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1 INTRODUCTION

Numerical weather prediction is carried out by integrating the complete equations of mo-
tion of the atmosphere forward from prescribed initial data. The equatiqns include rép-
resentation of a wide variety of thefmddynamic effects, eSpéciale those associated with
phase changes of water. Since the flow of the atmosphere cannot belcompletely“ described
by a numerical model, a statistical representation of the effect of unresolved processes on

the resolved flow has to be included.

Theoretical meteorology has studied the sqlutions' of the equations of motion and thermo- '
dynamics most relevaﬁt to weather forecasting. In particular, it has been shown that mbst
of the dry dynamics directly related to weather systems can be described By the advection
of a passive scalar, the potential vorticity, from which all the other flow variables can be
deduced, Hoskins et al. (1985). These ideas can be generalised to include the main effects

of latent heat release and boundary layer friction.

The main job of operational models is to predict weather systems accurately. Therefore, in
this chapter, we consider the design of numerical methods for the full equations of motion
and thermodynamics which accurately predict the evolution of the underlying potential

vorticity and control the amplitude of other motions to realistic levels.
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We also consider the mathematical and numerical aspects of the sub-grid model terms,
often referred to as 'physics’. The first aspect concerns the choice of a valid sub-grid
model. The essence of averaging procedures is that the flow variables, when averaged over
a particular scale, will vary smoothly on that scale. A valid sub-grid model will, when
integrated together with the explicit equations, give solutions which are smooth over the
averaging scale chosen. The second aspect concerns the interaction of the physics with
the potential vorticity evolution. This needs to be understood and reflected in the way in

which physical and dynamical increments are combined in the numerical method .

2 BEHAVIOUR OF THE EQUATIONS OF MOTION IN
STRONGLY STRATIFIED OR STRONGLY ROTATING
REGIMES

2.1 Asymptotic regimes

The technique used to analyse the equations of motion is

i) choose an asymptotic regime of interest, defined by certain parameters being small.

ii) identifying an approximation to the equations of motion which is valid for that regime.
iii) showing that this approximate system has well-behaved solutions describing the phe-
nomena of interest.

iv) Proving that the solution of the complete equations stays close to that of the approx-

imate system (and converges to it as the small parameters tend to zero).

In the case of extra-tropical weather systems, the regimes of interest are where either
the rotation or the stratification is strong. The approximate equations can be written in
terms of the advection of potential vorticity by a velocity field deduced from the potential
vorticity. Step (iv) allows the amplitude of inertia-gravity waves to be estimated. The
same approach can be used to study other phenomena, such as organised convection, with
an appropriate but different choice of small parameters.

We illustrate this using the hydrostatic equations in pressure coordinates in the vertical
and Cartesian coordinates in the horizontélf This is the simplest system in which the
necessary points can be made. This material is based on the analysis of Warn et al.

(1995) and Vallis (1996). More background material is contained in standard textbooks,
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e.g. Haltiner and Williams (1980). The notation is standard except as indicated.
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The lower boundary condition at p = p, is that p = p; is a matena.l surface 0 is a
basic state which is a function of p only. The equivalent basic state geopotentlal sa.tlsﬁes

8¢/8p = ROI1/p, where 11 is the Exner pressure and R the gas constant.

These equations imply the following potential vorticity conservation law
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In order to understand the effect of the boundary conditions, and the behaviour of large
scale flow, it is of interest to consider the special case where 9ktakes a uniform value 6y,
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This is equivalent to a shallow water system. The potential vorticity is
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The key parameters determining the nature of the flow are the Rossby number Ro, the

Froude number Fr and the Burger number Bu, where

Ro=U/fL Rossby number
- Fr =U/NH Froude number (5)

Bu= Ro/Fr Burger number

Here U, L, H are scales for horizontal velocity, horizontal leﬁgth scale and vertical length
scale, and N2 is the Brunt Vaisala frequency 1 ao_ In the ’shaﬂow water’ case (3), the
Froude number is U/ c, where ¢? Rﬂo The scalmgs assocmted with weather systems are
that at least one of Ro and Fris smaJl and that H /L is small Other situations such as
active convection have different scalings. Baroclinic instability has Bu = 1 with both Ro
and Fr small. In particular the ’Charney’ scaling sets Ro = Fr, so Bu = 1, and then lets
them become small together. In this chapter we consider the cases either Ro or Fr small,
with the other < O(1), and Bu taking any value. This covers the spectrum from strongly
rotating, weakly stratified flow, to the converse. It is often convenient to express this, for
fixed H, N and F, as a choice between L > Lg and L < Lg; where Ly, the Rossby radius
of deformation, is NH/f.

2.2 Approximate solutions

It is convenient to analyse equations (1) by writing them in terms of the potential vorticity
equation (2), an equation for the horizontal divergence x and an equation for the ’linear
imbalance’, defined below. This is similar to the procedures used by Vallis (1996) and also
Lynch (1989) and Temperton (1988) to define ’slow’ equations or ’implicit normal mode’

initialisation.

Let V represent the three dimensional operator ( 30 3y, ap) and Vj, the two-dimensional
operator (g, 397 0), with similar meanings of the subscript h for other vector operators.
Let { = a” —% be the vertical component of the relative vorticity and x = g: + g—; the
horizontal divergence. To preserve generality in the definition of the Cartesian coordinates

we allow for f to vary in both z and y. Then the divergence equation is
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The continuity equation and the deﬁmtlon of N2 have been used to simplify this equatlon
Note that £is not the true remdue in the linear balance equatlon because the derivatives
of f have not been mcluded in the definition of .f The equatlon for the latter isa lot more

comphcated Equatlon (7) is 51mp1er for scale analy51s
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We now estimate the size of the divergence x, or equivalently $%. The horizontal momen-

tum equations and the hydrostatic relation from (1) show that
(9)
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Seek solutions with x is small, and the potential vorticity having timescale U/L. First
omit the term 4% from (8). This gives
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The terms in the bracket on the left hand side of (10) are of order U?/(HL?) + BU/H,
where f is a typical rate of variation of f. The left hand side of (10) is therefore of order
7%33 + 6 TJUiL The right hand side can be estimated as

fu* | BfU

2/72 2 2
—w (N?/L* + f*(1+ Ro)/H?) taEt g (11)
Thus we can estimate
UH RoFr?
“3TL Rott Fr? (12)

(if 8 is no greater than Rof/L). The three cases of interest are the strongly stratified
regime Ro = O(1), Fr < 1, the ’Charney’ scaling Ro = Fr < 1, and the strongly ro-
tatiﬁg regime Fr = O(1),Ro < 1. (12) shows that w =~ e%, where € is respectively

O(Fr?),0(Ro), and O(Ro) in the three cases.

(8) shows that the timescale of inertio-gravity waves is O/(N2H?/L? + f*. Assume that
this is the timescale of w. Then a self-consistent solution of (1) will be a flow determined
by potential vorticity advection, with superposed inertio-gravity waves of amplitude O(e),
where ¢ takes the values above in the three regimes. The fast timescale of motions of
amplitude O(€) will not alter the timescale U/L of the overall flow. The effect of the
waves on the potential vorticity evolution will be at most O(¢), but time averaging over
the wave period can be used to show that the real interaction is much weaker (Babin et al.
(1996,1997)). They also show that the inertio-gravity waves cascade efficiently to small
scales if Bu > 1, so that the total flow will be closer to the solution of (10) in that case
than our analysis suggests. In the case Bu < 1, the rotation dominated case, the cas-
cades are inefficient and the O(Ro) estimate of inertio-gravity wave amplitudes is realistic.
Observations confirm the prevalence of quasi-inertial waves in the atmosphere on small
vertical scales, corresponding to Bz < 1, (Sidi and Barat (1986)). The sensitivity of this

cascade to Bu has to be allowed for in desiging schemes which damp inertio-gravity waves.

_ In numerical methods for equation (1), the need is to control the amplitude of inertio-
gravity waves to O(€), and to ensure that the part of the potential vorticity evolution
which can be predicted independently of the inertio-gravity waves is accurately treated.
The latter is determined by using the divergence calculated from (10), where the term

in %;ﬁ on the left hand side is substituted for using the rotational part of the momentum
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equations from (1). The numerical method must therefore contain an accurate analogue of
(10). If both real and simulated inertio-gravity waves time average to zero, then the total
error in the potential vorticity advection will be the error in approximating (10), together
with the error in parametrizing the higher order interaction of the inertio-gravity waves

on the potential vorticity field.

These estimates show why the solution of (1) in a regime where Ro or Fr is small can be
almost exactly replicated by that of a system Where the divergence is diagnosed implicitly,
and the evolution governed by potential vorticity advection. This has been demonstrated
many -times, for instance by Allen et al. (1990), and McIntyre and Norton (1998). In
particular, if the initial amplitude of inertio-gravity waves is zero, the p‘otenﬁa.l vorticity
with associated divergence calculated from (10) is a solution of (1)-to order Fir%, Ro® and
Ro® in the three regimes. This follows from assuming a timescale U/L for the term in
9%w/0t? in (8), whence the ratio of this term to the terms on the right hand side is eRo.
Therefore the difference between a solution of (10) and a solution of (1) is O(¢?Ro). In the
case Ro = O(1), Fr < 1 this is consistent with the estimate made by Ford et al. (1998)

of the effect of spontaneous gravity wave emission on the potential vorticity evolution.

The potential vorticity equation (2) is derived from the vorticity and thermodynamic
equations derived from (1). (2) holds whatever the value of the divergence yx, and vertical
motion deduced from it. The potential vorticity (4) associated with the vertically meaned
flow is derived from the vorticity and surface pressure equation, again for arbitrary y.
Therefore, in ‘a numerical method, accurate treatment of the advection of (,8 and p,,
together with a consistent definition of x, and an appropriate method of estimating it as

discussed above, will ensure potential vorticity conservation.

2.3 Inclusion of physical effects

In addition to the terms included in (1), operational models include extra terms in the
momentum and thermodynamic equations normally lumped together as physics’. These

can be described as either

i) Direct source terms (e.g. radiation).
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ii) Boundary flux terms.

iii) Terms representing phase changes.

iv) Terms representing sub-gridscale dynamics.

(iv) includes vertical and horizontal diffusion, boundary layer mixing, gravity wave drag,
and much of the deep and shallow convection schemes (except phase changes) In addltIOD,

all the other terms have to allow for sub gridscale varla,blhty

If (1) are regarded forma.lly as equations for the averaged ﬂow where an overbar represents

a general space-time filtering operation, we obtam
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The terms F, F, Fy, F, represent the sub-grid model (iv). The unaveraged equations (1)
can generate small scales and turbulent solutions. The basic flow variables u,v,8, p, are
bounded, and so their average values will vary smoothly over the filter scale. Thus, if the
sub-grid model is correctly designed, the solutions of (13) will also vary smoothly over
the filter scale. An example of a standard method that does not meet this criterion is
stability-dependent vertical diffusion of potential temperature. This can be written

30 o 00
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where K — 0 as 88/0p — —o0, and K — oo as 30/0p — 0. The analytic solution of
this equation is that # is a piecewise constant function of p, on an arbitrarily small scale
determined by the variations in @8/8p in the initial data. This clearly does not satisfy

any smoothness requirement.

A more extreme example is that of a super-adiabatic boundary layer. Equations (1) will
have unstable solutions in this case corresponding to small scale convection. Equations
(13), without the sub-grid terms, are formally identical, and so will also have unstable
solutions. The sub-grid model must suppress this instability, because observations show
that super-adiabatic boundary layers can persist for long periods in the averaged state if
the forcing from below is strong enough. While sufficiently high horizontal diffusion can
ensure this, it may not be the most realistic sub-grid model. Another option is to replace
the static stability in teh expolicit terms by a neutral value, and replace the transports
by a non-local parametrization. If the instability results from moisture, the best solution
may be to disable the large scale precipitation calculation and only use the convection

scheme to calculate the transports.

Another example of an invalid sub-grid model is a convection scheme whose interaction
with the dynamics produces grid-scale convection. In general the smoothness criterion
will often be failed by schemes with logical switches depoending on grid-scale detail of the
flow. On the other hand, linear diffusion will satisfy smoothness criteria, but lose physical

realism,

2.4 Interaction of physics with the potential vorticity evolution

We now show how physical effects can couple to the potential vorticity evolution, and
hence the evolution of weather systems. This is done by generalising the analysis of sec-

tion 2.2.

It is useful to start from an alternative method of analysing (1), based on Schubert (1985).
Write (1) in the form

u fv
0
Ql v | +5 —f‘u =H (15)
18
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where
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Instead of neglecting %t‘- as in section 2.2, we replace E%(“’ v) by its geostrophic value. If f
is constant, this is equivalent to neglecting both %f and %%. (10) shows that this will give
an O(Ro) estimate of w if Ro < 1. It does not give a useful approximation if Ro = o(1).
We then obtain ' ‘

u . Lo ;
s}
Q| » |+ é-t‘V(ﬁ =H (18)
w

(18) can be interpreted as H being the dynamical forcing, Q determines the response
of the atmosphere to forcing, and ;% is the evolution of the geostrophic pressure, which
will be related to the potential vorticity. It can be shown that det Q approximates the
potential vorticity ¢ to O(Ro). Thus small potential vorticity implies that Q has at least
one small eigenvalue, and so there will be at least one direction where. small forcing can

generate a large response.

We now generalise this formulation to include physical effects. In the boundary layer,

geostrophic balance is replaced by Ekman balance, defined by

8 .
: 5% — fve = F(u,) (19)
0
a_j‘i‘fuezF('ve)’

Assume first that the friction terms F(u), F(v) can be represented as a linear drag —cp(u, v).
Set ub an equation similar to (15), by forming a linear combination of the first two equa-
tions of (13), Replace potential temperature gradients by equivalent potential temperature

gradients in saturated regions. We then obtain
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U fv—cpu
0
Ql v +5¥ —fu—cpv | =H (20)
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VO is the gradient of the equivalent potential temperature in saturated regions and the
actual potential temperature otherwise. .S} represents source terms in the thermodynamic
equation. If we now assume that the time derivatives of u and v obey Ekman balance, we

recover (18).

The structure of equation (18) with (21) and (22) is again that the forcing terms are on
the right hand side and the response to the forcing is on the left hand side. The response
is a velocity field u which is largest in the direction of the eigenvector of Q with the
‘smallest eigenvalue. We can see that boundary layer friction enters both sides of (20).
The diagonal terms of Q are similar in magnitude to those in (15) but with f2 replaced
by f2 + ¢ and the static stability replaced by its moist value in saturated regions. Thus
the effect of friction is to increase the eigenvalues of Q, and thus stabilise the atmosphere
against forcing. In particular, it will reduce the effective Burger number, and hence the
Rossby radius of deformation. The effect of latent heating is to make the atmosphere more

responsive to forcing rather than being a forcing term in itself.

If a more complete formulation of boundary layer friction is used, the matrix Q will be-
come non-local. However, the stabilising effect is likely to remain. Similarly, the effect of
precipitation will be to make a non-local change to Q, if the precipitation rate is assumed

to be essentially proportional to the rate of generation of supersaturation. However, this
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could be stabilising or destabilising depending on the circumstances, and the assumptions

made in deriving (18) are only likely to be valid for quasi-steady systems.

When applying this thinking to operational models, the idea is to ensure the coupling
implied by (18) if the timestep is long. This will involve coupling implicit treatment of
the boundary layer with implicit treatment of the dynamics. It also involves replacing po-
tential temperature gradients with equivalent potential temperature gradients in implicit
calculations in saturated regions. In practice, the easiest way to implement this is to use
a standard parametrization for the explicit update, and a linearised correction to it in the

implicit step. Thus we could write

u™ = u™ 4 FT + cpu (23)

"t =7 1 E} + cpv’

This treats the boundary layer drag with a possibly complex non-local scheme in the ex-
plicit step, but a linearised correction in the form of an equivalent drag in the implicit

step. Similar linearisations are needed for incremental 4DVAR.

If there is actual convective instability, Q will have a negative eigenvalue, and the response
to forcing in terms of the balanced dynamics will be discontinuous mass transport, Shutts
(1995). In practice, this is represented by a parametrization scheme. The necessary cou-
pling expressed by (18) can only be achieved by treating the convective mass transport
implicitly. This can be done by using the full, complex scheme in the explicit step, and a
linearised correction in terms of a perturbation to the mass flux in the implicit step. This
will allow a change in forcing to produce a response in terms of more or less convection,
rather than in changes to large scale vertical motion. Such a scheme would be more ex-
pensive, because the finite difference representation of Q would become non-local in the
vertical. However, the real processs is non-local and this may be unavoidable if realistic
results are required. A similar situation will arise if precipitation effects are strongly cou-
pled to the balanced dynamics. Non-local implicit methods will have to be used if correct

behaviour is to be obtained with a large timestep.

The analysis of section 2.2 can be extended to give some indications as to when physical

processes will strongly couple to the potential vorticity evolution, and when the response

429



CULLEN, M: THE USE OF DYNAMICAL KNOWLEDGE OF THE ATMOSPHERE TO IMPROVE NWP MODELS

would be largely unbalanced. This can be done by replacing f by V(f2+c%) and N by

its moist value in the definitions of Ro and F'r.

Outside the boundary layer the frictionless estimates for the magnitude of w can still be
obtained by using the Ekman pumping velocity at the boundary layer top as a lower
boundary condition, instead of the dynamical condition contained in (1). The frictionless
scaling will be unaffected if the ratio of the boundary layer depth to the vertical scale of

the motion is no greater than €, with the appropriate choice of € for the asymptotic regime.

Localised thermal forcing will enter directly on the right hand side of (7). A forcing § will
generate a response given approximately by

. -
0w 1 3¢V2 g

2¢72 i

The scalings remain valid if the resulting w < eUH/L, so that § < ]—valjﬁ%g-

(24)

2.5 Qualitative behaviour of potential vorticity evolution

The analysis above suggests that typical behaviour can be described in terms of two cases.
When Fr € 1,Ro=0 (1), gravity waves are fast and there is a potential vorticity based
solution which is almost free of gravity waves. When Ro < 1, there is a basic flow close
to geostrophic balance, together with inertia-gravity waves with amplitude O(Ro) times

that of the basic flow.

We now show that the qualitative behaviour of the horizontal flow changes according to
whether L is greater or less than Lpg, the Rossby radius. For a mid-latitude values of
the Coriolis parameter, 104, and a typical model vertical structure, the Rossby radius
associated with the external mode is about 3000km (global wavenumber 2), with the 3rd in-
ternal mode about 1000km (wavenumber 6) and with the 10th internal mode about 200km
(wavenumber 30). These normal mode values are influenced by the strong stability of the
stratosphere. A typical tropospheric value of N? would give Lg ~ 1000km if the depth
scale is the depth of the troposphere. The maximum baroclinic instability tends to be on

a scale of about 2000km, which is the effective Rossby radius in the region where it occurs.
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We can illustrate this most simply by studies of the quasi-geostrophic approximation to

the potential vorticity equation (2). If f and N? are constant, this is

9Q
ot

= (477 ( + 5 (3 g;f))

Larichev and McWilliams (1991) and Farge and Sadourny (1991) studied the behaviour

+u,-VQ =0 _ (25)

of this equation in both regimes. In the case L < Lg, the variations of ) are dominated

by variations in relative vorticity. Thus (25) behaves like

. 8V2¢
ot

+u,-V(V3¢) =0 | - (26)
‘ (f”ga_f“g)zvhfv’f | |

This is exactly the equation for two-dimensional incompressible flow. The solutions pro-

duce a cascade of energy to large scales and enstrophy to small scales. This identification is

‘ reponsible for statements that the large scale ﬂow of the atmosphere is like two-dimensional

turbulence (Leith (1981)) However, this reqmres L< LR, which is not strlctly large scale

flow. Observed filamentation of the stratospherlc vortex may satlsfy L < Lp, though the
height scale for this type of motion is uncertain. In the case L 3> Lg, (25) behaves like
2 2

mgf+ gvgf

The behaviour of this equation has not been studied. However, if the effect of the operator

=0 (27)

d/0p® is represented by multlplymg by a vertical elgenvalue H- -2 , then the equatlon takes

the same form as if derived from the shallow water case, (3):

94
at

The difference is because u,.V¢ = 0 but u, - V;a—p% # 0. Larichev and McWilliams (1991)

+gvv2¢ 0 ()

and Férge and Sadourny (1991) showed that equation (28) does not exhibit an enstrophy
cascade. The solutions remain coherent, and are not sensibly described as homogeneous

turbulence of any sort.

Babin et al. (1996,1997) have analysed the behaviour of the inertio-gravity waves in these

regimes as well. The overall picture that results is of a flow where on scales L > Lp,
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geostrophic and inertio-gravity waves coexist, with weak interaction between them, and
there is no systematic transfer of energy or enstrophy either upscale ort downscale in ei-
ther the potential vorticity or the inertio-gravity waves. However, baroclinic instability
will intermittently create disturbances with L = Lg. On scales L < Lpg, there is a trans-
fer of rotational energy upscale, towards L = L R, and small gravity wave activity which
cascades efficiently to small scales. We can thus expect to find little energy in the regime
L & Lpg, except as a result of physical and topographic forcing. The effective Lg for

observed flows is difficult to determine, as it depends on the depth scale.

The implication for numerical methods is that an enstrophy diyssipation mechanism is
required for the rotational flow on scales smaller than Lg, and an energy dissipation
mechanism is needed for the divergent flow on scales < Lr. However, these should not be
used where L > Lg. It is thus of some importance to determine the effective Ly of the

motions being resolved, and that this Lp is properly simulated in the model.

3 NUMERICAL METHODS APPROPRIATE TO STRONGLY
ROTATING AND STRATIFIED REGIMES

3.1 General strategy

The basic sti‘ategy is to preserve the accuracy of the potential vorticity, and to ensure that
inertio-gravity waves and other motions are not excited to an unrealistic degree. Efficiency
of operational forecasting requires the use of a long timestep, ‘which has led to the wide
use of semi-Lagrangié,n advection. The idea is therefore to ensure that the model gives a
solution with a long timestep which is close to that given by potential vorticity advection
appropriate to the asymptotic regime, with other motions damped. If the same model is
to be used for smaller scale studies where other motions have to be predicted accurately,

a much shorter time step will be needed.

We discuss the regimes of strongly rotating and/or strongly stratified flow analysed above.
Operational models need to be good in both cases. Most current operational schemes
have been developed from schemes for the shallow water equations, with large equivalent

depths (of order 10km). This corresponds to the regime Fr < 1, and we will show that
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existing methods are well suited to this case. We then show what further improvements

may be needed in other cases.

3.2 Basic semi-implicit method

We consider a simple semi-implicit, semi-Lagrangian scheme. The semi-implicit scheme
will be forward weighted in time, and the aim is to show that this damps motions which
do not have potential vorticity, leaving the potential vorticity unaffected. This is pri-
marily achieved by using the semi-Lagrangian method to transport the rotational wind
components, the potential temperature and the surface pressure. Even if the trajectory
calculation is forward weighted in time, the potential vorticity will not be damped. This
is because (2) and (4) hold whatever dj'vergenf velocity field is used. More time-accuracy
for other motions can be obtained by removing the forward weighting. These schemes
are discussed in more detail elsewheré in this volume and in the basic review paper of

Staniforth and Cote (1991).

The basic scheme for equations (1) is

u+1=ud——6t( Q(b‘)z - fv 'H)

wbl o e (O™
v +1:vd—6t( 5 + fumtl
gt = 67 — 5tw“+1%§ (29)
v a¢n+1 _ 0n+1 ?é k
op ~ 6 9p
Ountl + dvntl 4 duwntl —0
Oz dy op

o s (B2 8
0 0z oy
The superscript 7+ 1 represents time level ¢t + ¢ and n represents time level ¢. Stability of
gravity waves requires that the vertical advection of § is treated implicitly. To achieve this,
and retain time consisténcy and conservation, requires that the velocity used in the semi-
Lagrangian method is at time level n+1. Otherwise, different terms which combine to give

potential vorticity conservation contain velocities at different time-levels, and conservation

will be lost. Greater time accuracy could be obtained if the rotational part of the trajectory
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was estimated at time level n + %, and the divergent part at time level n + 1. Implicit
treatment of the trajectory within the semi-Lagrangian advection is not possible, but the
implicit correction can be estimated as follows. Assume that the trajectory calculation is
applied at time level n = 1 by using an extrapolation, such as u* = 2u™ — u™~1. Then we
define a correction v’ = u"t! — 2u" u™1, which can be used to generate a correction
to the advected fields by using an Eulerian approximation to w’ -V at the arrival point.
The same idea can be applied if the scheme is to be a time-centred implicit scheme. Since
n41

only w7 is corrected, the correction can be calculated at the arrival point. Using this

method, we obtain

u’=6t(U v’ Vu—%——+f

0
! __ —anl. _r _
v—6t(V u Vv By fu

¢ = -6t (T u'-Vvé —w’—z—,) (30)

el ()
p,_b't(P /0 3z+3y

U,V,T, P represent known values. The prime superscript has the same meaning for all

variables.

We now follow the solution procedure used to estimate w from (7). Starting with (29), we

take the horizontal divergence of the first two equations in (29). This yields

a¢n+1 82(f,v'n.+1) a(f,u'n.+1) 32 n+1
2 _ -
Vi ap 9207 i + O(Ro) terms 6t2 o

and then substitute in from the remaining equations

+ +X  (31)

a?nl
32

a n+1

HVINZW ! ——— ¢ JStzf2 + O(Ro) terms + termsin Vf=Y  (32)

This can be solved for w™*! with the boundary conditions w™*! = 0 at p = 0, w1 = wt1,

at p = p;, where
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e
(1+ FRett)wrtt = C’;H"”at%g“ + /0 N2uymtidp (33)

With a large timestep, (32) gives the same approximation to w™* as would be derived from
(10). Thus time damping in the semi-implicit method will drive the solution towards that
of an approximate system obtained by advecting the potential vorticity with a divergent
velocity field derived from (10). The analysis in the previous section shows that this
will restrict inertia-gravity wave amplitudes to O(e). If the scale analysis of the previous
section applies, the known terms in (32) will have magm'fude 5t2—j§—%—25, and the inertio-
gravity wave amplitudes will be restricted to O(e) unless they are larger in the initial
data. If the timestep is greater than /(N2H?/L? + f?), the solution will be a potential
vorticity evolution almost free of inertio-gravity waves, which will solve (1) to order Fr*

or Ro® (essentially a nonlinear balance model).

3.3 Numerical accuracy

First compare the above with the more traditional semilimplicit scheme

(A1’+ FRet2)untt = 6t( i;n“ - fo" )

(1-]—f26t2)'v”+1 =7 6t( i + fu )

Oy
0”+1=0§‘—6tw"+1g—g' o (39)
gt : grt+1 3_&7
Op - § Op
~furtl gt funtt
“ 3m+8y+8p_0

pe [ Guntl  Gyntl '
n+1 _ _

The semi-Lagrangian advection is now entirely explicit, with an estimate made of the
advecting velocity at time ¢ + %675. The terms f26t2 represent a simple implicit treatment

of the Coriolis terms, necessary for stability. This yields a simpler version of (32):

82 n+1

§4HVENZ M 4 (14 f2617) =Y ' (35)

This is a good approximation to (32) if the basic state static stability is close to thae
actual static stability. Simmons et al. (1978) showed that N? > N? is required for the
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stability of the scheme (34). If this is chosen, but N? is not a good approximation to
N?2, (10) shows that the long timestep solution for w will be underestimated. Since the
solution of (10) is the unique w that maintains large scale balance, the effect will be to
overestimate inertio-gravity wave activity. The reduction in w will also give errors in the
potential vorticity advection, though these will not be large as advecetion by the horizon-

tal rotational wind dominates.

The numerical accuracy of this procedure will otherwise depend on how well (32) is solved
for w and how accurately the potential vorticity is advected. The vertical finite difference
stencil for (32) is most compact if the Charney-Phillips vertical grid is used (sge paper by
Davies in this volume and Cullen et al. (1997)), where 6 is staggered in the vertical from
p, and is at the same level as w. The Lorenz arrangement will result in extra vertical av-
eraging in the first term of (32). Normally (32) is solved using vertical normal modes, but
the structure of the higher vertical modes is substantially different between the Charney-
Phillips and Lorenz grids. In particular the phase speeds of the higher modes are much
lower on the Lorenz grid, which reduces the effective N2 and hence will exaggerate the
value of w™*!. The horizontal approximation to (32) is optimal in a spectral model, where
vorticity, divergence and potential temperature have the same spectral representation. It
would also be optimal in a finite difference model where potential temperature, vorticity
and divergence are held at the same points in the horizontal. Some loss of accuracy is
unavoidable if velocity components are used as variables, because then the vorticity and
divergence are either calculated at different points (e.g. Arakawa C grid), or can only be
calculated by averaging (e.g. Arakawa B grid). On the C grid, the term V2 N2w™*! is not
averaged in the horizontal but the term f2g%"£,+—l- is averaged over 9 points. On the B grid,
the first term is averaged over 9 points and the second over 4 points. In the case L < Lg,
the first term dominates and so averaging is less damagihg in the second term. The C grid
is thus preferred. The converse applies if L > Lg. Studies, e.g. Bryan (1989), confirm
that the C grid is preferable to the B grid on horizontal scales less than L, and vice versa.

The semi-Lagrangian advection should ensure accurate transport of the vertical compo-

nent of vorticity, the potential temperature, and the surface pressure. Conservation of a

linearised ’quasi-geostrophic’ approximation to the potential vorticity like (25)
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N%p N?p[(8v Ou Y.
) e (39)

with barotropic part

£/w0(1 = (25 — po)/p0) + (3_ - @) /70

will be assured if aconsistent divergenee X is used to update By’ to calculate the term
gg in the 0 equation and to update Ps. Nonlinear conservation of the exact potential
Vort1c1ty (2) reqmres that the semi- Lagrangian method is used to treat vortex stretchmg
(which appears as a term (¢ + f)x in the equation for the vert1ca.l component of vort1c1ty)
and the vertlcal advection of the total # including the basic state g, The former has
been used in 1deahsed vortex calculations e.g. Chorm (1986) but not in meteorology If,
in addition, the tragectory calculatlon is volume preservmg, as in Scroggs and Semazm
(1995) then accurate conservatlon should be achieved.
The scheme (29) or (30) can be written in the form (15) It thus contains a proper
representation of the effects discussed in sectlon 2. 3 prov1ded the Q matrix is properly
included in the semi- 1mphc1t scheme. This is achieved if (29) is used to approximate the
dynamics but reqmres 1mphc1t treatment of approprlate phyiscs 1ncrements as shown in

(21). Thus we can write

u! fv' — epu’
Q| + |+ 5 —fu' —cpv | =H (37)
w' ' 1.6—‘250’ . e
g op
where
aqS’ a¢’!
~f% +e%
H = f—;;;'l‘CD#%’ + known values - .. " - (38)
Sk

Implementation is best achieved by constructing an implicit equation for ¢ from a rear-

rangement of (37) and (38):

—Cp f 0 ' f—é———c -—¢—
1 ,
Qtg| ~f —eo O || v |H] -IE - %"; =H (39
0 0 0 w' L
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where H is now known. u’ can be eliminated from (39) using the continuity equation,
allowing a solution for ¢’, and hence the other unknown variables. The optimum grid

design for solving (39) is the same as that for the purely dynamical scheme (32).

4 SUMMARY

The main conclusions from a study of the behaviour of the exact solutions for strongly
rotating and/or stratified flow are:

i) Current semi-implicit, semi-Lagrangian numerical procedures are well founded for strongly
stratified flow, but need to be extended to include implicit calculation of the trajectory to
give accurate treatment of strongly rotating flow. | |

ii) The concept of two-dimensional turbulence is only applicable for horizontal scales
smaller than the Rossby radius of deformation. Efficient parametrization of the inertio-
gravity wave energy cascade is needed on scales < Lg, but not on larger scales.

iii) The Charney-Phillips vertical staggering is optimal for the dynamics in either regime.
There are advantages in treating rotational and divergent parts of the horizontal wind as
separate variables. |

iv) There is scope for modification of the semi-Lagrangian advection procedures to improve
potential vorticity conservation. This can be achieved without using potential vorticity as
a variable, which would be difficult in an operational model.

v) Sub-grid models must be designed so that the analytic solution of the explicit equation
plus sub-grid model stays smooth on the filtering scale chosen.

v) The physics should be more closely coupled to the dynamics by including linearised
corrections to appropriate schemes in the implicit step in the dynamics. In particular, it

may be worth treating convection this way.
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