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SUMMARY: This lecture is dedicated to new developments in the dynamics of NWP models
linked to their application at very high-resolution scales and discusses namely problems regarding
the vertical discretization schemes. The ARPEGE/ALADIN model is used here to demonstrate

. concrete examples of some of these type of new developments, such as the introduction of the
elastic dynamics, problems of the proper formulation of the bottom boundary condition or the
problem of reflection of gravity waves at the top of the model.

1 INTRODUCTION

The vertical discretization schemes do not seem to evolve that much ovér the last years: most
of the NWP models employ schemes developed in the beginning of the eighties for some type of
hybrid vertical coordinate; since then we have not witnessed so many novelties in this field, at
least not for hydfostatic primitive equation models. In fact, modifications and new developments
of the vertical schemes are forced by changes in the dynamics when going to higher spatial (even if
rather horizontal) resolution. Some of these recent developments are presented in this lecture,
which is divided into four sections: the first one is very brief and it recalls some basic facts
about the ALADIN model, Wlﬁch is used further on for demonstration examples; the second one
describes vertical scheme developments induced by the introduction of the elastic dynamics; the
third and fourth ones deal with such developments caused by implementation of other changes in

the dynamics: radiative upper boundary condition and release of thin layer hypothesis.

2 ALADIN: OPERATIONAL MODEL AND RESEARCH TOOL FOR MESO-SCALE

ALADIN havs been developed within an international research and development project to complete
the family of IFS/ARPEGE global NWP tools by a limited area version. The philosophy of
development has been rather simple: to keep as much as possible from the global model ARPEGE
(Courtier et al., 1991), to develop only the missing parts (e.g. coupling scheme at lateral boun-
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daries) and to make adjustments to ALADIN’s specific "plane” geometry whenever needed. This
strategy minimised the investments, but it encompassed some basic choices: for instance ALADIN
is a spectral model like IFS/ARPEGE, though the choice of a spectral method for a limited area
model is not obvious, given the difficulty of the treatment of lateral boundary conditions. From

the list of known methods to cope with the above mentioned problem:

e perturbation method (Hoyer, 1987)
¢ extension of base of functions ( Tatsumi, 1986)
o biperiodjsation method (Machenhauer and Haugen, 1987)

the method of biperiodic extensior_x of fields has been chosen. The limited area domain of the model
is completvéd in both z,y dirécfiohs by an artiﬁcial zone (so-called extension zone), where the fields
are extended to fulfil the biperiodic conditions, required by Fourier transforms, as shown on Figure
(1). As usual, the spectral representation of variables is useful for application of a semi-implicit

marching scheme and for computation of horizontal derivatives.

Fig. 1: Domain of ALADIN: C - Central zone, | - Intermediate zone of coupling/relaxation, E - Extension
zone. ' : :

In ALADIN, this biperiodic extension is applied only for the initial and for the refreshment lateral
boundary conditions. Like that, the solution over the extension zone is considered in the same way

as a large scale forcing.

As mentioned above, the differences between the limited area model ALADIN and the global model
ARPEGE are strictly kept to the following minimum: i) in ALADIN a plane horizontal geometry
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is used and not the spherical one; ii) double-Fourier series together with an elliptical truncation of
spectra are used in ALADIN while spherical harmonics with a triangular truncation of spectra are

used in ARPEGE; iii) there is a coupling/relaxation procedure in the limited area model.

On the other hand the following important parts are identical in both models: i) the governing
equations of both models employ the thin layer hypothesis; ii) vertical discretization scheme; iii)
basic choice of parameterisations for the physics; iv) interpolation operators used in pre/post-

processing and in semi-Lagrangian computations.

Currently ALADIN’s configurations based on hydrostatic primitive equations are exploited
operationally, either in data assimilation or in dynamical adaptation mode. In research mode, other
_ configurations of ALADIN are developed and tested, namely in very high-tesolution simulations,

using the elastic equations, for example.

3 ELASTIC DYNAMICS

The goal of this section is not to describe entirely the elastic dynamics implemented in ALADIN
" as extension to the hydrostatic primitive equation set (Bubnoud et al., 1995), but, in a less specific
way, to see the link between this development and the nature of the vertical coordinate as well as
to assess the associated problems in the vertical discretization of some terms. The aim is therefore
to show, how the choice of prognostic variables and of the vertical grid staggering is important for
the formulation of top and bottom boundary conditions and for introduction of the semi-implicit

scheme.

3.1 Vertical Coordinates

In order to introduce relatively easily the orography into atmospheric models, hybrid-types of
vertical coordinates are employed nearly everywhere nowadays. The definition of hybrid coordinates
is based, in general, on some monotonous function of altitude with a modification matching the
orography surface near the bottom. The hybrid co-ordinate may be derived from pressure, height
or potential temperature, but since the isentropic surfaces may have a very complicated shape near
the surface, we see in practice the two first categories: pressure- or height-based vertical hybrid

coordinates.

While most of NWP hydrostatic primitive equation models use a pressure-type vertical coordinate,
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- non-hydrostatic models are in general built with a height-type coordinate (in principle pressure
ceases to be a monotonous function of height when the hydrostatic hypothesis is relaxed). The
choice of a height-based vertical coordinate is done quite often when a non-hydrostatic model is
formulated from scratch (the coordinate of Gal-Chen and Somerville (1975) is the usual choice),
- while the situation is far less obvious for already existing, mostly very complex NWP systems, using
- -pressure-type of vertical coordinates. In the case one would wish to introduce a non-hydrostatic
option into the dynamical kernel of such a system, the change of the vertical coordinate inside
all the system would represent a considerable development. This is quite a strong motivation for
searching the possibilities how to develop the non-hydrostatic dynamics with the use of pressure-

based vertical coordinates.

A pioneering work in this direction was done by Miller and White (1984) when a set of quasi-non-
hydrostatic equations was derived in p co-ordinate, quite close to the classical anelastic equations.
A similar approach was adopted recently by Mdnnik et al. (1998) resulting in an anelastic set
of equations in pressure coordinate, being now under tests in the "framéworl}{ of the HIRLAM
model. The fully-compressible (elastic) equations cast in pressure-type of coordinate have been
- under development as well; most of such systems are based on the so-called "hydrostatic pressure”
vertical Coqrdinate, as suggested by Laprise (1992). Hydrostatic pressure is a sort of a mass-type
variable, reflecting the weight of a column of air above a given point and becoming true pressure if
_the atmosphere is in hydrostatic equilibrium:
g—g = —pg (1)
where 7 denotes the hydrostatic pressure, which is now a monotonous function of height. A terrain-
following hydrostatic pressure coordinate is used in ARPEGE/ALADIN to develop an elastic
version of the dynamics (Bubnovd et al., 1995) and another application of Laprise’s coordinate
may be found in the Canadian GEM model (Cét€ et al., 1998). A bit different is the approach
of Dudhia (1993) used in the Penn-State NCAR Mesoscale Model, where the employed terrain-
following pressure coordinate is linked to height by a relation constant in time (there is no temporal

variation of the coordinate ”density”) and thus is closer to a z-type of coordinate.
Using the examplebf the elastic dynamics developed in ARPEGE/ALADIN, we may examine

what are the necessary changes to be done to go from the hydrostatic primitive equations (HPE)

to the elastic ones. First, the Simmons and Burridge (1981) -SB81-, vertical coordinate used in
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ARPEGE/ALADIN is redefined by employing hydrostatic pressure, instead of true pressure:

™ = A(n) + B(n)m, (2)

where 7, denotes surface hydrostatic pressure. Further, there are two additional prognostic
equations in the ARPEGE/ALADIN elastic equation set compared to HPE: i) the equation of
vertical acceleration completing the existing horizontal momentum equations; ii) the equation for
true pressure. The remaining equations are slightly modified with respect to their HPE form in

the following manner:

— The horizontal momentum equations "feel” non-hydrostatic geopotential fluctuations, via the

horizontal pressure gradient term.

— The forcing term in the thermodynamic equation is a function of 3D divergence and of
specific heat capacity of air taken at constant volume, replacing the classical conversion
term depending on the pressure vertical velocity w (thus indirectly on the vertical integral of
horizontal - 2D - divergence taken for the column of air above the point) and on specific heat

capacity of air taken at constant pressure.

— The mass continuity equation does not change its form; it becomes the prognostic equation
for surface hydrostatic pressure. Similarly the functional form of vertical advection terms is

left unchanged.

As shown in Laprise (1992) if one sets p = 7 (i.e. the atmosphere is supposed to be in hydrostatic
equilibrium, or in other words the hydrostatic hypothesis is valid), the elastic equation set is
naturally reduced to the HPE. Coming back to the elastic equations, two additional prognostic
variables need to be defined, based on vertical velocity w = dz/dt and on true pressure p. In
ARPEGE/ALADIN, their concrete definition was driven by very pragmatic reasons, coming from
the linear model analysis used to derive a semi-implicit marching scheme and from the chosen way
for the vertical grid staggering. The first simplification of the pressure variable is suggested by
Laprise (1992) and it consists in predicting the non-hydrostatic pressure departure p — 7 rather
than pressure p to avoid cancellation of two relatively big forcing terms (gravity term and vertical
pressure gradient term) in the vertical momentum equation. The final definition of the pressure

variable is

p=2=L (3)
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where 7* is a basic state pressure, used to linearise the equations for finding a ptroper linear model
to apply the semi-implicit scheme. As stated above, the reduction by 7* is comfortable for the
introduction of the semi-implicit scheme. For similar reasons, the final form of the vertical velocity

variable is

P —
m* 0n (4)

where the new variable d is called ”pseudo vertical divergence” and m* is a short-hand notation

d=—g

for d7*/8n. The meaning of the "pseudo” in the variable name is that, except for the vertical
derivative dw/dn, thé scaling is done with the help of basic state variables, denoted by *. As it
has alreédy been Hientioﬁed,‘ these.deﬁnitions; are fitting as well to the existing staggering of the
vertical grid, see Figure (2), where all the prognostic variableé aﬁd fofcing terrﬁé are defined in the
vertical layers (so called full-levels) while the coordinate pressure and all types of vertical velocities
are defined at the layer interfaces (so called half-levels). Taking this into account, it is clear that
the two new variables P and d should be defined as well at the full-levels and that the vertical

velocity w finds its natural definition at the interfaces.

7r7 7:17 ‘JJ, w | | ] i— ].
T,V,P,d,q RTVinp+ 0p/0nVe I
7r7 7'77 w’ w‘ i

. Fig. 2: Vertical grid staggering in Simmons and Burridge (1981) vertical discretization scheme
extended to the elastic case. The numbering of levels is from the top to the bottom, the interfaces’
index is denoted by a tilde.

Another interesting thing is to see the properties of the vertical discretization scheme and to

examine if these properties are still kept when extending the HPE set to the elastic equations set.

1286



BUBNOVA, R.: VERTICAL DISCRETIZATION PROBLEMS ...

As shown in Arakawa and Suarez (1983) -AS83-, the SB81 vertical discretization scheme is one of
those few having nice conservation properties, i.e. conservation of energy and of angular momentum
and, under some complementary choices, conservation of integral of potential temperature (beirig
achieved for adiabatic atmospheres). Further, a,s discussed in AS83, to minimise the error in the
pressure gradient force evaluation, there are two interesting choices to integrate geopotential within

the family of schemes to which SB81 and AS83 belong:

— Geopotential is a function of pressure logarithm (ch01ce done in SB81), concretely, the

geopotentlal increments are computed between the interfaces:

o5 — éi«l = —RTi6 : - (5)

where [ denotes the full-level index, { denotes the half- level index and & denotes the

logarithmic pressure thickness of the layer, computed as In(p;/p;_,) in SB8L.

— Geopotential is a function of Exner pressure P (choice done in AS83), when the geopotential

increments are computed across layers, between the full-levels:

- ¢I—-1 = Cpol'-_l(P’l+1 - Pl) : : (6)

Fortunately enough the SB81 scheme based on hydrostatlc pressure co-ordinate keeps the requlred
conservation properties in its elastic extension, as shown in Bubnovd et al., 1995. There is even
an additional property needed Within the application of the semj-implicit scheme for the elastic
dynamics, which can be achieved by changing the approximation of logarithmic pressure increments
6; without touching the validity of the approach. The new approximation qf 0 is discussed in more
details in the section on‘ the semi-implicit scheme but since all the relationships using & in the
vertical discretization scheme fortunately remain untouched, the original properties of SB81 are

not violated.

In both SB81 and AS83 schemes the horizontal pressure gradient (linked to the horizontal wind)
and temperature (respectively potential temperature) are defined at the same levels (full-levels).
This way of staggering is called the Lorenz grid and one of its properties is the existence of a
spurious temperature mode which cannot be seen - and hence controlled - by the thermal wind
equation: exact compensation of alternate positive and negative departures from a "regular” vertical

temperature profile can indeed lead to an undetected "kernel” when integrating the barometric
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formula with one more element of (T, p) input than of ¢ output. This problem of the Lorenz
grid is shown in detail for example in Hollingsworth (1995) and it may be avoided by another
choice of staggering called the Charney-Phillips grid, when temperatire and horizontal wind are
not defined at the same levels but alternate in the vertical. However, this change of variable’s
staggering requires a careful re-examination of all above-mentioned desirable properties of the
vertical discretization scheme. Furthermore it is not well adapted to the specfra,l computation
framework (with its advantageous A- -type horlzontal grid) and to the interface between dynamlcs
and physmal forcing, for instance when the computatlon of Rlchardson numbers requlre to know
momentum and heat fluxes at the same (half) levels. In the case of the Lorenz grld, while the
spurious vertical temperature mode could in principle grow exponentially under any random forcing,
practice shows that the damaging effects remain relatively bounded, thanks to all irreversible
damping’effecte of the physical packages. Those are the reasons why this issue will not be further

considered here, even if it surely remains worth of future investigations.

Another ‘problem is common to the schemes using terrain-following co-ordinates, regafding the
accuracy of pressure gradient computetions. There are two terms computed separately to obtain
the pressure gradient force and each of them is evaluated with some truncation error which may not
cancel and result in a large error, especially over steep slopes. As mentioned above, this problem
is studied in both SB81 and AS83 schemes and thanks to the careful desxgn (typically the use of
some remammg degrees of freedom) the error is minimised and in some spec1al cases it vamshes
However, there exists the other alternative of using a so called step-mountain coordinate (Mesznger
et al., 1988) where the orography is spec1ﬁed with help of parallelep1ped1c grld boxes and where
the hybnd vertical coordinate is defined in such a way that the coordinate surfaces are piecewise
quasi-horizontal while jumping from one level to the next when appropriate. Though the pressure
gradient force is ‘computed still from two terms, the removal of coordmate surface slopes helps to
reduce significantly a large part of the error. On the other hand thls system cannot be used for
instance together with a spectral method for obvious reasons coming from the orography definition:
a spectral fit would introduce a lot of Gibbs waves near the coordinate ”jumps”. A special care
‘must be devoted as well to ‘the boundary ’conditions at the lateral walls of the orography, which

represents additional difficulties for more general applications of the step-mountain coordinate.
3.2 Semi-Implicit Scheme

There is a well-known problem of the control of acoustic waves, which are allowed as a solution of

~ the elastic equations. These waves propagate very fast also in the vertical where the grid size is
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much finer compared to the horizontal scale (for instance the order of grid size is 10 m near the
ground in vertical and 10 000 m in horizontal in current NWP meso-scale models). Thus CFL
criteria of a simple explicit scheme would lead to the order of a tenth of second for the time-steps.
The choice to be done here to obtain an efficient integrafion scheme comparable to those used for
the HPE is either to use an anelastic equation set (acoustic waves are filtered out) or a numerical
control of the acoustic waves. If opting to keep the elastic equations, there are two possible ways
of such a control: (i) by introducing either a so-called split-explicit scheme (the terms responsible
for the acoustic waves propagation are integrated separately with small enough time-steps) or (ii)
by implementing a semi-implicit scheme consisting in an implicit correction of the crucial acoustic
wave generating terms with respect to the explicit scheme. In order to still increase the efficiency of
the numerical scheme, a semi-implicit marching scheme may be combined with a semi-Lagrangian
treatment of advection. This latter choice for integration of the elastic equations seems to be very
attractive since there are more and more examples of non-hydrostatic fully compressible (elastic)

semi-implicit semi-lagrangian (SISL) models; we may refer some of them:

— MC? model (Gal-Chen and Somerville type of coordinate with Charney-Phillips staggermg,
- grid-point model, Tanguay et al. (1990) or Laprise et al. (1997));

- ARPEGE/ALADIN model (Laprlse coordmate with Lorenz staggermg, spectra.l model,
Bubnovd et al. (1995));

— Next Generation UK Model (Gal-Chen and Somerville coordinate with Charney-Phillips
staggering, grid-point model, Cullen et al. (1997));

— Global NH SISL model (Gal-Chen and Somerville coordinate with Charney-Phillips
staggering, grid-point model, Qian, Semazzi and Scroggs (1998)).

However, the implementation of a semi-implicit (SI) scheme is not always straightforward, especially
for more complex systems of equations with orography. Taking ARPEGE/ALADIN as an example,
the SI scheme has already been there to control numerically the propagation of gravity waves in
the HPE set and the goal was to extend it to control both gravity and acoustic Waves. The SI
scheme implementation in ARPEGE/ALADIN is done very classically, in the form of corrections,

which in the leap-frog case reads:

Xt-Xx- Xt+X-
AT =MX%4 BA (———Q——XO) : : (7)

where X+, X% X~ are the model states at the time-steps ¢ + At, t and ¢ — At respectively, M

denotes an explicit model step and A is the linear model describing the propagation of the most
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rapid modes (gravity and acoustic ones in the case of the elastic equations), which phase speeds
need to be slowed down back below CFL speed by the semi-implicit correction. In case the linear
model does not control sufficiently all the rapid modes, the correction does not stabilise the scheme
fer time-steps longer than allowed by the CFL eondition relative to these modes. The explicit
scheme may be obtained by setting the correction coefficient 8 to zero. The SI correction starts
to have stabilising effects for § > 0.5, while its usual setting in practice is § = 1. When putting
all terms containing the future model state en the left-hand side, one gets a Helmholtz type of

equation to be solved for X™:

(I- BAtA)XF = X7+ 280MX° + AIA (X~ ~ 2X°) o (®)

In the case of a spectral model, this equation is very easily solved in spectral space. On the
other hand, since the computational operations with spect“ral series have to be kept linear, there
‘are limitations imposed on the choice of a basic state around which the equations are linearised
(no dependency on horizontal coordinates, for example) and ﬁence;" on coefficients of the solver.
The basic state used in ARPEGE/ALADIN is indeed very simple: it is a dry, isothermal, resting
atmosphere with all horizontal gradients equal to zero. Thus it is fully determined only by its
temperature T* and by the constant value of surface pressure, respectlve by the one of hydrostatic
surface pressure 7 in our case of the elastic dynamrcs As in the prevrous sectlon the basm state

is denoted by a star. The obtained linear set of the elastic equations is then simple as well:

%l;_ - —R/ ‘v wa +RT*/ E7~—73az - RT*V2P RT*% 9
dd g L0 [0 [/, S :

9 = TR on [871'* G P)] , (10,)
oT 'RT* - | : | ‘
o |

o= C—(D-|—d +—/ de P o (12)
o, "o | | R
oo / Ddr | | (13)

where the vertical integrals and derivatives are written in their continous and not yet discretized
forms. Applying the elimination method, the system is reduced to its structure equation which
determines. the shape of the solver. While it is rather easy to proceed with the elimination for

the case of continous vertical operators, the same path is not necessarily followed when using the
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discrete form of these operators. For example, the discretization of vertical integrals appearing in
the equations (9) and (12) can be taken from the HPE case, since these integrals are just the same.
However a problem occurs for the double vertical integral obtained when substituting 8P/t in
the partial time derivative of (9) using (12). In the continuous case this double integration may be

transformed by integrating it ”"per partes”:

a nice cancellation of all vertical integralé ensuing. In case the discrete form of the structure
equation and hence the solver should stay simple, some way has to be found to make the discrete
integrals follow the per partes integration rule. As shown in Bubnoud et al. (1995) this can be
achieved in the SB81 case by changing the approximation of the logarithmic pressure thickness of

layers é§; from

(6) = -] o (18)

_to

(6) = LTt (16)

This new approximation has to be used in both linear and non-linear parts of the model. It is a
bit less precise, since dIn7 is in fact replaced by dr /7, a change which suggests the definition of

the hydrostatic pressure at full-levels as:

(m7) = /7,7 (17)

It should be noted that in the SB81 scheme there was no need to specify pressure at the full-levels.
In the present scheme as applied to the elastic dynamics it becomes necessary to specify the values
of coordinate pressure 7 at the full-levels due to the definition of P there. Hence, the knowledge
of m; becomes necessary for computation of some terms in the dynamics. The expression (17)
satisfying the rule of integration per partes is used as well in the non-linear model to determine the

full-levels’ hydrostatic pressure.

Beside this problem of vertical integrals a discrete form of the vertical Laplacian operator appearing

in the Equation (10) had to be found. Similarly to the case of the per partes rule, a combination
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of the vertical Laplacian and vertical integrals should lead to cancellation with a simple constant
number as a result. However, in the discrete form it would require that the full-level pressures 7}
would be equal to the half-level pressures 71'11‘ . Not only this condition is not very natural but it eveni
cannot be fulfilled since it is incompatible with arry' possible nontrivial choice of the coefficients of
vertical operators. Therefore a necessary degree of freedom is missing in the system to satisfy all
the desirable constraints. Because of this, the discrete form of the structure equation does not
reflect exactly its continuous counterpart. The obtairled shape of the solver appearing in (8) and

corresponding to the discrete form of the structure equation then reads:.

I~ HSZ ALY — VIm2 202 A2 - VIm2 N3 AL (1 + L*QY)
where ¢, is the speed of the sound in the basic state atmosphere, H is its equivalent height, N is the
basic state Brunt-Viisili frequency, m is the maximum value of map factor over the. integration
domain, I* is the discrete vertical Laplacian operator and Q* is a diagonal matrix, which appears

" due to the above mentioned non-cancellation of discrete operators. In the ideal case Q* would be

zero. In reality the diagonal elements of Q* are very small, equal to:

g1 = 0 (18)
qy = 6 —2o (19)

where a; is the logarithmic pressure thickness taken between the full-level [ and the half-level [ as
introduced in SB81, see Figure (3). The product L*Q* is the residuum obtained after perforrning
the elimination to get the structure equation and the tridiagonal matrix I+L*Q* may be interpreted

as a locally averaging operator in the vertical.

Since L* is a trldragona,l matrix, the matrix of the whole solver fortunately remains trldragonal as
well, despite the Q* term. The solver has then a very simple shape and like for the hydrostatic case,
it is easily applied to the spectral coefﬁc1ents However, as it was revealed by experiments with
the full non- hydrostatrc non- linear model there is a cruc1a1 deference between the hydrostatlc and
elastic cases: Wh]le in the hydrostatlc case the grav1ty wave terms just conta.m the deergence of
horizontal wmd (2D) which is then fully controlled in the linear model, this is not the case for the
three-dimensional (3D) divergence in the case of elastic dynamics. The 3D dlvergence has got 1ts
]mear and non-linear part in the hydrostatic- pressure terrain- fo]lowmg coordmate (3D grid-boxes

are not orthogonal in the transformed coorchnate)
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Fig. 3: Pressure logarithmic thicknesses & of the layer I and o taken between theiinterf‘ace [ and the
full-level {. ' :

_ P ov ~0¢*
Dy = D+—R-T-V¢o<a—7r>+da¢ (20)

The linear part of D3 is just equal to D + d and the non-linear part escapes the semi-implicit
correction. This is why the integration of the non-linear model is basically unstable for time-steps
longer than allowed by the explicit scheme. The way to correct this insufficiency is to add a semi-

implicit type of treatment to the non-linear part of D3 denoted as Y:

Y:%V¢o<%—¥—>+d(%—l) (21)

The treatment consists in adding corrective terms proportional to the classical form
BAHYT +Y ™ —2Y9)

to the right-hand side of equations for temperature T' and reduced non-hydrostatic pressure
departure P where the D3 terms occur. Given the necessity to know YT, the correction is made by
iterations of the solver. At the first step of the iterative procedure the solution of the Helmholtz
equation is computed without this special correction, then Y+ is computed from the first guess of
the future time-step variables, the correction to the right-hand side of the Helmholtz equation is
applied and the equation is solved again to provide a better guess of the prognostic variables, etc..
One iteration is usually sufficient to stabilise the integration using time-steps equivalent to those

of the HPE model at the same resolution. In a spectral model the inconvenience is a non-linear
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computation of Y ¥, which cannot be done for spectral coefficients and requires additional spectral

transformation forth and back for the variables necessary to the computation of Y .

The formulation of the elastic dynamics in ARPEGE/ALADIN, which is the closest possible one
to the HPE dynamics, enables quite clean comparisons of the simulations done with the elastic and
with the hydrostatic versions of the dynamics. On Figure (4) we see vertical cross-sections showing
the generalised vertical velocity w = dp/dt obtained from the simulations of a squall line case done
with a 7km mesh (Banciu, Gérard and Geleyn, (1999)). Though the w velocity patterns already
show some differences at such a scale, much clearer non-hydrostatic effects may be seen on the
field of potential temperature taken from a PYREX’90 case simulation done with a 2.5km mesh,
see Figure (5). While the hydrostatic model simulates just an intensive hydraulic-jump type wave
above theAridge of the Pyrénnéés, the elastic model starts to catch the observed lee-wave pattern.
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Fig. 4: Vertical velocity w [Pa/s] cross section in the simulation of a squall line case done at 7km
mesh. The simulation with the hydrostatic model is on the left picture, while the one with the elastic
model is on the right picture.

3.3 Lower Boundary Condition

It happens that there exists a necessity to determine some terms at the bottom and top boundaries
of the model domain to complete the conditions coming from the generalised coordinate velocity
f = 0 at these boundaries. A method often employed for the bottom boundary problem in the

non-hydrostatic case is called ”free-slip” condition, which requires the potential vorticity to be zero
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Fig. 5: 6 hour forecast of the potential temperature  [K] in the PYREX'90 case done at 2.5km mesh.
The simulation with the hydrostatic model is on the left picture, while the one with the elastic model
is on the right picture. ‘

at the bottom surface; however it is very often understood and applied in its simplest form: zero
vertical gradient of the horizontal wind at the bottom boundary. Though this simple form may be
quite satisfactory, there are surely problems with it in the transformed coordinate system due to the
latter’s non-orthogonality, especially over steep mountains. Taking again ARPEGE/ALADIN as
an example, the specification of the horizontal wind is necessary to determine several other needed

terms. The above mentioned simplest form of the "free-slip” condition reads:

A% i=VL (22)
where the index L denotes the lowest full-level of the model where wind is defined as a prognostic

variable and the index I denotes the lowest half-level, i.e. the model bottom surface. Then from

the kinematic rule the following quantities needed in the elastic model may be determined:

— vertical velocity w; at the bottom:

1
Wi = EVE L V¢E (23)

— horizontal gradient of the vertical velocity wj:

VwL = ;V (Vf, L] quz) (24)
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— vertical acceleration "')1'; at the bottom:

. 1d .
g = o (Vi e Ver) ‘ (25)
The bottom boundary condition for the horizontal wind V is needed as well when evaluating the

term containing the vertical derivative of V appearing in the D3 term (e.g. Equation (20)):

rve (5)

where, in opposition to the terms of vertical advection of V, no multiplication by 7 simplifies
the evalﬁation at the boundaries. For all these computvations the simplest form of the "free-slip”
boundary condition has been used up to now in ARPEGE/ALADIN. However, as mentioned abové,
~ there are problems due to the non-orthogonality of the transformed coordinate syStém, ThlS is fbr
examplé wellb shown by Satémum (1989); Who compared two simulationls’ of a Qi) ideésted mountain
flow; the first one was done using the classical terrain-following coordinate whilé the second one
was done using an orthogonal numerically generated grid. As it can be easily seen on Figure (6),
there is a spurious wave pattern in the vertical velocity w above the mountain in the case of the
terrain-following coordinate. A very similar (even if small) pathological pattern may be found in
the idealised mountain wave simulations with the elastic version of ARPEGE/ALADIN, as shown

on Figure (7).

However, the numerical generation of orthogoﬁal grids is a very complex and expensive procedure
and in fact it turns to be unpracticable for 3D systems and would anyhow create unsolvable problems
in the spectral framework. In order to remove at least partially the problem of non-orthogonality,
a more complex form of the free-slip bottom boundary condition has been under development in
ARPEGE/ALADIN, a bit closer to the ideal one. Instead of simply taking the zero gradient of
\Ys along the vertical coordinate 7, the projection of 3D vorticity to the axis normal to the surface

should be zero, from which a correction to Vi, is computed, as illustrated on Figure (8).
In order to compute the wind Vi in this case, the following simplification assumptions are still
needed:

- divergence Dj is zero between the surface and the lowest full-level;

- V(VLeVo;) =V (Ve Ve;)

— local time derivative of the difference Vi — Vj is zero.
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Fig. 6: After Satomura (1989). The simulation with a terrain-following co-ordinate is on the upper
picture, the simulation with an orthogonal grid is on the bottom picture.
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Fig. 7: Nonlinear non-hydrostatic flow simulated with ARPEGE/ALADIN: vertical velocity w [m/s].
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Fig. 8: Reformulation of the free-slip boundary condition: illustration to the new way of computation
of the surface horizontal wind denoted as V; .
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When denoting by « and [ the horizontal derivatives of orography with respect to z and y
respectively, we obtain the following relationship for the corrections of wind components Au =

ur, — %z, and Av = vp, — r, :

_ Az d(au) O(av) Ou 6‘_u>

Au = 1+ a2+ 2 ( oz dy +a8m+ﬁ3y (26)
_ Az (0(Bu)_ 8Bv) B a_>

Av = 1+ a? 4 (2 ( Oz + 0y +a8m+ﬁ3y (27)

where Az is taken between the surface and the lowest full-level along the ,vértical axis. This
correction of the surface horizontal wind has to be taken into account also in Equation'(25) for the
vertical acceleration w; at the surface. Till now (for technical reasons) there has been no experiment
done with a 2D vertical plane version of ARPEGE/ALADIN containing this new formulation of
the free-slip bottom boundary condition. Unless a set of mountain wave simulation is done, it is
not possible to make conclusions whether the precision of the elastic model gets improved or not
(regarding the spurious wave pattern above the mountain and assessment of the momentum flux
and drag). At least the stability of the scheme does not deteriorate as it has come out from some

simulations done with the full 3D model.

4 RADIATIVE UPPER BOUNDARY CONDITION

In this section we shall deal with another development which becomes more and more interesting
when increasing the model resolution. In reality this increase in resolution can be translated
into getting a better description of the orography, which means to have steeper slopes and higher
anisotropy of the terrain. As a consequence, gravity waves are explicitly generated in the model with
more intensity and frequency. Since the commonly used rigid-lid type upper boundary conditions

are reflective
Ztop = Otop = Thop = 0

a considerable amount of the gravity waves energy reflected back to the computational domain
may quite distort the solution. There are several possibilities how to diminish the problem due to
the reflection of waves. First, in NWP models some kind of ad-hoc cure may be used: above a
given altitude stronger horizontal diffusion towards the top of the domain is applied and thus it is
damping a lot the short waves, but of course not only the reflected ones! This kind of a first-help
may not be satisfactory at all for simulations done at high resolution, therefore the two fo]lowing

;'Lpprloaches may be followed:
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— Introduction of an absorbing layer, so-caﬂed sponge; This is a damping as well like in the
above mentioned first-help” case, but it works on the principle of relaxation, similar to the
one applied at the lateral boundaries of a LAM. However, the absorbing/relaxation layer has
to be large enough, at least one third of the domain is needed to be devoted to the sponge.

Thus it is a rather costly solution.

— Use of a radiative upper boundary condition. This is a much more attractive approach,
since this upper boundary condition should allow to radiate the energy of gravity waves out
from the model domain and inhibit its reflection downward. So in principle it combines two
advantages: it should be cost-effective compared to the sponge technique; it should preserve

the solution without a need to apply an overall damping.

To summarise, the radiative upper boundary condition (RUBC) is the most pfomising solution
to the problem of the wave reflection. The requirements are the following: i) the RUBC should
radiate most of the energy of gravity waves upward; ii) the RUBC should prohibit the downward
energy transport (reflection); iii) the RUBC should be easy to implement and it should not cause
instabilities in the model. An example of such RUBC. for the Boussinesq set of equations cast in
height coordinates is shown in Klemp and Durran (1983) and in Bougeault (1983). Though they
did not start from exactly the same Boussinesq equations, they derived the same condition with

the help of linear internal wave theory:

0
N Ptop m,n

mmn
Piop = mwtw

this condition links spectral coefficients of pressure p and vertical velocity w (at the top of the

(28)

model) with m and n denoting wave numbers (inverse of wave length) in the z, respectively y
direction and N9 denoting the Brunt-Viisils frequency. A good feature of this RUBC is that it is
local in time and that it is easily applicable despite the need of bi-Fourier transforms. As shown in
Klemp and Durran (1983) the simple relation (28) remains efficient even for more complex models
than the one for which it was derived. This kind of RUBC has then been adapted to the hybrid
pressure-type terrain-following coordinate n by Herzog (1995):

7 (@)mm — ‘;pt°p v [m2 + n2] m,n | i (29)
‘ 877 top \/E—R—TE tor - .

relating the spectral coefficients of the generalised vertical {'elocity’ n(dp/0n) and geopotential at
the top of the model. While in Equation (28) one would have to tune the value of Brunt-Vaisila
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frequency for more general atmospheres, in (29) it is the value of temperature 7° that has to be
tuned on a rather empirical basis, provided that T° stays within realistic limits for a temperature.
The RUBC given by the relationship (29) has been implemented in ARPEGE/ALADIN for both
Eulerian and semi-Lagrangian advection schemés, taking advantage from the already existing
spectral representation of variables (Dvordk (1998), personal communication). The effects of
this RUBC implementation are demonstrated in simulations with a 10km horizontal mesh and
T° = 280K, as shown on Figure (9): in comparison with the "first-help” case, the RUBC is at the

same time a more efficient and structure preserving technique, since it avoids unnecessary damping.

The first results obtained with Herzog’s formulation of the RUBC when implemented in
ARPEGE/ ALADIN are thus quite promising. We even did not witness any instability problem of -
the kind reported in Herzog (1995) leading to the limitation of the fime-step length to Eulerian-type |
values. However, a problem of spurious noise close to the lateral boundaries appears due to the
necessary biperiodic form of the fields subjected to the spectral transforms: since there are quite
large differences between the lateral boundary values of ¢ on each side of the domain, a sharp
gradient occurs in the extension zone. Then, due to the truncated spectra, a Gibbs phenomenon
is seen in the spectrally fitted geopotential field inside the physically fepresentative area and it
is even amplified by the selective effect of the wave-number term in Equation (29). Therefore a
more sophisticated implementation of the RUBC has now to be found to remove this currently
blocking problem. Amnother issue will be the possible extension of Herzog’s work to the case of
the Laprise type elastic dynamics. We already know that even the straightforward application of
Equation (29) to the sole gravity wave terms of ALADIN in its non-hydrostatic version leads to
instability of the whole model. Theoretically speakil}g one ought not only to stabilise this aspect of
the scheme but also to prevent reflection of acoustic waves at the top of the model. Whether it will
be possible or not to obtain it by meaningfully linking the generalised vertical velocity at the top
of the model to geopotential perturbations together with one of the two new prognostic variables

(pressure departure and vertical velocity) remains an open question.

5 RELEASE OF THE THIN LAYER HYPOTHESIS

The thin layer hypothesis is used in the majority of atmospheric models. This hypothesis means
that the atmosphere is considered to be of negligible vertical extent compared to the radius of the
earth a: instead of using a + z in the metric terms, just a is used in the primitive equations, for the

seek of simplicity. Consequently, the parts of the Coriolis force created by vertical motions must
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Fig. 9: Test of RUBC in ARPEGE/ALADIN on 10km mesh, using Eulerian advection. The reference
case vertical velocity w [Pa/s] at 50k Pa level is on the upper left picture, the one using the "first-help”

approach is on the upper right picture, and the one using the RUBC is on the bottom picture. The
temperature T° was tuned to 280 K.
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be omitted too, in order to conserve the angular momentum in ”vertical displacements” as shown
by Phillips (1966). But these neglected terms of the Coriolis force are just those believed to be
important for fine-scale modelling (strong vertical velocities) and for climate modelling (systematic
effects corresponding to the steady general circulation and its associated Hadley and Ferrel cells).
Also their 2 cos ¢ form means that they anyhow become relatively important in the tropics, where
the (sin ¢ parts tend to vanish. Furthermore, the appearance of one of these Coriolis terms in the
vertical acceleration and the w dependency of the other one indicate that there is a strong link
between the hydrostatic assumption and the thin layer hypothesis. For all these reasons it may
become appropriate to find a Wéy to jointly suppress both simplifications linked to the thin layer
hypothesis, but in a way that preserves all otherwise important properties of the existing vertical

discretization schemes.

The consistently neglected terms may be demonstrated on the following (full) momentum equation

set, developed in the spherical geometry, and for othogonal z,y, z coordinates:

du . - uv uw ! o

7 = 20 (vsm¢>——wcos¢) + a+£tan¢— a-I—_z__ p(a+g)cos¢5)—\ (30)
d'U . . U2 VW 1 8])

7 = —29usm¢+a+£taﬂ¢*a+&* pla+tz) 8¢ (31
dw — u? + v? 19p

= 2Q + u cos ¢ + atz p Oz (32)

where the following notation is applied:

— The underlined terms are the ones neglected when applying the thin layer approximation

a>> z;

— The terms with a tilde correspond to the height variation induced planetary angular
momentum changes suppressed in connection to the thin layer approximation, considering

the apparent lack of change of the distance to the Earth’s centre during vertical motions;

— The bold face terms are the metric terms which have to be neglected when the thin layer

hypothesis is applied;

— The acceleration term with a hat is neglected under the hydrostatic assumption.
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However, it is not so obvious to reintroduce back the Coriolis terms linked to the vertical motions
when keeping at the same time all désira,ble conservation properties of the vertical discretization
scheme. A way how to reintroduce these terms should be preferably considered for both z and
p type of vertical coordinates. Considering this, there exists the proposal of White and Bromley

(1995):
e in ¢ + z terms, to replace z by:

/

»* RT*(p'
2(p) = / BT
P gp ;

e to replace w (except for its time derivative) by:

_RT*(p)w
gp

e to replace T in the hydrostatic equation by:

2Qu (a + 2(p)) cosd + u? + v?

T+T() (a+20))9

which means to use the hydrostatic basic state to relax the thin layer hypothesis without going back
to the Navier-Stokes equations. There may be some practical difficulties within the implementation
to some numerical models. For example in spectral models, the height z(p) varies along 7 surfaces
but should commute with spectral transform operators. Futhermore, it is not so obvious how
to treat this problem when using the co-ordinate systems of a projection to the plane instead of
the coordinate system A, ¢ on the sphere. A special treatment of these additional Coriolis terms
will also have to be worked out for the semi-Lagrangian two-time-level schemes using the advective
form of the Coriolis force, etc.. All these potential problems shall be treated within the forthéoming
planned implementation of the idea of White and Bromley (1995) in the ARPEGE/ ALADIN model.

6 CONCLUSIONS

In the type of work considered here it becomes very soon obvious that nothing can be got for
free (Murphy-type law): each solution brings in a new problem elsewhere and progress can only
be marginal in each occasion and hence globally slow. Thus, if trying to design a minimum of
strafegy for progress, consistency between many ”individual” choices appears as a helpful and safe
guideline; the corresponding ironic motto in ALADIN related work reads: ”everything is under
control”. Consequently, progress in this specialised part 'of NWP named ”vertical discretization

problems” has really been up to now a step by step business, even if some recent attempts at a
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more "compact” approach (UKMO, RPN) can now be witnessed in the framework of huge and long-
term projects. Within all associated limitations to either of these strategies, the march towards the
"Navier-Stokes” equations seems however to be irreversible. Whether it will lead to a reduction or

an increase in the number of operationally viable solutions remains however an open question!
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