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Abstract

The background term J, currently used in the 3D-Var and 4D-Var analysis algorithm
relies on a generalized linear balance operator. The implied structure functions of the
analysis are multivariate ; they depend on the horizontal scale, on the vertical coordinate
and on latitude, so that they are very different in the midlatitudes than in the tropical
regions. The balance operator is incorporated into the preconditioner of the variational
analysis which is now carried out in terms of vorticity, specific humidity, and unbalanced
divergence, temperature and surface pressure. The background error covariance model is
a non-separable one, as in the previous J, formulation, and it is expressed in the space of
the variables defined by the balance operator. We examine in detail the structure of the
Jp operators and their implications for the structure of the analysis increments.
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1 Introduction

The structure of the analysis increments in 3D-Var is driven by the formulation of the so-called
background term Jj in the cost-function of the variational analysis. The J, formulation is very
important in 4D-Var as well. An optimal J, design would ideally reflect the covariances of the
short-range forecast errors in the assimilation. In practice, it must be modelized in order to
approximate the average variances, autocorrelations and balance properties of the background
errors. Between January 1996 and May 1997 the ECMWF 3D-Var operational assimilation
system (as well as the experimental 4D-Var) relied on a formulation developed by Heckley et
al (1992) and documented in Courtier et al (1997), Andersson et al (1997) and Rabier et al
(1997). In May 1997 a new J, formulation was implemented (corresponding to IFS cycle 1612),
which performs significantly better in 3D-Var and in 4D-Var. The purpose of this paper is to
document the revised J, formulation and to explain its advantages in meteorological, technical
and scientific terms.

The new J, formulation is very different from the previous one, mainly in the tropical
structure functions of mass and in the mass/wind coupling of the analysis increments. The
specific humidity analysis has not been modified. In the midlatitudes, the new J, behaves
approximately as the previous one, except near the ground and near the tropopause where
the geostrophic coupling is now weaker. In the tropical regions, the structure functions of
temperature and surface pressure are completely different from the previous ones (particularly
the vertical structures), and they have a notable impact on the tropical wind analysis. The
autocovariances are non-separable, with a dependence of the vertical covariances on the hor-
izontal total wavenumber 7, just as in the previous formulation, but they are not expressed
in terms of the same variables, so that although the vorticity autocovariances are assumed to
be homogeneous and isotropic, the effective vertical correlations of temperature, for instance,
depend on latitude. The multivariate coupling is basically a geostrophic mass/wind linear bal-
ance, as in the previous formulation, but it does not rely on the Hough normal modes of the
model®. Still, it retains all the existing scientific features : there is less geostrophic balance
in the smaller horizontal and vertical scales, and virtually no geostrophic balance is assumed
near the equator. There are even some new features : the intensity of the geostrophy depends
on the vertical level, and there is a weak coupling between divergence and vorticity, as well as
between divergence and mass, which may be important in the tropics. Still, there is no tunable
parameter in J,2, which greatly facilitates its adaptation to new model geometries.

This memorandum is organized in 6 parts :

a qualitative presentation of J;, aimed at the non-specialist,

a mathematical documentation of the formulation,

a description of its technical implementation,

an inventory of the information contained in J3,
e some more elaborated diagnostics of the structure functions,

a documentation in meteorological terms.

1The Hough modes are still used in the J, term and in the resolution changes needed by the incremental
formulation, but not in Jj.

2There are still some tunable parameters in the specification of the background standard errors, but not in
the spectral covariance model itself.
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2 Meteorological features

In this section we explain what the J, term does in 3D-Var using only basic meteorological
concepts. Please refer to the other sections for a rigorous description. The J; term determines
how the 3D-Var analysis procedure converts the differences between observed and forecast
variables into corrections of the meteorological fields.

The specific humidity ¢ is analysed independently® from the other variables. The structures
are globally homogeneous and isotropic, and the analysis weights* depend on the first-
guess humidity field. There is no vertical correlation above 100hPa.

The wind is analysed in terms of vorticity and divergence, which for the most part are assumed
to be independent from each other. The relative amounts of rotational and divergent wind
depend on level, they are almost independent of latitude, and they are usually close to
90% rotational. The exact amounts are represented in figure 1.

L31 level pressure (hPa)  temperature (K) height (m)

1 10 216 30782

2 30 216 23815

. . 3 50 216 20575

' amount of rotational wind 3 70 216 18442

[ T ! : 5 90 216 16842

3 6 110 216 15537

4r ] 7 132 216 14400

[ 8 155 216 13368

7 ] 9 181 216 12411

r 10 208 216 11515

10k ] 11 238 218 10670

L 12 T 270 224 9858

B 5L 1 13 304 229 9074
] 14 339 234 8318
o 15 377 238 7591
8 16 B 16 416 243 6892
E 0 17 457 247 6220
n19F i 18 ) 500 251 5574
r 19 543 255 4954

[ ] 20 588 259 4359

! 21 633 263 3789

22 679 267 3244

25 1 23 725 270 2725
24 772 273 2234

28 E 25 817 276 1773
26 861 279 1348

31 L ! ! ) 27 902 281 964
0.50 0.60 0.70 0.80 090 1.00 28 939 284 628

: ; 29 971 285 352

amount of rotational wind 30 995 287 147

31 1009 287 32

Figure 1: Relative amount of rotational wind in the total wind increments in the analysis (as implied
by the ratios of background error variance), as a function of L31 model level, and definition of the L31
model levels for a standard atmosphere.

The vorticity structures are globally homogeneous and isotropic. The analysis weights are
determined by an assumed tridimensional distribution of background standard error which
is the product of a fixed average vertical profile (shown in figure 11) by some horizontal
error patterns (an example is displayed in fig.2). The patterns are computed according
to a cycling algorithm (Fisher and Courtier 1995) that aims to reflect the recent history
of the observing network : the background error variance is assumed to be smaller in
data-rich areas than in data voids, where it is close to the climatological forecast error.
The vorticity analysis is linked to divergence, temperature and surface pressure through

SHowever, there are some links between temperature and specific humidity in the observation operators.
4The exact weights depend on the observing network as well, in this section we just describe how they are
affected by the definition of J;.
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a complex balance relationship : vorticity corrections imply corrections to the other
variables, and vice versa. It implies that the vorticity analysis is important for the analysis
of the balanced part of all meteorological variables.

Figure 2: Example of assumed background standard error field distribution for vorticity at level
500hPa on 4th July 1997 at 1800UTC. The unit is 1073S.L

The divergence is weakly linked to vorticity. About 90% of the divergence analysis is inde-
pendent from vorticity, according to “unbalanced divergence” statistics, which are homo-
geneous and isotropic. The horizontal and vertical correlation structures are sharper for
divergence than for vorticity. The assumed background errors of unbalanced divergence
are horizontally uniform, and obey a vertical profile which is such that 90% of the wind is
rotational at most levels (less in the stratosphere and in the lower troposphere), as shown
in figure 1.

The balance of divergence with vorticity accounts for only 10% of the total divergence at
most levels, except near the surface and near the tropopause where it is about 30% of the
total divergence. It exists only in extratropical regions. The divergence increments are
thus the sum of the “unbalanced” divergence analysis everywhere and a small “balanced”
divergence analysis implied by the extratropical vorticity increments. The link is such that
a cyclonic wind increment generates a weakly convergent wind structure near the ground,
and a weakly divergent wind near the tropopause (see fig.31 and 32). The amplitude of
the link as a function of level, for a given latitude, is shown in figure 19.

The temperature and surface pressure (i.e. mass) are linked with the wind. The nature
of the coupling is very different in the tropical and in the extratropical regions, and this
has a large impact on the (T, p;s) structures and analysis weights.

The extratropical (T, p;) analysis is almost completely balanced with vorticity in the ex-
tratropical regions : there, (T,p;) increments will be accompanied by strong vorticity
increments and vice versa. In the midlatitudes (around 50N and 50S), 80% of T' and p;
are geostrophically linked to vorticity ; the geostrophic coupling on temperature is weaker
(down to about 50%) near the surface and near the tropopause. There is a:very weak
link between (T',p,) and divergence as well. The remaining 20% of T and p, are anal-
ysed independently from the other variables. This implies that the analysis weights of T
and P, are predominantly determined by the assumed standard errors for vorticity. The

4
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Figure 3: Latitudinal dependence of background errors of temperature (left panel) for all model levels,
and of surface pressure (right panel), before the horizontal modulation of the vorticity errors by the
cycling algorithm patterns. '

geostrophic coupling is weaker for the small horizontal and vertical features of the fields
than for the large scales. The (T, p;,) increments are the sum of the vorticity-balanced,
divergence-balanced and unbalanced (T, p;) increments ; their relative magnitude as a
function of height is shown in figure 19.

The tropical (T, p,) analysis has almost no geostrophic coupling with vorticity (there is none
at the equator). There is a coupling between (T, p;) and divergence such that 30% of T
is coupled near the ground and near the tropopause ; at the other levels it is only 10%,
as shown in figure 19. An increase in temperature (or a decrease in p;) is associated with
weak convergence near the ground, and weak divergence near the tropopause (see fig.30
for an example). Hence, most of the (T, ps) analysis is independent from the wind, and
the vertical temperature structures are much sharper than in the midlatitudes ; they are
almost identical to those implied by the “unbalanced” (T, p,) covariances.

the analysis weights for (T, p;) are completely different near the equator and in the extra-
tropics (unlike wind). As explained above, most of the extratropical weights are implied
by the vorticity weights through the geostrophic balance. The variation of the implied
background errors with latitude is displayed in figure 3 ; it is the sum of a uniform un-
balanced part, and a balanced part which is modulated by the horizontal patterns of
vorticity error ; the cycling implies larger errors in the Southern than in the Northern
Hemisphere, and local error maxima around midlatitude jets.

the vertical correlations between T and p; are generally negative ; they are about —0.3
near the ground, and very small in the mid-troposphere. In the extratropics, there is also
a —0.25 negative correlation around the tropopause.

Some more quantitative information will be given in the following sections, with the exact
correlation structures and standard deviation vertical profiles, as well as some example of
analysis increments with simulated observations.
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3 Description of the algorithm
We use the following notations :

6x : low-resolution analysis increment, i.e. model field departures from the background,
B : assumed background error covariance matrix,

¢, ny (T, ps), q : respectively, increments of vorticity, divergence, temperature and surface pres-
sure, and specific humidity, on model levels.

ms, (T,ps)s : balanced parts of the 7 and (T, p,) increments. The concept of balance will be
defined below.

s (T, Ps)y : unbalanced parts of n and (T, p;), i.e. (n—m) and [(T, ps)—(T, ps)s], respectively.

The incremental variational analysis problem

min J(6x) = Jy(6x) + J,(6%)
ox B 6x + J,(6%)

is rewritten in the space defined by the change of variable dx = Ly where L verifies LLT =B
so that the same analysis increments are provided by

minJ(x) = x x+ Jo(Lx)
0x = Lyx.

In the operational practice, the initial point of the minimization is the background, so that
initially 6x = x = 0. The minimization can be carried out in the space of x, where J; is
the euclidean inner product. At the end of the minimization, the analysis increments are
reconstructed in model space by dx = Ly. Thus the variational analysis can be done with L,
the change of variable from minimization space to model space (chavarin in the IFS /Arpege
code), without ever using its inverse.

The background error covariance model B is implied by the design of L, which in the current
Jp formulation has the form
L=KB?

where K is a balance operator going from the set of variables [¢, Ny, (T, Ds)u,g] to the model
variables [(,n, (T,ps),q]. The BL/? operator is the right-hand symmetric square root of the
background error covariances By, of [{, T, (T, Ds)u, g], S0 that

B, =B.’B)/?.

So far the formulation is perfectly general. Now we are going to restrict B, to a simple form
and to choose a particular balance operator K.

The covariance matrix B, is assumed to be block-diagonal, with no correlation between the
parameters :



It implies that the ¢ analysis is independent from the other variables. However, assuming that
the unbalanced variables are uncorrelated is not too restrictive because, as we shall see below,

the design of the balance implies significant multivariate correlations between the meteorological
variables.

Each autocovariance block in the above matrix is itself assumed to be block-diagonal in
spectral space, with no correlation between different spectral coefficients, but a full vertical au-
tocovariance matrix for each spectral coefficient. The vertical covariance matrices are assumed
to depend only on the total wavenumber n. The resulting autocovariance model is homogeneous,
isotropic and non-separable in gridpoint space : the correlation structures do not depend on the
geographical location, but they depend on the scale. Thé shape of the horizontal correlations
is determined by the covariance spectra. The same representation was used in the previous J,
formulation (Rabier and McNally 1993, Courtier et al 1997). The covariance coefficients are
computed statistically using the NMC method (Parrish and Derber 1992, Rabier et al 1997) on
24/48-hour forecast- differences to estimate the total covariances for each total wavenumber n,
and assuming an equipartition of errors between the (2n + 1) associated spectral coefficients.

The balance relationship is arbitrarily restricted to the following form :

m = M(¢
(T,ps)y = N(H+ Pn,

So that the complete balance operator K is defined by :

K : [¢,1, (T, ps)u: a] = [ 1, (T, 1), 4]

¢ =g
n = M(+mn,
(T,ps) = NC+ Pnu+(T,ps)u
q9 = ¢
or equivalently, in matrix form :
I 000
' M I 00
K= N PIO
0 0 01I

The matrix blocks M, N, P are in general not invertible, but K is:

I 0 0 0
K= M T 0 0
(PM-N) -P 1 0

0 0 0 I

As explained above, the inverse of K is not actually used in the variational analysis, because
the initial point of the minimization is the background.

7
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The matrix multiplication of B, by K allows one to write explicitly the implied background
error covariance matrix B in terms of the meteorological variables [¢,n, (T, ps), q] :

T C CcMT CcNT 0 ]
o p gt | MO MOMT 4G, MCNT + C,, PT 0
¢ NC;, NCMT+ PC,, NCNT+ PCy PT+Cup,. 0

0 0 - 0 c, |

The blocks implied by C, and its transforms by the balance operator blocks M, N, P are
the "balanced” parts of the covariances. For instance, the vorticity covariances C; and the
unbalanced temperature covariances Cr,,), are both homogeneous and isotropic, whereas the
NC;N7 “vorticity-balanced” (T, p;) matrix term depends on latitude : it is predominant in
the extratropics, negligible near the equator. The NC, term is responsible for the geostrophic
mass/wind coupling.

The M, N and P operators used to define the balance have a restricted algebraic structure.
M and N are both the product of a so-called horizontal balance operator H by vertical balance
operators (M, N) :

M = MH
N = NH

The H operator is a block-diagonal matrix of identical horizontal operators transforming the
spectral coefficients of vorticity, independently at each level, into an intermediate variable P,
which is a kind of linearized mass variable defined below. The horizontal operators in H have
exactly the same algebraic structure as the standard analytical linear balance on the sphere,
and this is where the latitudinal variations of the J, structures come from : in spectral space,

Pb(ny m) = ﬁl(na m) C(’I’L, m + 1) + ﬁ2(n7 m) C(’I’L, m— 1)

The M, N and P operators all have the same structure : block-diagonal, with one full vertical
matrix per spectral component. The vertical matrices depend only on the total wavenumber n.

The actual calibration of the J, operator requires the following 4 steps ; each one uses a
set of 24/48h-range forecast differences as surrogates to background error patterns in order to
calculate the statistics :

step 1 : # operator. The horizontal balance coefficients (81, 82) of H are computed by a
linear regression between the errors in vorticity and in linearized total mass F;, assuming
the functional relationship defined by the above equation, and building P; from (T, p;)
using the linearized hydrostatic relationship : at level [,

l
]Dt(l) = Z R,I;. A IOng + RTref logps

i=NFLEV

which relies on the definition of the model vertical geometry and of “reference” values for
(T,ps) ; we use (270K, 800hPa) currently®.

5The sensitivity to the somewhat arbitrary choice of these parameters has been tested and it is negligible.
Unlike in the previous J; formulation, P is just an intermediate variable in the linear regression. Modifying the
reference values, e.g. to (300K,1000hPa), does change the scaling of 7, but it is compensated by corresponding
changes in the M and A operators, so that the effective covariances are virtually unchanged.

8
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step 2 : M operator. The vertical blocks M(n) of this operator are computed for each
wavenumber n by a linear regression between the spectral vertical profiles [Py)™ and
[7]™, respectively, of balanced mass P, (defined as H times the Vortlclty error patterns)
and dlvergence The relationship is assumed to be

[l = M) Bl

 so that the statistical sampling is better for the small scales than for the large scales
because there are (2n + 1) spectral profiles to be used per total wavenumber in each
forecast error pattern. At least as many independent error patterns as number of model
- levels are needed in order to have a well-posed regression problem for the very large scales.

step 3 : N and P operators. The vertical blocks are computed for each wavenumber ex-
actly like M, except that now the linear regression goes from the vertical spectral profiles
of P, = H(¢ and 1, = n — M( to the profiles of temperature concatenated with surface
pressure:

[(Tv pS)]Zl = Nn[Pb];zn + 'Pn[nu]zl

* One notes that the N, matrix is not square (the output is larger than the input because
there is a kernel in the hydrostatic relationship) but the resulting (T, p;) covariances are
still positive definite by construction thanks to the C(zy,), term in the expression of B.

step 4 : Error covariances. The vertical autocovariances of the [, 7, (T, Ds)u, ] difference
patterns are computed for each total wavenumber n. Again, since there are (2n + 1)
wavenumbers for each n and each error pattern, at least as many linearly independent
error patterns as model levels (plus one for p;) must be used in order to ensure that
the autocovariances are positive definite at the very large scales. It is strongly advised
to use several times more in order to reduce the sampling noise at large scales ; this is
important for the performance of the resulting assimilation/forecast systen. In the May
1997 implementation of the 3D-Var system, about 180 forecast difference patterns have
been used for 31 levels.

In addition to these 4 steps, some minor preprocessing is performed on the covariances. The
vertical correlations of humidity are set to zero above 100hPa in order to avoid spurious strato-
spheric humidity increments because of the tropospheric observations. The ¢, n, and (T, ps)y
vertical profiles of total variance are rescaled by an arbitrary factor of 0.9 in order to account for
the mismatch between the amplitudes of the 24/48-hour forecast differences and of the 6-hour
forecast errors. In the future this factor will be recalculated more precisely using observation
departures from the background in the assimilation, similarly to Hollingsworth and Lonnberg
(1986). It may be different for 3D-Var than for 4D-Var. The variance spectra are slighty mod-
ified in order to ensure that the horizontal error correlations of ¢, n, and (T, ps) are compactly
supported (they are set to zero beyond 6000km) ; this operation removes the residual sampling
noise in the error covariances. No other processing is performed except for a spectral truncation
if the analysis resolution is lower than the statistics resolution (currently T106). It would be
easy to extrapolate the statistics to higher resolutions, but it would be very hazardous to alter
the vertical geometry of the covariances and balance operators. Instead, it is recommended to
run a set of forecasts using a model with the right vertical resolution, and recompute all the
statistics from scratch.



4 Technical implementation

The statistical calibration is done using dedicated scripts outside the IFS/Arpége code. First,
the 24/48-hour forecast error differences for a set of dates are constructed in terms of spectral
(¢,n,T,ps,q). At ECMWF this involves running a set of MARS requests and building the
required GRIB files. Then, the forecast error differences are read and processed by a Fortran
statistics program that finally writes two files in GSA format : one with the coefficients of the
balance operator, one with the error covariances of [, 7, (T, Ps)u, ¢]- These files take up a couple
of megabytes. They are computed for a given triangular truncation nsmax and number of levels
nflev ; currently nsmax=106 and nflev=31 . In the covariance file there are 4 sets of nsmax
vertical covariance matrices, each of dimension nflevxnflev except the (T, p;), ones which are
at (nflev+l) X (nflev+1) The balance files contain one set of twice (nsmax+1) x (nsmax+2)
coefficients for the H operator, and three sets of nsmax vertical balance matrlces of dimension
nflevxnflev for M, (nflev+1) xnflev A and P.

The IFS needs these two GSA files to use the J; code (e.g. in the incremental analysis
jobs). The J, configuration described here corresponds to namelist switch LSTABAL=.TRUE.,
and it is identified in the J, code by the string CDJBTYPE=’STABAL96°’. The input files must
be named stabal96.bal and stabal96.cv . Some important namelist options are LCFCE (to
enforce uniform background errors), L3DBGERR (to have a 3-D distribution vorticity background
errors), and LCORCOSU (to enforce compactly supported horizontal correlations). Many options
of the previous J, (including stretching) are obsolete or not currently supported.

.Inside the IFS code, Jj, is localized in the setups below subroutine subjcov and in the inverse
change of variable cvar2in (and its adjoint and their inverses). The computation of the cost
function and its adjoint is done in sim4d ; it is planned to move it to a dedicated subroutine.
The distributed memory affects the setups below sujbdat and sujbbal when the data files are
read (by the master processor only) : first, the resolution of the files is read, then the relevant
arrays are allocated and the actual data is read, truncated if necessary, and broadcast. The
code is designed to work at any resolution. In the change of variable, there is a transposition
of the fields between the horizontal and vertical balance operators, respectively balstat and
balvert. Note that the operator K is performed by calling cvar2in, so in IFS/Arpege parlance
K corresponds to the previous inverse change of variable.

The background standard errors are set up below sujbstd and used in jgnr or jgnrs (and
their adjoint and inverses). On top of the covariance files, they use a gridpoint GRIB file called
errgrib in order to specify the three-dimensional error patterns. The data from the file is
converted to the right parameters and resolution if needed. The background error fields for
some parameters (wind, height, temperature and surface pressure) are built for the screening
job although they are not needed in the analysis itself. For more information, refer to the
documentation about the cycling.

The J, code is substantially simpler and easier to maintain than in the previous formulation.
It does not involve the Hough normal modes nor any arbitrary tuning parameter, except a single
number to scale the variances. It is computationally cheaper (there are 4 times fewer spectral
transforms than before) and it provides a better preconditioning of the minimization because
the J, cost function is spherical in control variable space. Perhaps more importantly, the
knowledge of the exact symmetric square root of the background error covariance operator B
and its inverse is going to facilitate a lot the developments of simplified Kalman filters.

10
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5 Information contained in J,

In this paper, the autocorrelations are always plotted using a contour interval of 0.1, with one
contour at the value 0.05 . Unless mentioned in the figure captions, S.I. units are always used.
We present statistics triangularly truncated at T106, although the current ECMWF analysis
is carried out at T63 only. The L31 vertical model geometry is documented in figure 1 ; it is
important to remember that level 18 is at 500hPa, and the tropopause is (very roughly) around
model 10, which is at 200hPa.

5.1 Balance operators
Horizontal balance H

This operator is defined by the spectral distribution of coefficients 3, and (3, in the relationship
Py(n,m) = B1(n,m) ((n,m+1) + B2(n,m) ((n,m —1)

where the coeflicients outside the truncation domain are set to zero. The above equation has
the same structure as the one implied by the geostrophic equilibrium, i.e. the balance between
the Coriolis force and the pressure gradient : on pressure surfaces,

fEAu=-Vd,
or, equivalently, on the sphere :
@, = AN div(f.VATY()

where @ is the geopotential and f is the Coriolis factor ; as in Jj, we arbitrarily choose to
write this constraint as an application from vorticity to ®,, the geostrophically balanced part
of ®. In J, the balance is applied on model levels, which are close to pressure levels except
near the ground and over high orography. The discretization of the above equation leads to the
analytical balance operator :

®p(n,m) = bi(n,m)((n,m+1) + by(n,m){(n,m—1)

| - 1 1 | (n+1+m)(n+1-m)
bi(n,m) = bn(n—l—l)(l_ n+1)\' 2n+3)2n+1)
B 1 1, | (n+m)(n—m)
ba(n,m) = bm(l+ )\1 2n+1)(2n—1)

where b = —2QR2, Q) is the rotation speed of the Earth, R, is its radius. Qualitatively this

is the inverse Laplacian —R,/n(n + 1) of vorticity times a corrective term that accounts for
G-effects.

We are going to show that the H operator is almost identical to the analytical balance
operator. A first indication of this is in the coefficients themselves. Figure 4 shows the spectral
distribution in (n, m) space of the quantities |log;,(51/b1)| and |log;,(82/b2)| which are measures
of the distance between (01, 32) and (b1, bs). There is a significant sampling noise, particularly

11
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Figure 4: Representation of the distance between the spectral horizontal balance factors f1(n,m)
(left panel) and f2(n,m) (right panel), and the corresponding linear balance analytical coefficients, as
explained in the text. The ordinate is coefficient n, the abcissa is m (imaginary part on the left, real
part on the right). The isoline contour interval is 0.1, i.e. the lowest isoline delineates 5% differences.

in the smaller scales. The larger values at the edges (up to 50% difference) are not understood
but they are probably an artifact of the linear regression being carried out in terms of one
predictor, instead of two in the rest of the spectral triangle. However there does not seem to
be any significant departure of H from the analytical balance : most of the differences are less
than 10%.

Another characterization is provided in figure 5 where the operator H and the analytical
balance have been applied to the same vorticity difference field. The chosen level is 240hPa -
(model level ‘11), it is the one at which the largest geopotential height differences have been
found for this particular forecast difference field (the day has been chosen at random). The
height patterns are almost identical everywhere. The quantitative differences are usually small,
less than 1m (the maximum is 1.33m). The height differences produced by # tend to be smaller,
probably because the linear regression is done once for all levels, so that it includes the lower
ones for which the geostrophic coupling is weaker than in the free atmosphere.

One might still argue that there is a difference in the equatorial mass/wind coupling. Daley
(1997) argued that the use of the analytical balance or Hough modes to enforce geostrophism
in variational analysis increments is inappropriate in the tropical regions, and he designed a
modified linear balance operator with its pseudo-inverse in order to alleviate the problem (by
reducing the mass/wind coupling in the tropical regions). We shall demonstrate below that
the problem does not exist in this formulation, but it is not because of . There would be a
problem if the balance constraint in J, were formulated so that the minimization attempts to
invert the balance operator, in order to generate wind increments from equatorial geopotential
observation. Actually, both 7 and the analytical balance produce very small geopotential
increments in the tropical regions, as shown in fig.5, and they are both ill-suited for algebraic
inversion. This problem does not exist in the .J, formulation because the presence of the
unbalanced (T, ps )., autocovariance term makes the analysis univariate near the equator, so that
the precise definition of A has absolutely no importance in the wind or mass analysis there.
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(with the statistically calibrated H operator), right panel : using the analytical geostrophic balance
as horizontal balance operator. '

This is demonstrated in fig. 6 where the wind increments generated by the same equatorial
wind observation are compared with and without a replacement of H by the analytical balance
operator. The wind increments generated by a mass observation (not shown) are identical in
both cases and they are completely non-rotational (the mass/wind coupling near the equator
has nothing to do with the horizontal balance).

The conclusion is that the horizontal balance operator is essentially identical to the usual
geostrophic balance between vorticity and mass. This shows that in its current implementa-
tion the statistical calibration technique of # produces results that agree completely with the
conventional geostrophic theory. To make the horizontal balance more sophisticated it would
be necessary to make it depend on the vertical coordinate and to seek a more general algebraic
form (in order to allow for horizontal and vertical changes in the mass/wind coupling). This
could be part of a future improvement of the J, formulation.

Vertical balance operators

~ The vertical balance operators have a complex and noisy structure. The noise may be mere
sampling noise (particularly at large scales), but it may also reflect the fact that no numerically
stable linear regression could be found by the calibration algorithm. This is not as worrying as it
sounds, because all that counts for the analysis is the final B covariance matrix. In this matrix,
the balance operators are always multiplied by covariance matrices. The effective covariance
structures (shown in another section) do not exhibit so much noise because the covariances are
less noisy and their correlations effectively kill most of the sampling noise. Hence the noise
is usually a consequence of the linear regression trying to extract information from mutually
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is the sensitivity of 1, at level 18 to the vertical profile of P,. The plot scaling is arbitrary, but the
isolines are the same in both panels.

correlated predictors. The actual performance of the balance calibration must be appreciated
in terms of the amount of explained variance. The aim of the operator plots in this section is
to give a flavour of what is inside the balance operators, and one should be very cautious in
looking for a scientific interpretation.

The M operator links the balanced mass P, with divergence. The spectrally averaged
vertical operator is displayed in fig.7 which shows that the operator is concentrated around the
diagonal, i.e. the balanced divergence is generated by vorticity-implied mass at or around the
same level. The sign of the coupling, however, is not obvious because the operator changes
its sign rapidly with level index. The operator structure is complex near the ground, and it
is sensitive to the choice of the reference (7', p;s) values in the definition of the linearized mass
variable (but the effective correlation structure is not). A cross-section of the actual coefficients
in shown in fig.7 too ; as in the other operators presented below, there is a lot of noise, but
the structure near the diagonal is more or less the same at all wavenumbers, only its amplitude
changes, which reflects both the spectra of the variables at hand and their mutual correlations.
The operator has much more amplitude at the small scales, reflecting the fact that divergence
is a smaller-scale field than geopotential.

The N operator links P, with (T, p;). Its spectral average is shown in fig.8 for which the
same remarks as in the previous paragraph can be made. A spectral cross-section of the operator
would reveal the same kind of structures, with again a higher amplitude of the operator at small
scales. The spiked structure of the average P, —> p, operator near the ground is an artifact of
the large P, vertical correlations in this region. One can only tell that a positive p; increment
will be caused by an increase in low-level geopotential, which makes physical sense.

The P operator links 7, with (T,p;). It will be shown later in this paper that 7, can be
identified with total divergence. The spectral average is shown in fig.9 . Only wavenumbers
larger than 5 have been retained in the average because the operator is very big and noisy for
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the larger scales. Since at these scales the error variance of divergence and (T, Ds) is small, they
are not very significant meteorologically speaking (except perhaps for tidal waves). Again, the
same remarks as for operator M can be made.

A physical interpretation of these operators will only be attempted after examination of the
covariance structures implied by the balance operators and the error covariance matrices.

5.2 Statistical performance of the balance

The balance operator is calibrated using a linear regression principle. The performance of this
operator can be measured objectively by diagnosing the amount of explained variance in the
actual meteorological fields. It shows to what extent the assumed balance relationship really
exists in nature, and it gives an indication of the optimality of the assumed algebraic form of
the relationship. The rms distance between the balanced fields and the real ones is provided
by the variance v, of the residual, the unbalanced fields. We compare it to the total variance
v; by the following quantity called amount of ezplained variance :

1_U_“
Ut

Here we use the same dataset to calibrate the balance and to measure its performance, which
should not be too overoptimistic because the statistical sampling is good, except perhaps for the
very large scales. The geographical distribution of the balance performance will be presented
in another section. The actual relative size of the balanced and unbalanced terms in J; is not

~ just a property of the balance operator, it depends on the algebraic restrictions made on the

covariance operators (their spatial homogeneity in particular) ; it will be shown in the section
about the effective covariances.

The global amounts of explained variance are as follows :

parameter [ explained variance
divergence 9.4%
temperature 62%
surface pressure 92%

The spectral and vertical distribution of these quantities is presented in figure 10. The diver-
gence is weakly explained by vorticity at all scales, mainly near the ground at synoptic scales
and near the tropopause at small scales. The (T, p;) variables are better explained at synop-
tic than small scales (mainly by the geostrophic coupling). The synoptic-scale temperature is
well explained at all levels except near the ground, obviously because of surface processes like
friction. The small-scale temperature is well explained in the stratosphere (its total variance is
very small there anyway).

5.3 Raw Covariances
The total divergence and (7, ps) covariances are not explicitly used in Jy, but they provide an
important reference because they do not depend on the design of the balance. Hence we are

going to examine correlations and variances for total vorticity, divergence, tempeérature, surface -
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pressure, specific humidity and unbalanced temperature and surface pressure. The unbalanced
divergence is not-plotted because it is virtually identical to the total divergence, except that
the variance is slightly smaller ; this is because the balance explains only a very small amount
of divergence errors.

For each variable we have a set of forecast difference vertical covariance matrices that are
used as background error covariances modulo a global scaling of the variances (by 0.9) as
explained earlier in this paper. The variances presented here are the unscaled ones. From each
set of vertical covariance matrices, we can separate the distribution of variances as a function
of level and wavenumber, and the vertical autocorrelation matrix for each wavenumber. The
sum of all vertical covariance matrices yields a total covariance matrix for the whole spectrum,
from which a correlation matrix can be extracted : it is an average of the correlations for each
wavenumber weighted by the variance spectra, and it indicates the vertical increment structure
we expect to find for isolated and localized observations of the same variable. The horizontal
correlation structure in physical space can be diagnosed by a transform of the variance spectrum
at the same level, following the theory explained in Courtier et al (1997) ; more precisely, the
correlation structure as a function of distance p(r) is derived from each variance spectrum v(n)
as follows :

1. the variance spectrum is normalized into a correlation power spectrum :

r(n) = v(n)/ 2Zg™ v(n),

2. the correlation power spectrum is converted into the representation of the correlation

tensor (following the terminology of Courtier et al, 1997), by a multiplication by v/2n + 1

_ to account for the normalization of the Legendre polynomials, and a division by 2n + 1
to go from the power spectrum to the modal spectrum, i.e. p(n) = r(n)/v2n +1,

3. the correlation structure is computed on the collocation grid by a Legendre transform
where the only non-zero components are for m =0 : p(r) = X50"* PY(r)p(n)

In this section we present horizontal correlation structures at truncation T106 (on a 300-point
meridian) ; the actual structures used in the ECMWF analysis are slightly smoother near the
origin because the analysis is performed at T63 only.

Total variances

The vertical distribution of total standard errors is used to specify the horizontal averages of the
background errors in the variational analysis. It is plotted in fig.11 for all variables. They all
have small variations in the vertical except ¢ which has a maximum in the upper troposphere
(more or less at the midlatitude jet levels), and g which has completely different orders of
magnitude in the stratosphere and in the lower troposphere. The large variation in the size of
g is a cause for concern ; this, its boundedness and the non-homogeneity of its statistics as a
function of background humidity make it a very ill-suited variable for a linear analysis scheme
such as 3D-Var. Some work is needed to improve the situation in the future, starting with a
better choice of analysis variable. .

It will be shown in another section that the statistics of ¢, 7 and total (T, p,) are dominated
by error patterns in the midlatitudes. The unbalanced (7, p;) statistics are built using patterns
from the whole globe, and they are mainly important for the tropical part of the analysis. The -
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Figure 11: Vertical background standard error distribution in the unscaled error covariances. Left
panel : vorticity and divergence multiplied by 105. Right panel : q multiplied by 1000, total temper-
ature in the extratropics and unbalanced (i.e. tropical) temperature. The total and unbalanced p;
standard deviations are, respectively, 2hPa and 0.62hPa. J, uses these values scaled by 0.9 .

spatial distribution of the errors in ¢ and in the balanced variables is approximately modelized
by the cycling algorithm which generates time-dependent geographical patterns like the one
in fig.2. The cycling algorithm (see Fisher and Courtier 1995) uses the past history of the
observing network and the climatological variances of the fields in order to estimate the spatial
distribution of the short-range forecast errors in the assimilation system.

Vorticity

The vorticity covariances are depicted in fig.12 . The vorticity average vertical correlations are
usually broad except in the stratosphere. They are even broader near the ground, which is a
consequence of the vertical diffusion in the model. The sharpness of the vertical correlations
increases with horizontal wavenumber, except at the very large scales ; this is commonly called
“non-separability”, and it is the sign of a kind of three-dimensional isotropy in the vorticity
error patterns. Most of the variance of vorticity error comes from sub-synoptic scales, between
wavenumbers 20 and 60, and from the top of the troposphere (the midlatitude jet levels). The
horizontal correlation are sharp, and they are almost zero beyond 200km. They get broader
with altitude in the stratosphere. :

Divergence

The divergence covariances are plotted in fig.13 . As explained earlier, they are virtually iden-
tical to the covariances of unbalanced divergence. The vertical correlations are much sharper
than for vorticity, and they are almost separable. The variances are distributed rather homoge-
neously in the vertical, except at the top, and they come from smaller scales than for vorticity.
Accordingly, the horizontal correlations are sharper than for vorticity.
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Figure 15: Autocovariances of total temperature T', plotted as in fig.12 .

Specific humidity

The humidity covariances in fig.14 are sharp in the vertical and fairly broad in the horizontal,

with correlations of about 0.1 at 800km . The stratospheric structures are subject to caution

because of the small variances at these levels. In the troposphere, the vertical correlations are
strangely sharp for model level 28 (approximately 600m), and the variances decrease abruptly

below this level ; this looks like an effect of the physical parameterizations used in the forecast

model. The correlations are significantly non-separable. The bulk ‘of the variance is located

around level 24 (800hPa) and at synoptic and subsynoptic scales, roughly between wavenumbers

15 and 80, which suggests that the ECMWF analysis of even the average humidity structures

would benefit from running 3D/4D-Var at a truncation higher than T63.
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Total temperature and surface pressure

The total (T, ps) covariances are displayed in fig.15 and 16. The vertical T correlations are very
broad in the troposphere and in the lower stratosphere, with negative correlations between
the two regions (the boundary is around level 12, i.e. 270hPa). There is a substantial non-
separability, and the broadness is mainly caused by large horizontal scale patterns between
wavenumbers 5 and 20, with a large variance at all levels. Both T' and p, have a very small
average variance beyond wavenumber 60 (remember these are global statistics, substantial
smaller-scale (T, p;) errors are known to exist in frontal regions, for instance). Accordingly, the
horizontal T' and p;, correlations are both broad ; the p, horizontal correlation has a weakly
negative lobe at a distance of 2000km. The (T,p;) cross—correlations are generally negative,
with about —0.25 correlations in the lower troposphere (at all scales except the very large ones)
and around the tropopause (at large scales only). There is almost no (T, ps) correlation between
levels 13 and 24, i.e. between 300 and 750hPa.

These (T, p,) statistics are representative of the midlatitudes. We shall see below that both
the unbalanced and the tropical (T, p,) variances and correlations are very different from the
above picture.

Unbalanced temperature and surface pressure

The unbalanced (T, p;) covariances are displayed in fig.17 and 18. The variances are smaller
than for the total variables. The (T, p,), correlations are different from the total (T, Ps) ones :
the vertical T correlations are much sharper, with less anticorrelation, and the change comes
mainly from wavenumbers below 20, which is where most of the variance is explained by the
balance operator M. The (T,p;) cross correlations change too, with the disappearance of the
negative correlation with tropospheric temperature ; it means that these correlated structures
are geostrophic and well explained by the balance with vorticity, whereas the (T, ps) correlated
structures in the lower troposphere are incompatible with the balance, and they are left in
the unbalanced statistics, with a negative correlation of almost —0.4 now. The horizontal
unbalanced correlations are just a little bit sharper than those for the total variables.

5.4 Implied covariances

Despite the algebraic complexity of the implied B error covariance matrix, it is possible to
illustrate rather simply the implied covariance operators in meteorological terms. One needs
first to understand the relative weights of the balanced and unbalanced terms in B.

Amplitude of the balanced terms

In theory, the algebraic form of B makes it difficult to characterize the covariances of balanced
n and (T,p;), the autocovariances are equal to MCcM™ and N C:NT + PC,, P" where M
and N comprise simultaneously horizontal and vertical operators. Fortunately, we have seen
in a previous section that the horizontal operator H is actually very similar to the analytical
geostrophic balance, which is itself closely approximated by the f-plane balance relationship
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Py = fA~Y(. Hence the covariance matrix of balanced geopotential
Cp, = HCH"

is, to a very good approximation (except perhaps for the very large scales and for some [-effects
near the equator), locally equal to the covariances of the inverse laplacian of vorticity (i:e. the
streamfunction) times the Coriolis factor at the latitude ¢ considered, f = 2Qsiny :

Crp == Cro(p) = FPAT2C,

In the tropical regions, f is small, so Cp, is arguably negligible compared to the other
covariance matrices, and the effective B matrix is :

C, 0 0
Btropics = 0 Oﬂu Cnu Pt
O PO'I]u PC”]u PT + C(T1ps)“

On a narrow band around any given extratropical latitude ¢, we are going to assume that
’ HCHT ~ Cps(ip), so that the effective extratropical B matrix is :

OC éprT C’PbNr
B(‘P) = MéPb MéPbMT + C, " MéprT =+ OnuPT

NCpy MCpyMT + PC,, NCpNT + PC,, PT + C(Tps)e

The advantage of this expression is that each term is now the product of block-diagonal matrices
(one block per set of vertical levels, for each total wavenumber), so that the corresponding non-
separable covariance models can be calculated explicitly. All terms are constant, except the
ones that depend on C’pb which are modulated by the square of the sine of latitude according
to Cry(ep) = F2AT2C.

We are going to diagnose the balanced autocovariance terms using the following terminol-
ogy : MCppMT are the covariances of balanced divergence, NCppNT are the covariances of
vor-balanced (T, ps), PCy,, PT are the covariances of div-balanced (T, p;).

The relative importance of the balanced and unbalanced terms is summarized in fig.19 for
two selected latitudes : the equator and 50N (or 50S). The ratio for the vor-balanced terms is
exactly zero at the equator. The ratios are given by the variances of each balanced term divided
by the variances of the sums of the balanced and unbalanced terms, i.e. the diagonal blocks in
B. We use variance ratios because they are expected to correspond to the ratios in the analysis
increments themselves : roughly speaking, they indicate the amount of the increments that will
be balanced. The scale dependence of the ratios is shown in fig.20 . These plots are extremely
important for understanding the meteorological behaviour of .Jp.

Most of (T, ps) is balanced with ¢ in the extratropics, and it corresponds to the geostrophic
balance. The surface pressure p, is almost completely vor-balanced, T is 80% vor-balanced
at most levels, but less (60%) in the mid-stratosphere and near the ground (less than 40%),
obviously because of surface drag. The vor-balance on (7', p;) is weaker for smaller horizontal
scales, and the non-separability of the T' covariances implies that it is also true of shallow T
errors. This is consistent with what is known about the geostrophic mass/wind coupling in the
midlatitudes. The other types of balance are more original.
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In the midlatitudes, the div-balanced part of (T}, ps) is completely negligible, except perhaps
for T' in the mid-stratosphere and near the ground (only 10%, at small scales). However, near
the equator it rises to significant values which affect all scales : more than 20% for p, and for
T in the mid-stratosphere and near the ground, about 10% at other levels. It means that the
Jp formulation couples the tropical analysis of mass with divergent wind, which sounds very
interesting for the assimilation of tropical convective systems and cyclones.

There is a direct link between divergence and vorticity, in the extratropics only. About 35%
of divergence is vor-balanced in the lower troposphere and near the ground, 10% at the other
levels. Since vorticity is strongly linked with (7', p;) as well, this implies an indirect relationship
between divergence and (7, p;), too, which is likely to be similar to the one found above in the
tropical regions. The coupling of divergence with the other variables is supposed to create more
realistic ageostrophic circulations in the wind analysis at all scales (e.g. Ekman pumping near
the ground in extratropical low-pressure systems). This is consistent with the decrease in the
amount of balanced (T, p,) found at these levels.

This qualitative analysis shows that some useful approximations can be made in interpreting
the J, covariances : in the extratropics, there is an important coupling between vorticity and
(T, ps), but only a weak coupling with divergence, which is predominantly uncoupled. Near the
equator, the analysis is almost completely univariate, except for a small coupling between (T, p;)
and divergence, so that the effective tropical autocovariances are almost equal to the unbalanced
n and (T, ps) covariances already presented. To put it in a nutshell, the only parameter for
which the autocovariances are significantly affected by the balance is the extratropical (T, p;).

Implied (T, p;) covariances

The effective tropical (T, p;) autocovariances are not presented here, because they are practically
identical to the unbalanced (T, ps) covariances already shown in a previous section (there is just
a small discrepancy in the variances which is documented in fig.21). This is because the div-
balanced part of the tropical (T, p;) covariances is small compared with the unbalanced part.
The important effect of the div-balanced part is the implied mass/wind cross-correlation, not
in the change of the (T, p;) autocovariances.

The extratropical (T, p;) covariances are presented in figure 21, which is valid on an f-
plane at 50N (or 50S). The correlations are very different from the tropical ones and they are
extremely close to the total correlations, which shows how good the balance is at reconstructing
(T, ps) covariances using vorticity covariances. The variances are compared with the tropical,
global and unbalanced ones, which shows that the effective background error variances of (T p;)
are much smaller in the tropics than in the extratropics. The correlation structures are close
to the globally averaged ones. The variances at 50N are larger than the global values, which
are more representative of the error amplitude statistics at, approximately, latitudes 40N and

40S.
Implied mass covariances

As explained earlier, the linearized mass variable P used to calibrate operator  is akin to a
geopotential height (times g) ; its definition can be used to transform (T p;) vertical profiles
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Figure 21: Effective (T,p;s) covariances on an f-plane at 50N or 505 : average (T, T) vertical cor-
relations (top left), spectral dependence of the (T,T) vertical correlations with model level 18 i.e.

500hPa (top right),

average (T,p;) cross-correlations (bottom left), temperature standard deviation

profile (bottom right) compared with the standard deviations of tropical, total (i.e. global) and un-
balanced temperature. The corresponding p; standard deviations are, respectively : 2.56, 0.88, 1.98
and 0.62hPa. The horizontal correlations are very similar (only slightly broader) to the ones for the
total (T, p,) already presented.
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into P profiles using the following application S at each model level [ :

§: (T,p;)— P
!
-Pl = Z RTZA logp't + RT'ref 1ngs
1=NFLEV
(in the IFS/Arpége code, S is the sigam operator) We can use this operator to diagnose
the geopotential structure functions using SC’(T,:,,S)ST as approximations to the geopotential
covariances in the tropics (using the unbalanced (7),p;) covariances) and in the extratropics
(using the total (T,p,) covariances approximated on an f-plane). Figure 22 depicts them
together with the “balanced geopotential” Cp, = HCH' average covariance matrix.

The tropical and extratropical mass covariances are depicted in figure 22 ; Like for (T, p;),
they are very different from each other, with sharper horizontal and vertical correlations in the
tropics. There is a substantial non-separability in the extratropics, but practically none near
the equator (not shown). The correlation between the top and the bottom of the atmosphere
is close to zero in the extratropics, and to 0.1 at the equator. The correlations of (global)
total mass are not shown because they are almost exactly identical to the extratropical ones.
The standard deviations (displayed in meters times the g constant) are much larger in the
extratropics than in the tropics, and again the global statistics are representative of latitude
40N (or 40S) or so. The unbalanced mass statistics (not shown) are practically identical to
those of tropical mass, both in terms of correlations and variances.

The Cp, covariances are very different from. the effective geopotential covariances (which
are derived from complete (T',p,) statistics instead of ¢ statistics), both at the equator or in
the extratropics. There is not just a scaling factor between the balanced and the extratropical
mass standard deviations ; the Cp, standard deviation are small near the ground, because the
vorticity is reduced by surface friction in this region. This is an artifact of the constraint imposed
on the design of the balance, and it is compensated by the A vertical balance operator which
implies that the real geopotential variance is almost vertically constant near the ground, which
makes more physical sense. The conclusion is that, although P, is taken to be the linearized
mass in the calibration of the balance operators, in J, it is just an intermediate variable which
is a poor approximation of the real geopotential height.

5.5 The cross-covariances

Using the same methodology as before it is possible to diagnose the cross-covariances, i.e. the
off-diagonal blocks of matrix B, for several latitudes. The implied information is very rich
and cannot be presented if the length of this paper is to be kept reasonable. Some concrete
information about the cross-covariances will be shown in the section on simulated observations.
Here we will just demonstrate on some very simple examples how the multivariate character of
Jp can be traced back to the cross-covariance blocks of the B matrix.

Figure 23 shows the spectral averages of the MC, operator linking ¢ and 7, and of the p,
part of the PC,, operator, i.e. the link between (unbalanced) divergence and surface pressure.
The first one is only important in the extratropics, and it has been computed for latitude
50N here. It can be read like this : for an increment of vorticity at any given level, the
corresponding column of the plot gives the implied vertical distribution of divergence. This in
turn can be connected to mass increments through the geostrophic coupling. The plot could
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also be read backwards, i.e. a divergence increment at a given level yields a vorticity profile
given by the corresponding line. The operator has not been normalized by standard deviations,
it shows cross-covariances. This is more meaningful than cross-correlations because there are
vertical variations of the variances (e.g. in the upper stratosphere). The figure shows that a
cyclonic wind increment near the ground will be associated with convergence near the ground,
and divergence above level 25 (800hPa). A cyclonic increment at higher levels will only be
associated with weak convergence at the same level. In the stratosphere the interpretation is
more difficult because the possible ¢ and 7 structures are constrained by the autocovariances
of vorticity and divergence, so that the sharp lobes on the figure would actually be smoothed
out.

The right-hand panel of figure 23 shows the average of the PC,, operator which connects
divergence and surface pressure in the tropical regions (in the extratropics the “geostrophic”
coupling term NC, M7 is likely to change the (7, p,) cross-correlations). One sees that a negative
surface pressure increment will result in convergent wind near the ground, and divergence above.
The change of sign is at level 26, i.e. 1300m . It is tempting to interpret this as the signature
of tropical convection.

6 Other diagnostics

6.1 Sampling issues

As explained before, it is absolutely necessary to use more independent error patterns than
the number of levels in the J, calibration procedure. It is desirable to use many more than
that in order to have a correct statistical sampling, particularly at very large scales. The
first J, tests were carried out using 45-day samples (24/48-hour forecast differences taken one
day apart from each other) during December 95/January 96, March/April 96, June/July 96,
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September/October 96 and December 96/January 97. An extensive subjective comparison of
the statistics between these 5 periods has been carried out, and it showed that there was no
significant impact of the seasonal cycle, obviously because the J, design does not distinguish
between the Northern and Southern Hemispheres. However, there was a difference between
the December/January 95 period and the other ones, because of the change in the ECMWF
analysis system from OI to 3D-Var (at the end of January 1996). Consequently, it has been
decided to neglect the seasonal effects and to recompute the statistics using one single 180-
day homogeneous sample, leaving out the December/January 95 data. The 180-day statistics
are the ones used in the operational J, implementation of May 97, and in all the diagnostics
presented in this paper.

Changing the sample size from 45 to 180 days altered only a couple of features in the
statistics. There was a reduction of the noise in the diagnostic plots that are not averages, e.g. in
the spectral dependence of the vertical correlations. Perhaps more importantly, there are some
significant changes in the vertical correlation matrices for wavenumbers n between 0 and 3 (for
higher wavenumbers the changes are not noticeable). Correspondingly, the differences between
the analysis increments are mainly found in the very large scales. This may be important for
the assimilation of tidal waves, although the impact has not been fully investigated.

A weakness of the J, calibration procedure is that, even with 180 days of data, the sampling
of the very large-scale statistics is very suspicious. The problem is likely to get worse when the
number of levels in the model is increased, because a large set of forecasts at the right vertical
resolution must be rerun before the actual J, calibration can be done. In the future it will
become necessary to develop either a method to extrapolate vertically the J, statistics, or to
use an independent source of information in order to calibrate the very large-scale part of the
error covariances (e.g. a low-resolution Kalman filter).

6.2 Spatial homogeneity of the covariances

A major weakness of the previous Jj, structure functions was their lack of geographical vari-
ability. The contrast between tropical and extratropical (7, p;) structures has been apparently
solved with the new formulation, but it remains to be seen whether any important geographical
information is still missing. In this section we use the NMC method to calculate features of the
forecast errors on specific domains. In doing so there is the danger of pushing the NMC method
outside its domain of validity. In particular, using 24/48-hour forecast differences instead of
6-hour forecast errors is likely to hide the effects of the spatial inhomogeneity of the observing
network. In the Northern Hemisphere there are some large differences in the observation den-
sity between America, East Asia or Europe, and the Atlantic and Pacific Oceans. How the J,
statistics should be modified to account for these differences is important for improving the per-
formance of the assimilation and forecast system over (say) Europe, but it is beyond the scope
of this paper : it would be necessary to use observation departures and some form of Kalman
filtering. Here we only try to account for the zonally averaged differences of the atmospheric
dynamics. We use NMC error patterns from September/October 1996 in this study.
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balance operator. The ratios for ps are 0.9 near the equator, 0.3 in the extratropical parts of both
hemispheres.

Distribution of the variances

The maps of standard deviations of NMC forecast differences (not shown) are almost perfectly
zonal : as expected, the NMC method hides the structure of the observing network. The
meridional distribution of the standard deviations of the total variables is shown in figs.24 and
25 . The biases are small compared to the standard deviations, except between model levels 7
and 9 (between 130 and 200hPa) where temperature biases of 15% of the standard deviation are
common, with a maximum in the tropical regions. The plots show the well-known importance
of the midlatitude storm-tracks on wind and (T, p;) near the tropopause and near the ground,
and of the tropical convective systems on divergence and humidity.

The performance of the balance operator in geographical terms is shown in fig.26 : the
higher the ratio, the lower the amount of explained variance. The graphs are noisy near the
poles because of the poor sampling there. The balance with vorticity is only able to explain
some divergence patterns in the extratropics near the ground and near the troppopause (the
ratio can be greater than one if the balance tends to work the wrong way), which confirms the
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Figure 97: North-South variation of the total (T, T) vertical correlations at model level 18, in J; (left
panel), and in the NMC statistics (right panel).

diagnostics made earlier with the spectral covariances. The balanced temperature in the tropics
only works near the tropopause, with 31% of variance explained locally (because of the link
with divergence). In the extratropics, the balance works is more and more important nearer
the poles, except near the ground, particularljr in the Northern Hemisphere. This is obviously
an effect of the surface friction.

The distribution of the variance of the unbalanced variables is not shown ; for divergence
it is almost the same as for the total variable. For T it is a rather uniform distribution,
because most the difference between the tropical and extratropical variances of T is due to
geostrophic structures which are explained by the variance. The unbalanced p, variance is
1hPa in the tropics, and between 1.5 and 1.8hPa in the extratropics. This means that, although
the unbalanced (T, p,) are what counts in the tropical structure of J;, their calibration using
information averaged from all over the globe, not just from the tropical regions.

Distribution of the correlations

The vertical structure functions implied by the J, formulation are, by construction, globally
uniform for ¢ and ¢, and almost uniform for 7. The meridional distribution of the vertical (T, T
correlation with level 18 (500hPa) is shown in fig.27 (using the f-plane assumption for each
latitude) and compared with the actual distribution diagnosed using the NMC method (applied
for a set of narrow latitude bands). We can see that, although the correlation model is far from
being perfect, there is an enormous improvement over having a uniform (7, p;) structure as in
the previous J, formulation. The latitudinal dependence of Jy is constrained to follow a linear
function of the sine of latitude, as explained earlier, so that it is impossible to reproduce exactly
the real correlation distribution. Perhaps the polar analysis could be improved by refining the
(T, ps) correlations there.

The inspection of the latitudinal dependencies for the other parameters reveals that the
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vertical correlations of 7, ¢ and unbalanced (T, ps) are virtually uniform, so that the Jp for-
mulation seems correct for these fields. Averages of the correlation structures over Europe has
shown that, as far as the NMC method can be trusted, the Jj structures look correct and con-
sistent with the diagnostics made in the previous sections. However, one can suspect that the -
real background-error covariance structures are modified locally by the density of observations,
although this cannot be detected by the NMC method.

The only notable inhomogeneities were found with vorticity, and near the North pole (North
of 70N ; the South Pole was not studied because some more complicated problems are likely to be
generated by the high orography and low surface temperatures in this region). This is illustrated
by fig.28 : the ( vertical structures are substantially sharper near the equator than near the
poles, which is quite different from the assumed picture of globally homogeneous vorticity
covariances in J, : the polar (T,T) correlations are quite different from the extratropical ones
generated by the J; formulation (see fig.21) . This shows that locally, the structure functions
of J, are suboptimal even with respect to time-averaged error statistics. This is bound to affect
the performance of the assimilation system, although it is difficult to predict exactly how.
Currently it is likely that the wind analysis is too smooth in the vertical in the tropics, and

that the temperature analysis is too sharp and incorrect near the tropopause in the vicinity of
the poles.

41



7 Meteorological validation

7.1 Single-observation experiments

The effect of the J, design on the actual analysis is usually difficult to interpret, because the
structure of the analysis increments results from a complex weighted average of the observation
departures from the background, if there is more than one observation in the vicinity. The
effects of the J, term and of the initialization procedure in the incremental method make the
picture even more complicated.

The simplest illustration of the J, structure functions is provided by non-incremental analy-
ses with no J, term and one single simulated observation per analysis. The relationship between
J, and the analysis increments is given by J,(0x) = 6x*B~'0x and the analysis equation

1% —zf = BHY(HBHT + R)™!(z — Hz')

where the usual notations have been used. This shows that the analysis increment is the B
covariance structure between the observed parameter and all model fields, times a scalar. If
oy and o, are, respectively, the standard background and observation errors, the value of the
increment at the observation point itself is

%

o} + 0}

H(z® — zf) = (z — Hzf)

which makes it simple to check the value of o, = vV HBHT if one knows the observation error
and the departure from the background.

In this section the observations are simulated over oceans, where the J, term has very little
effect on the increments ; it is mainly important near orography. The effect of high-resolution
initialization of the increments has a complex effect which will not be documented in this paper ;
it is mainly caused by the changes in orography, but there is also a global penalization of the
structures of the mass/wind balance, which may sometimes be in contradiction with the J,
structures. The large-scale part of the initialization has been switched off recently (Simmons
and Rabier 1997), thereby reducing considerably the changes to the J, structures, particularly
in the tropical regions. The handling by the assimilation of the large-scales tidal waves, of
the structure functions near orography and of the diabatic balance of the atmosphere are still
significant problems which require further investigations (see Jarvinen, Bouttier and Simmons
1997).

A sample of the J, structure functions compared against the previous formulation is given in
fig.30 and 29 . The simulated observation is a z1000 geopotential observation with ¢, = 10m and
a 10m departure from the background. This is very similar to a surface pressure observation ; the

increments are small because the assumed background errors are very small for this parameter -

near the equator, but the implied structures could be important for the analysis of tropical
storms and the use of scatterometer data. Figure 30 compares the previous and the current Jp.
The T increment is exactly one would have expected from the study of the spectrally averaged
(T, ps) correlations in the previous sections. The novelty is in the implied wind structures, as
seen on the maps of divergence and wind increments (with the previous J, there was virtually
no wind increment) : the wind is predominatnly divergent, with weak and more rotational
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the plotting.
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Figure 30: Vertical North-South cross-sections of increments of temperature and divergence with the
previous and current (“new”) J;, generated by a simulated 21000 observation (background plus 10m),
as explained by the legends.
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z1000 obs - temperature increments
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Figure 31: Temperature, vorticity and divergence increments generated by a simulated z1000 obser-
vation (10m lower than in the first guess) at 60N,30W. All increments are isotropic.
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Figure 32: Wind increments at model levels 13 (300hPa) and 30 (150m) by the simulated 21000
observation at 60N,30W.

features to the North and South. The impact of activating J, has also been tested ; it results
in the addition of a negligible and complex vorticity increment.

When the 21000 observation is moved to latitude 60N (now it is 10m below the background
geopotential), the increments change completely and result in the complex temperature, vor-
ticity and divergence increments shown in fig.31 ; some wind patterns are shown in fig.32 .
Again, this is completely consistent with the spectrally averaged diagnostics of correlations
presented earlier. The observation results in a cyclonic increment with a warming in the lower
troposphere and near the tropopause, a large barotropic vorticity increment with convergent
wind near the ground and divergent wind near the tropopause. The previous J, would have
generated similar vorticity and temperature increments, but no divergence.

Figure 33 shows the increments produced by a T200 observation (similar to an AIREP),
with 1K departure and observation error. There is a small divergence increment, and its
combination with the vorticity structure results in the wind increment in fig.34 . Once again,
this is consistent with the study of the spectral operators. The increment is comparatively
less divergent than with the previous z1000 observation, because .J, assumes more geostrophic
balance aloft than near the ground. The comparison with the previous J, reveals that the wind
increments were non-divergent and weaker than with the present formulation.

The increments generated by wind observations have the structures shown in fig.6 for the
wind, and those implied by the resulting vorticity structures for the other parameters.

The conclusion is that the Jj structures are completely consistent with the analysis made
in the section on the spectral operators : the spectrally averaged covariances are good ap-
proximations of the effective synoptic structures of the increments. The reader is referred to
the relevant sections for a documentation of the complete correlation matrices, in which the
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Figure 33: Temperature and vorticity increments generated by a simulated T200 observation, as
explained in the legends. All increments are isotropic.
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Figure 34: Wind increment (at level 13, i.e. 300hPa) generated by the simulated T200 observation.

structure functions for observations of each parameter and at any level can be seen.

7.2 Impact on the assimilation

A total of 9 weeks of experimental assimilation have been run during four seasons, plus 4 weeks
of preoperational assimilation before the operational implementation of the J; revision. This
has allowed a clean comparison with the previous J, formulation.

Although they look similar in the midlatitudes,the increments are very different from those
implied by the assimilation with the previous J,. At the start of each assimilation, the incre-
ments can be very different in a complicated way, with sometimes opposite signs, because the
balance and the vertical averaging properties of the new J;, are very different. This results in a
different combination of the various pieces of information provided by a localized observation
of several parameters (like aircraft reports of wind and temperature) or a vertical profile of
one parameter (like a PILOT sounding). After a couple of assimilation cycles, the background
fields are usually different (particularly in the tropics) and a detailed comparison of the two
systems is impossible.

The average amplitude of the increments is generally similar between the two systems, except
in the tropical regions where it is substantially smaller with the new J,. This is the consequence
of a better average agreement between the background and the observations, however the new
Jy can generate locally larger increments because of the more complex coupling between the
variables (e.g. a tropical observation of mass can now generate wind increments). The better
quality of the short-range forecasts is particularly apparent in the better r.m.s. fit of the tropical
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Figure 35: Impact of the J, revision on the observation fits to the analysis (dotted curves) and back-
ground (solid curves) for the tropical TEMP winds (top panel) and the tropical AIREP temperatures
(bottom panel). The black curves are for the previous operations, the grey curves are for the parallel
suite. The statistics have been computed using 10 days of feedback data.
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observations with the background, as shown in fig.35 ; it is a spectacular illustration that a
better fit of the background temperature can be achieved by having less analysis fit to the
observations, because the structure functions are much improved.

The “flip-flop” problem (alternance of increments with similar shapes and opposite signs in
the assimilation which has a 6-hour period) is only slightly reduced by the change in the J,
formulation ; its tropical component, which is thought to be caused by discrepancies between
the model tides and the observed ones, is practically unchanged as shown in a Fourier analysis
of the sequences of observed surface pressure departures (Jarvinen et al 1997). These problems
have received a separate treatment by the suppression of the large-scale part of the initialization
(Simmons and Rabier 1997) ; this change has been implemented at the same time as the new
Jp formulation.

The cost of the revised Jj is less than the previous one. However, the impact on the overall
cost of the 3D- or 4D-Var assimilation is small, because it is dominated by the handling of the
observations (for 3D-Var) and by the direct and adjoint model runs (in 4D-Var). The improved
preconditioning speeds up the experimental analyses with a small number of observations, but
the convergence of the full 3D-Var is not clearly faster than with the previous J,. Slower conver-
gence may be a side-effect of using sharper temperature correlations in the tropics, because it
increases the number of effective degrees of freedom in the variational analysis problem. There
is no impact on the cost of the 4D-Var minimization because the criterion for convergence is
never reached before the maximum authorized number of iterations ; in 3D-Var with the previ-
ous Jp, the convergence used to be reached a couple of iterations before the limit, now the limit
of 70 iterations is always reached, with a satisfactory decrease in the norm of the gradient.

The impact on the humidity analysis and assimilation of satellite radiances is still under
investigation. No obvious problem was found, and the fits to the background of both TOVS
radiances and tropical humidity observations are a bit improved, although it may be just a
side-effect of the overall improvement in the assimilation of wind and temperature. In the
assimilations based on the old and new J, formulations the zonally averaged temperature,
humidity and Hadley cell circulations are very similar and no significant difference could be
found. In the forecasts it seems that the short-range spin-up of the precipitations is slightly
reduced, and that the tropospheric humidity increments are smaller in the experimental SSM/I
assimilation, although all these results are very preliminary (a specific study of the assimila-
tion of SSM/I data with the new J, formulation will be presented in a forthcoming technical
memorandum). Some work is under way at ECMWF to revise the use of TOVS radiances
and it seems that the new J, formulation behaves much better than the previous one in the
stratospheric assimilation of radiances (currently SATEM retrievals from NESDIS are used in
the stratosphere).

The impact of the J, revision on the 6-hour experimental 4D-Var is very positive ; it is as
large as in 3D-Var, and some problems of tropical humidity biases with the previous J, now
seem to have almost disappeared.

7.3 Impact on the forecasts
The Jj revision has a major positive impact on the quality of the forecast at all ranges. Figure
36 shows the forecast scores computed over the 3D-Var experiments that were run with the

final version of the revised J, formulation (the other experiments exhibited a positive impact
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Figure 36: Impact on the forecast scores on the J, revision (only) over 5 weeks of experimental
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as well, but they were done with a less refined version of J;). The verification is the operational
analysis, which explains why the short-range tropical scores seem to have worsened : in the
tropics the analyses are much changed by the J, revision. The forecast quality is actually
improved at all ranges. The medium-range forecast quality is extended by about 8 hours.

A preoperational parallel suite was run from 12 April 1997 to mid-May. Its main feature
was the change in the J, formulation, but it also included a suppression of the normal-mode
initialization of the large-scale part of the high-resolution increments (Simmons and Rabier
1997), a revision to the evolution algorithm for the forecast standard errors, a change to the
usage, bias correction and quality control of TOVS radiances, and minor model changes. The
net impact of these modifications was very positive. All scores were significantly improved,
notably the winds (at all ranges when verified against own analysis), and on all areas except
the Southern Hemisphere which showed a slight degradation ; given the spread of the individual
forecast scores, this is not considered to be significant. The scores over Europe are improved
a lot. A sample of the scores is shown in figure 37. Several months of parallel assimilation
would be required in order to assess reliably the exact impact on each individual score, but so
far the bottom line is that, by all aspects, the tropical analyses and forecasts are consistently
improved by the J, revision, and that there is a small but significant positive impact on all the
other scores.
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Figure 37: Impact on the forecast scores of the operational change (IFS cycle 1612) that includes the
Jp revision, over 19 days of parallel testing. The scores are computed against the own analysis of each
assimilation system : the previous operational suite (solid lines), and the new suite (dashed lines).
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8 Conclusion

The reformulation of J, brings a notable improvement to the quality of the assimilation and
of the ensuing forecasts. However, some weaknesses remain and need to be worked on. The
structure functions are globally uniform despite the tropical/extratropical contrast which is
implied by the formulation. This is clearly wrong for the vorticity field, and perhaps for the
unbalanced temperature and surface pressure as well. It would be desirable to design more
algebraically general balance and covariance operators in. order to achieve a specific treatment
of the poles, the tropics and the midlatitudes. Although it seems easy to do in the balance
operators (it is possible to combine several versions -of them through geographical masks),

enforcing a geographical variability of the covariances raises some complicated mathematical
issues. ’

From a theoretical point of view, the J, reformulation is based on the hypothesis that
the balanced component of the short-range forecast errors can be expressed as a function of
vorticity, the vorticity field itself being assumed to be always balanced. This is not equivalent
to the concept of a balanced variety defined by the Rossby-gravity normal modes of the model.
Some authors have advocated the use of the Hough space representation, which might provide
better results : it would be interesting to try. The algebraic constraints on the operators could
also be relaxed a bit, as mentioned above in order to allow more geographical structure, and

also a different kind of mass/wind balance in the tropics, or a different treatment of the very
large scales. ' -

The analysis of humidity has not been modified. This is clearly a major weakness of the
current assimilation system. A better humidity variable (like the logarithm of q) should be used,
and a balance between humidity and the other variables would be useful ; it probably requires
a distinct treatment of the tropics and the extratropics. ‘Finally, the dynamical initialization
procedure should be diabatic ; it seems that digital filtering could be more appropriate than
normal mode initialization, following the experience at other numerical prediction centres.

Some work is being done at ECMWT on the assimilation of ozone. Preliminary experiments
have shown that a significant part of the ozone field can be coupled multivariately with the
wind analysis. It means that in the near future, the ozone analysis will benefit from wind

observations, and the stratospheric wind analysis might be improved thanks to the introduction
of ozone measurements.

The ‘success of the assimilation of satellite data, e.g. TOVS radiances, depends on the
quality of the J, constraint. It seems that the revised J, will allow a better use of TOVS data,
and hopefully some kind of bias correction scheme will be integrated within the atmospheric
J, term of the variational analysis.

The basic characteristics of Jj currently depend a lot on assumptions made about the NMC
method. It is necessary to monitor their correctness using independent statistics of observation

departures e.g. to monitor the amplitude of background error variances of correlation length-
scales in data-rich areas.

The improvements in J; benefit 4D-Var and the Kalman filter directly. Technically the
knowledge of the exact square root of the background error covariance matrix facilitates the
work on numerical preconditioning and simplifications to the Kalman filter. However, there
are serious doubts as to how appropriate the J, formulation is for the generation of useful flow-
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dependent structure functions, because it is too barotropic. In dynamically unstable areas, we
need to make the J; covariances more isotropic in phase space (i.e. with sharper correlations
in physical space).

All these importai;t problems are being i‘nvestigated’ at ECMWF.
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