, 1990) and spectral (Rochas et al., 1991)
transformations from the real sphere to the stretched one (or the reverse) will not be detailed here, since they
would not help getting any additional understanding about the Schmidt method, beyond the results mentioned

in Section 3.

Concerning the current operational choices at Météo-France, Figure 4 (a, b and c) shows (with only every
fourth point plotted in both directions) respectively the area of maximum interest of ARPEGE, the opposite
hemispheric view and the former with the ALADIN-France grid-points added. On Figure 4a the drawn
«equator of the transformed sphere» indicates the area of local zoom of the Schmidt transform (Courtier and
Geleyn, 1988). On Figure 4c the ALADIN-France grid (9.9 km) is roughly equal to half that of ARPEGE in
the same area following the strategy advocated in Caian and Geleyn (1997).

7. PROBLEMS LINKED WITH THE USE OF THE STRETCHED GEOMETRY

Even if they were numerous at the beginning of the ARPEGE project, problems associated with the irregular
character of the grid when returning to the real sphere (for instance when computing trajectories in semi-
Lagrangian applications, or when changing geometry to obtain new initial conditions or to perform post-
processing) have all been solved. Remaining problems are all associated with the spectral representation on the

transformed earth.
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ARPEGE T199 C3.5 operational grid

1 grid-point over 16 plotted

Figure 4 a
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ARPEGE T199 C3.5 operational grid

1 grid-point over 16 plotted

Figure 4 b
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ARPEGE (T1 99 C3.5) and ALADIN-FRANCE (9.9 km) operatlonal grids

1 gnd-pomt over 16 plotted

Figure4 c
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A first category is associated with the horizontal diffusion, that has to be performed in spectral space and that
ideally should have an intensity depending on the local resolution. This subject will be treated in detail in
Sections 14 and 15.

The second and last category concerns all instances when one has to go back to the real earth while remaining
in spectral space. One may want to do so either to get rid of the stretching (for problems where homogeneity of
the representation is crucial) or of the tilt (when one wants separability of the representation of the Coriolis
parameter) or of both together. Currently the operational ARPEGE suite does not need to use any more such a
procedure. However it will probably be used again when the stretching will be introduced in the incremental
variational data assimilation (see Section 18). We may then expect problems similar to those we encountered
when initialising the ARPEGE model with a normal mode algorithm.

Those problems (eliminated through the ch01ce to use d1g1ta1 filters (Lynch et al., 1997) for initialising the
ARPEGE fields) are of two types

* from a practlcal point of view, the memory requirenierits are very penalising (for keeping an exact
equivalent to the analytlcal results one has to multlply the original truncation by the stretching parameter and
by a «security factor» of about L 2) and huge matrices have to be precomputed and stored to keep the
computational burden of the trausform acceptable,

* from a scientific p'oint‘ohf View, the aliasing introduced through the multiplication by the map factor
is not completely controlled by the « => 3» extra security in the choice of the number of grid points and some
accumulation of errors at the very end of the spectrum is noticeable when iterating the normal mode

calculations.

8. LIMITED AREA MODELLH\IG (LAM) APPLICATIONS

LAM applications are not as obviously fitted to the spectral framework as global ones, since periodicity is now
missing. However, if this problem can be solved, and we will now see that this can happen in at least three
ways, the plane projection geometry may be more advantageous than the spherical one (no pole mapping
problem for the spectral functions, i.e. full periodicity in both directions). Furthermore it has been shown
(Caian and Geleyn, 1997) that the use of very high stretching coefficients in the Schmidt transform cannot be
a suitable substitute to the application of LAMs for rather local problems.

8.1 How to eliminate the non-periodicity problem, variant A
Here as well as later, we shall assume that the problem of «coupling», i.e. the introduction at the lateral
boundaries of information coming from a larger scale model and the elimination of the outgoing information

produced by the LAM, is solved like in a finite difference model, e.g. with the method of Davies (1976).
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In this variant, tried first at ECMWF (Hoyer, 1987) and later developed at NCEP Washington (Juang and
Kanamitsu, 1994), the LAM forecast fields are the departures (over the whole LAM domain) from the results
of the integration of the coupling model, assumed to obey to exactly the same equations as the LAM:

"+ advantages: the departure being exactly zero on the edges and its derivatives being close to zero also
(thanks to the coupling procedure) the application of the spectral technique to a truly periodic pattern may be
similar to that on the sphere;

4 disadvantages: the part on which the evolution equations at the LAM scale are not acting differs
from the part of the flow that is determined by the boundary values and by the inversion of the basic
Helmholtz operator (the so-called «harmonic solution», Chen and Kdo (1992)); it is sometimes argued that the
problem is negligible since the latter can only be of 1arge scale (like the «forced» background); examination of
the spectra of a relevant field, especially in presence of finer scale orography, immediately proves the opposite.
This ceases to be true if one artificially forces the fields on the edge to be very smooth but then the problem of
regenerating useful small scale ‘information in the vicinity of those edges replacesb the previous one and
becomes the weak point of the method in «replacement» of the above-mentioned consequence of the split

between the full- and the truly spectral computations (Machenhauer and Haugen, 1987).

82 How to eliminate the non-periodicity problem, variant B
In this variant, developed at JMA Tokyo (Tatsumi, 1986), there is one more component in the basic set of
«spectral» functions, namely the harmonic solution:

+ advantages: this formally leads to a truly independent LAM, even if in practice the distinction from
variant A is small (the latter can probably be run with any coupling model without much harm being done); the
application of the spectral technique is straightforward,

+ disadvantages: the set of basic functions is not any more orthogonal (even if nearly) and hence some
of the nice properties of the spectral technique are lost; the bi-periodicised fields are continuous on the edge
(zero values), but, unlike in the previous case, their derivatives are discontinuous and this reduces the

similarity with the global case, with some additional negative effects (Kuo and Williams, 1992).

8.3 How to eliminate the non-periodicity problem, variant C
In this variant, proposed by Machenhauer and.Haugen (1987) and developed in the HIRLAM (Haugen and
Machenhauer, 1993) and ALADIN (Bubnova et al., 1995) groups in Europe, the grid-point fields are made
bi-periodic by the creation of an artificial extension zone in which they are interpolated between the values at
the opposite edges; a pure bi-Fourier spectral representation can then be applied to these «extended» fields:

+ advantages: this leads again to a truly independent LAM; the application of the spectral technique
is, even more than in variant A, the mirror image of that on the sphere, i.c. the most natural one, with purely

orthogonal fully periodic functions; 243



GELEYN, J.-F.: ADAPTATION OF SPECTRAL METHODS TO NON-UNIFORM ...

+ disadvantages: the operator «extension, spectral fitting and reduction to the useful domain», the
functional equivalent of the spectral fitting in the global case, is not a projector (one can however find a
technical solution to only compute the extension values for the interpolated coupling fields, thus reducing the
associated problem to a minimum); there is a reasonably small additional computing cost since the number of
spectral degrees of freedom increases with respect to the two other variants (with the careful treatment of the
semi-implicit and semi-Lagrangian algorithms proposed by Radnoti (1995), there is indeed no need to do the

grid point computations in the extension zone).

- Extension zone

Intermediate zone

Central zone

Figure 5: Schematic representation of the Machenhauer-Haugen geometry

The third variant, from the point of view of advantages and disadvantages, seems to be the most «consensual»
choice from the three solutions, especially if compatibility with spherical applications is searched. Hence we
shall use it alone from now on to study the LAM specificities of spectral computations, notwithstanding the
fact that both other variants can lead to the construction of robust spectral LAMs.

84 Spectral representation
The bi-Fourier expansion obviously creates eigen-vectors of the LAM horizontal Laplacian and FFTs can be
economically applied for both «W-E» and «S-N» transforms. The equivalent of Equation (1), in analogy with

Equation (4), becomes:

n=N m=M'(n) ,
— n _i(mx+nx,) .
Y(xlﬂxz)" Z ZYm'e v (6a)
n=-N m=-M'(n) ' :
Or.
m=M n=N'(m)

Y(xl,xz) — Z ZY";:.ez.(m.xﬁn.xz) | : (6b)

m=-M n=—N'(m)

where the truncation wave numbers in the two directions M and N are related to the number of grid points of

the total domain (extension zone included) by the same relationship as in the 1-D case, these numbers being of
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8.5 Truncation

Apart from the trivial use of the physical domain’s size in the Laplacian operator’s expression, the only
remaining problem is that of the choice of M’(n) (or N’(m)) of Equations (6). The solution must have the
advantage of an homogeneous isotropic truncation. Even if it is not exactly possible (there is no total wave

number but a Pythagorean combination of two relative ones), a good approximation is the elliptic truncation:

2 2
n m
2) (2] <
(N) +(M) @

Figure 6: The elliptic truncation’s arrangement of allowed bi-dimensional wave numbers

9. CHOICE OF THE PROJECTED GEOMETRY FOR THE LAM DOMAIN

For ALADIN, we may have elected, like in the HIRLAM case, to choose the same equivalence than in finite
difference models, i.e. the lat/lon system with a rotated pole (in order to bring the pseudo-equator in the middle
of the domain of interest) as counterpart of a portion of the sphere. Following the work of Joly (1992), we
decided not to do so. One of the main advantages of the spectrél models (Temperton (1991a), Rochas and
Courtier (1992)) is to be able to play on the duality between the two wind representations (cither (u,v)
components or vorticity/divergence) in order to optimise the arrangement of transforms and spectral
computations. But this duality, if one wants to have an exact expression for the metric terms on the sphere
(sometimes called «curvature terms» in the description of the primitive equations), requires a representation
locally invariant for any rotation of the chosen coordinate system. Hence the pseudo-latitude of the rotated
lat/lon system should in principle undergo a change of variable that, not surprisingly, leads to the equations of
the Mercator system (corresponding to the only projection conformal and invariant by «o» translation). In
other words, while in finite difference models the functional LAM equivalent to a portion of the sphere is
obviously of the lat/lon type, in spectral models a conformal projection is needed to obtain the same duality!
This point of course reinforces the similitude between the (conformal) Schmidt «sphere to sphere» transform

tion of the Machenhauer-Haugen concept; it also has nice consequences for the
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maintenance of maximum code compatibility between ARPEGE and ALADIN: in both cases a single map
factor defines the metric and hence the way to go from pseudo-wind to pseudo-vorticity/divergence. The only
difference is that in ARPEGE the longitudinal derivative of the map factor vanishes when computing the
metric terms, which is only the case in ALADIN if one chooses the Mercator projection. A few unnecessary
additions of zero or multiplications by one in IFS/ARPEGE are obviously enough to iron out this slight

difference.

» It was therefore decided to use only conformall projections for the plane representation of the LAM domain of
ALADIN:

* there are three possibilities: polar stereographic, conformal Lambert and Mercator;

* the poles and reference meridian of the earthhrepresentation on which these three projections are
applied may be chosen arbitrarily (rotated lat/lon concept as first step in the definition of the projection, this

requiring the additional choice of two paramétefs). :

If (to simplify and it is usually sufficient) one ‘hokwbever‘elécts to remain in classical (4,¢) coordinates, the

geometry of one particular ALADIN domain is defined by 16 parameters:

- Sine k& of the «tangential» latitude of the projection: . »
1 for polar stereographic, 0 for Mercator, in between for Lambert,
- Latitude @, of the reference point of the projection (where the map factor is 1),
- Reference longitudé Ag of the projecﬁon («N/S» axis for the domain), irrelevant in the Mercator case;
- Latitude @; of the «<SW» corner of the C+ domain; |
- Longitude 4; of the «SW» corner of the C-+I domain;
- Latitude @, of the «NE» corner of the C+I domain,
- Longitude A; of the «NE» corner of the C+I domain;

- Number of dx intervals in the «W/E» direction for the C+I+E domain;
- Number of &y intervals in the «S/N» direction for the C+I+E domain,
- Position in x direction of the «SW» corner of the C+I domain;

- Position in y direction of the «SW» corner of the C+I domain;

- Position in x direction of the «INE» comer of the C+I domain;

- Position in y direction of the «NE» corner of the C+1 domain;

- x direction related truncation M,
- y direction related truncation NV,

- Truncation n, for the map factor’s representation {see Section 11).
246



GELEYN, J.-F.: ADAPTATION OF SPECTRAL METHODS TO NON-UNIFORM ...

Remark 1. 1t is a good habit to choose @, so that the projection is really tangential (k = sin (@g)). The
value 1 for the map factor then becomes the minimum value of the latter in the C+I domain. The arbitrary
multiplying parameter for the map factor then disappears as «unnecessary» degree of freedom;

Remark 2: Both total C+I+E numbers of intervals must be «good» FFT numbers of the form 2.3, 5%,

Remark 3: In practice it is convenient to use the set-up of Figure 5 by putting the C+I-zone in the
bottom left corner of the C+I+E-zone. This removes in practice two «apparent» degrees of freedom;

Remark 4: Empirically the «ideal» width of the extension zone has been estimated to 12 grid intervals.
This value must anyhow be considered as a minimum; | ‘ ‘

Remark 5: It is recommended to chOdse the parameters so that &x = &, in accordance with the
conformal character of the projection. If it is done, one «hidden» degree of freedom also disappears;

Remark 6: The «s» ratio between grid-point and spectral dimensions (a number between 2 and 3)
must logically be the same in the two directions. Hence the choices for M and N are not independent and
another «unused» degree of freedom diSappears here; |

Remark 7: 1t is recommended that n, (used as the same value in both geographical directions, see
Section 11) be the integer equal or immediately above the maximum domain size divided by 12 in the Eulerian
case and the minimum truncation wave number minus 10 in the semi-Lagrangian case (Le Moigne and
Jerczynski (personal commum'cations));‘ |

Remark 8: Depending on the chosen constraints there are thus between 8 and 11 «real» degrees of
freedom in the choice of the 16 above-mentioned parameters (7 and 10 in the special Mercator case where the
reference longitude becomes arbitrary or 6 and 9 if one chdoses, whatever projection is used, to minimise fhe
variations of the map factor by having the reference point at the exact centre of the domain). Another way of
figuring out the basic six degrees of freedom is to think in terms of coordinates of the reference projection
point (two), mesh size (one), distance between the projection point and the domain’s edges in number of grid
sizes (two) and ratio between grid-point and spectral dimensions (one). The three optional degrees of freedom

are the two widths of the extension zone and the cut-off wave number n,.

10. BIPERIODICISATION
Running the Machenhauer-Haugen solution requires the existence of one linear «biperiodicisation» operator
that allows to fill (before the spectral fit, if the latter is necessary) values in the E-zone, knowing only values in

the C+I-zone.

The wished properties of this operator must be simplicity, regularity and isotropy. There is no obvious a-priori

mathematical solution to obtain at the same time all three properties. Heuristic choices are here unavoidable.
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One way to evaluate the quality of such an operator is to measure the degree of «non-projectibility» of the
operator «biperiodicisation, spectral fitting and reduction to the useful domain». With respect to this score the
relevant ALADIN operator (invented by Batka (personal communication)) is excellent since even the solution

of a variational problem using all C+I values as entry cannot beat it within a reasonable number of iterations!

This ALADIN operator is the combination of two steps: )

* using the values at the edges and in the next two rows on each side a spline function is constructed to
produce preliminary values in the extension zone; this operation is done first in 4the- N/S direétion_i and then in
the E/W one (the inverse procedure would give the same resglt owing to the blinearity of the spline ope,fator);

* a 9-point «Laplacian» smoothing operator is appﬁed iterétively on the resulting ﬁel‘d,. the nﬁmber of

iterations increasing like the distance to the edge in number of grid-sizes.

As an example of the properties of the method, Figure 7 shows the biperiodicised orography of the current
ALADIN-LACE domain. One notices the spectacular «bridge» between the Scottish Highlands and the Atlas

Mountains as well as the nice isotropy of the prolongation of the Anatolian Plateau.

Since the values produced by biperiodicisation are essentially“ useful for coupling purposes, it is wishable to
find a way to avoid doing such rather expensive computations too often (i.e. at cachv time Istep). If one notices
that the above-described operator is linear, as well as the way to interpolate in time boundary conditions
provided by the coupling model, the solution becomes obvious. One éommutes the two operations by applying
biperiodicisation only on the coupling files and interpolating in time all values, including those in the E;zorlle.
Hence, the model integration does not know this operator (mainly used when preparing lateral boundéfy

conditions), except in the set-up phase for preparing the truncation of the map factor (sée Section 11).

The biperiodicisation operator has also to be used when preparing constant <<geographjcai>> fields, at least for
orography. If one thinks of further research on «spectral coupling (see Section 12), it is also useful to do it
for all surface fields, which is indeed the case (this time without spectral fit, of course). Fof similar feasons,
the Coriolis parameter and the geometrical parameters governing the calculation of the solar zenith angle are
also treated, together with the map factor, in the set-up phase of the model integration. Hence all dynanliqal

and physical computations may be performed in the extension zone, even if their result is currently irrelevant.

11. REPRESENTATION OF THE BIPERIODIC MAP FACTOR

When going from the sphere to the plane projection (or from sphere to pseudo-sphere in the case of the
stretched ARPEGE geometry), we introduce as map factor m the locally defined ratio «mesh size in the
projection» divided by «mesh size on the real sphere». The use of m and of the associated reduced winds

(#’=u/m , v’=v/mi) helps writing the adiabatic equations in a regular metric on the projection. Please beware
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Figure 7: The biperiodicised orography of ALADIN-LACE

The extension-zone is on the top and the right of the picture
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that the notation m for the map factor has nothing to do with the previous use of the same symbol (zonal/x

wave number).

However, in the case of a spectral model, this creates an additional source of aliasing, since the advection

equation for the wind itself takes the fourth-order form:

o' 2 ., O
ST Tm )
ot ox'ly |

'As already mentioned, in the case of the stretched ARPEGE geometry, m is described by a basic function of

order one so that the consequences are minimal.

In the case of any ALADIN projection, a spectral decomposition of m, especially after it has been subject to
biperiodicisation, will fill the whole spectrum with non-zero coefficients and there will be a lot of weak
aliasing generated when solving Equation (8), mainly in the Eulerian case. To solve this problem, it was
decided to truncate the representation of m between biperiodicisation and return to grid point space. For

historical reasons, the truncation is circular and not elliptic (one single cut-off wave number n,).

Since one may not want to be dependent about the choice of n, in the handling of the historical file
representation of ALADIN, it was decided that this external representation would be performed in terms of
real winds. Hence the choice of the truncation cut-off is acting only (and strictly only) when integrating the

model.

In practice n, can be chosen bigger when running a semi-Lagrangian version of ALADIN than for an Eulerian
one (for reasons similar to those that will be developed in Section 13) and this leads to ‘both recommended

choices of Section 9.

12. GEOMETRICAL ASPECTS OF THE COUPLING PROBLEM

Coupling is performed in ALADIN according to the method of Davies (1976). This means that, at the end of
each time step, the values obtained without any instantaneous influence of the coupling model are combined
with the values interpolated on the ALADIN grid starting from the coupling model. The weight of the coupling
value in this linear combination, & (the one for the solution of the LAM coupled model being (1 - @)) is
obviously zero in the C-zone and one in the E-zone. So the problem treated here reduces to the determination

of a in the I-zone.

mry

or any coupled field the bi-dimensional e function depends only on 4 tuning parameters p, n, m and ¥, used

=

in the following expressions: 250
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- a=@p+l).2Z -p.Z" ifp>2 ©)
a=1-@+l).(1-2)* +p.(1-2)'* ifp<2 (10)

where Z is the scaled distance between the edges inside the I-zone.

The value of Z is obvious on the sides of the domain (i.e. equal to either a X or a ¥ equivalent).

In the comer parts of the I-zone, Z is obtained by solving the followmg set of unphclt equations:
L Z=X+Yr | | (1)
e(ntm)"" 2" (1-Z)" = yn".m"™ ' (12)

This formulation is chosen in order to have a smooth continuity with the 0 and I values in the C- and E-zones.
The coefficient p determines the asymmetry of the representation inside the I-zone, whlle n, m and y are
controlling the shape of the function in the corners. In ALADIN, one always has n=3, m=1, =2 while p
depends of the parameter to be coupled. Please beware that the # and m of this paragraph have nothing to do

with previous uses of the same notation (wave numbers and, in the case of m, map factor).

The value of p was adjusted by Janiskova (1994), in Eulerian mode, in order to minimise unwanted wave
reflections at the edge of the domain. For wind and mass variables, the chosen value is 2.16 (i.e. near
symmetry) while for specific humidity it is 5.52, this denoting a sharp variation of & near the edge of the C+I
domain (as little coupling as possible for this very fluctuating prognostic quantity). The latter choice confirms
the results obtained by Yessad (1993) in the framework of the finite-difference model PERIDOT.

The recommended width of the I-zone associated to this tuning is 8 grid-lengths.

All previous considerations in this Section are based on the assumption that the coupling is performed in grid-
point space. However, in a spectral model, there also exists the possibility to perform a «spectral couplingy,
1.e. to impose the largest horizontal scales as those of the coupling model, to let the smallest horizontal scales
be entirely determined (even in the E- and I-zone in the ALADIN case) by internal computations and to have a
spectral transition zone with a mixed solution in between. Experience shé)ws that the performances of this kind
of coupling are becoming worse than those of the grid-point coupling very early in the forecast (Pescaru

(personal communication)).

There is at least however one area of research where this technique might find a niche of application: in the
case of 4D-Var data assimilation, the fact to assume that the «trajectory» found (for the longest waves of the
LAM) to be the ideal one (in the coupling model in fact) must be preserved during the optimisation of the
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LAM’s own trajectory might become an attractive solution to the vexing problem of the inclusion of boundary
conditions in the so-called «control variable» of the LAM. From the LAM point of view, the method could be
called «decremental» (the minimisation does not concern the largest scales); but it could of course be combined
with some «incremental» characteristics (the LAM smallest scales also remain unanalysed), this leading to a

control variable limited to intermediate scales (Gustafsson et al., 1997).

13. LINK WITH TIME-STEPPING SCHEMES
As already mentioned, the spectral method is very well suited for use in Eulerian semi-implicit methods, since
the Helmholtz operator is inverted via the (anyhow necessary) FFTs and since local derivatives are computed

with an infinite precision.

When going to semi{Lagrangian sch_emés, the situation is slightly mddiﬁed; the advection part of the equations
(in 1-D) , . ‘ - ; ‘

oy oy e
ov_ o o )
ot o.x f
is replaced by the differential expression:

t+At

-At
WG WO — 0 (14)
2.At

where the value of w on the target grid point «G» at the end of the time step is taken equal to the value of the
same quantity at the beginning of the time step at the origin point «O» of a trajectory finishing in «G».

The value at the origin point (which is surely not a point of the grid) has to be interpolated from values at the
neighbouring grid points. This interpolation procedure is already too costly with Lagrange-polynom methods
to make any additional meaningful use of the derivatives of the interpolated field on the points of the grid.
Hence one of the advantages of the spectral method (the infinite accuracy of the derivatives’ computation) is

lost.

There is however a hidden potential counterpart to this disadvantage. Replacing Equation (13) by Equation
(14) is equivalent, from the point of view of grid point calculations, to replace a product by a linear
combination (the interpolation operator is always a linear one). Hence the degree of aliasing of the advection
part of the computation is reduced from two to one. If one still admits that the aliasing is dominated by these
advection terms (this may be empirically studied), one may now accept to relax the condition on the number of
grid points (L >3 M + I) towards the original «linear» one (L =2 M + I) or, probably better (since there is

ra

still some smali aliasing), towards a «semi-linear» compromise like (L =2.5 3
252
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In fact what is done is not to decrease L at fixed M, but the reverse, i.e. to increase M at fixed L. Hence one
can obtain an increase of the spectral resolution (in particular for the orographic forcing, see Section 2) with

the same computational grid and hence nearly the same cost.

Finally, if one replaces Equation (13) by Equation (8) and does again the exercise of replacing prdducts by
interpolations, it becomes obvious why the recommended values of , (truncation cut-off for the map factor m)

are so different between the Eulerian and semi-Lagrangian cases (see Section 9, Remark 7).

14, GENERAL FORMULATION OF THE HORIZONTAL DIFFUSION PROBLEM
There are a lot of options and complex formulations in the horizontal diffusion part of ARPEGE and ALADIN
thanks to the fact that the spectral formulation allows in principle any choice for a diagonal implicit selective

damping of the form:

.
X = X,
o TR DN | 3

where X is the prognostic variable to be «diffused», Kx a coefficient (dimensioned to the inverse of a time

quantity) attributed to this variable and depending on the vertical level / and on the relative wave number 7

, n(n+1)
* ' BN heyspa— ‘
for unstretched ARPEGE N(N + 1) : (16)

n\’ m)’
* for ALADIN r= \/(N) +(—ﬁ;) (17

while no similar simple expression can be shown for stretched ARPEGE owing to the too large variation of the

map factor (for ALADIN the expression is slightly wrong since the map factor is also varying, but this rather

small variation is systematically neglected in all considerations concerning horizontal diffusion).

If the dependency of K with respect to r is of the form:

K ocr? - (18)
then Equation (15) is the equivalent of:
(ﬂ\ _ _K, (_A_:‘r)qlz
\a) Al 19)
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where ¢, the so-called order of the diffusion, is in principle an even integer (at least in Equation (19)).

Basically it is only in ALADIN that a formulation of the type of Equation (19) is used. Thereafter we shall
thus only briefly review the ARPEGE situation and give more technical details for the ALADIN

implementation.

There are however currently three common pointé between all NWP applications inside ARPEGE/ALADIN:

* the coefficients are equal for vorticity, temperature and specific humidity and 9 times bigger for
divergence (a translation to spectral horizontal diffusion of the finite difference «divergence damping»); there
is obviously no diffusion on surface pressure; in the case of the non-hydrostatic version of ALADIN, the
diffusion cOefﬁcient should be the same for the vertical divergence as for the horizontal divergence and there
should not be any diffusion on the ;pressure perturbation;

* to avoid the too strong artificial mixing along mountain slopes of air parcels having different
temperatures for similar potential temperatures, it is not T that is diffused but T’ - Zin(py) where fis a level-
dependent constant, optimised in the conditions of the standard atmosphere;

* the dependency of K on [ takes the form: o

y | |
Ko 0 (20)
min(yo, Psr (1) / Prer)

where y, is a tuning parameter to be chosen between 0 and 1 , Pst(l) the pressure of the standard atmosphere at

level I and pger the reference pressure of the same standard atmosphere.

Hence K is constant for 7 = y, and increases aloft as the inverse of pressure. The latter choice is made to
partly damp fine scale gravity waves propagating towards the top of the model where they will be unduly

reflected back (a variant of the so-called «sponge» technique).

15. HORIZONTAL DIFFUSION IN STRETCHED ARPEGE

15.1  Numerical diffusion on the transformed sphere

It is the equivalent of Equations (15), (16) and (18) on the transformed sphere and it is activated for purely
numerical reasons, namely the cleaning of the consequences of residual aliasing and of accumulation of

variance at the truncation’s edge. The order of the operator is usually g = 4 for high resolution applications.

Obviously it becomes the only applied diffusion in the unstretched case, even if in practice the additional

schemes that will now be described degenerate to it in the case c=1.
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152  «Geographical» part of the so-called «unified diffusion»

In the stretched case one has to combine the effects of the scheme mentioned in «15.1» with those of a scheme
that mimics what would be a diffusion operator of homdgeneous order and constant intensity on the
geographical sphere. Except in the special case ¢ = 2 where the problem can be treated exactly, the chosen
solution is to approximate the implicit variation of the K’ value on the transformed sphere by a polynom of
second order in function of the sine 1’ of the pseudo-latitude (a0 + al.p’ + a2.u”). The opérator one tries to

approximate is here usually also of fourth order for high resolution applications.

The horizontal diffusion operator then ceases to be diagonal for the pseudo-N/S dependency and becomes by
construCtion pentadiagonal (in the exact case ¢ = 2 like in the approximate case q = 2). The solution of the
associated linear system remains at a still acceptable price (like for the semi-implicit case, see Section 5) and

the algorithm keeps its crucial implicit character.

15.3  Geographical horizontal diffusion in Fourier space

The difficulties associated with the use of the solution described in‘«15.2»' and its approximate character can
be eliminated if, following Li et al. (1994), one elects to do the horizontal diffusion in the intermediate step
between the Fourier and Legendre transforms of the model time step. The operator remains spectral and hence
diagonal in the space of the Fourier coefficients for one given pseudo-latitude row but the problem ceases to be
spectral in the pseudo-N/S direction. When treated by a finite element method the problem reduces to the
combined inversion of tridiagonal matrices, with the advantage that the local intensity of the operator can be
chosen such as to obtain an exact equlvalent of Equation (19), again with g = 4, the only currently coded

version (Tolstykh (personal commumcatlon))

Like the previous one, this scheme (not yet in operational status) is currently combined with a component of
the type described in «15.1» (for numerical reasons), even if we are here considering a possible merge of the

two components.

16. HORIZONTAL DIFFUSION IN ALADIN
As already mentioned it exactly follows Equations (15), (17) and (18) in the elliptic truncation (we assume
here &x = &y). The order is g = 4 here also. For the vertical variation one has y, = 1, i.e. a variation of the

intensity of K starting right from the bottom.

An important issue (that also exists in ARPEGE but is obscured there by the coexistence of two methods) is
that of the tuning of K when changing model resolution, i.e. truncation and/or stretching in ARPEGE or dx (=
6y) in ALADIN.

255

[

N

€

A R ¥ ) - O




KM)

HEIGHT (

GELEYN, J.-F.: ADAPTATION OF SPECTRAL METHODS TO NON-UNIFORM ...

2 2 \
1 1 \,
] ]
1
! N
14 1 \\
1 1
E ,
8 =]
) ‘ 8 \)
4 4 v I/
y
2 2
03 3 3 y 5 6 7 07 2 3 4 5 6 7
LENGTHSCALE RATIO " LENGTHSCALE RATIO
2 ’ 2
1 ' 1
1 1 \\
1 / 141 \
13 — 12 \
\ g \
1 \l E 1 \
I =)
8 \ = 8
6 \] 6
2 [ 2 ,[
) ‘ /
07 2 3 4 5 6 7 01 2 3 4 5 6 7
LENGTHSCALE RATIO LENGTHSCALE RATIO

Figure 9: Ratios between the max:mum and mmlmum horizontal length scales of the structure functxons of a model with c=3.5;
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space in whlch the mlmmxsatlon is performed (i.e. «control variable»). For the sake of simplicity, this will also
be the case for the first 4D-Var application of ARPEGE. But the contradiction between the then very
entangled model- and assimilation aspects will become paramount and some degree of stretching will have-to
be introduced soon after in the control variable and/or the structure functions. Given the above mentioned
uncertainty about the ideal stretching of the latter, one hope is that it will be sufficient to act only on the
control variable, letting the dynamics of an intermediately stretched tangent linear model recover the variations

of the structure functions during the iterative forward-backward integration process.

However, even in this case (in fact in any case where the degree of stretching will differ. between the structure
functions and the control variable), we shall be back with the very expensive use of the dilatation matrices
once necessary for normal mode initialisaﬁon. Additional pfoblems may thus be expected again in this
framework (see Section 7). No similar problem is expected with ALADIN, provided of course. that the
integration domains remain reaéonably small, Indeed; like for horizontal diffusion (see Section 14), the
hypothesis that one can partly neglect the horizontal variations of the map-factor will then remain a valid one,
On the other hand, new problems will arise concerning the coupling and the way to handle it in the variational

framework (see for instance Section 12).

The second basic argument in favour of spéctral methods is linked to the enormous computational burden that
3D-Var (in terms of memory) and 4D-Var (in terms of memory and computing time) are requidng. The only
currently acceptable way to escape this problem is to work in «incremental mode» (Courtier et al., 1994). One
elects to have less degrees of freedom in the control variable than in the forecasting model. In the case of the
spectral method this can be achieved with one single tuning parameter, by reducing the truncation of the
representation: only the largest scales are updated in the analysis step of the data assimilation process, the
smaller ones being supposed to adapt during the forecasting part of the cycle. Of course multi-grid methods
may play the same role in the case of a local representation of the fields, but the simplicity of the spectral

method surely remains an advantage here.

19. SUMMARY

Spectral methods have nothing «magic», they simply are another way to discretise in the horizontal, with no
unnecessary ancillary question to solve and with nice computational properties. From the point of view of
algorithms, the «respiration» of a spectral time-step is quasi-perfect in semi-implicit Eulerian mode. The

interaction with the semi-Lagrangian methods destroys part (but not ali) of this crucial advantage.

The mathematics behind the spectral method is merely an application of linear algebra theorems. The practical

application however strongly depends on the existence of powerful Fast Fourier Transform {FFT) algorithms.
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When considered from a practical point of view, at equal computing costs, the advantages of the spectral
method somehow outweigh those of the finite differences method. This is probably also true with respect to the

finite elements method, albeit in a less «clear cut» manner.

The spectral method can be equally well employed for global uniform, global «zoomed» or LAM applications,
in the latter case with a marginal additional problem that can be solved in at least three different ways (for
example through the use of a «toroidal» geometry in the described ALADIN case).

The Schmidt transform represents the only practical way to solve the variable mesh problem in a global

spectral framework.

In LAM spectral applications there is no reason to leave the isotropic framework of conformal projections; the

analogy with the global case is then paradoxically stronger than for the (rotated) lat/lon geometry.

In the link between model’s dynamics and physics the spectral fitting acts as a welcome filter (less grid-point
storms for the convective parameterisation, for example). Consequently, at high resolution, the concept of

linear (or semi-linear) grids for semi-Lagrangian integrations appears less attractive.

The spectral method is the most natural way to define the «control variable» of variational methods, especially
when this technique has to be applied in the «incremental» way. For global applications, the use of the
ARPEGE stretched geometry in this framework will however represent a tough challenge.

Last but not least, there are now at least seven operational applications of the ALADIN concept and one of the
stretched ARPEGE one. Owing to the difficulties to push an initial idea up to this ultimate «proof of the
pudding», Machenhauer and Haugen on one hand and Schmidt on the other hand deserve a lot of credits.
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