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Abstract -

Singular vectors are‘ computed Which are consistent with 3D-Var estimates of analysis
error statistics. This is achieved'by déﬁning the norm at initial tirne in terms of the full
Hessian of the 3D-Var cost function. At final time the total ehergy' norm is used. The
properties of these Hessian singular vectors differ considerably from total energy singular
vectors in such aspects as energy spectrum and growth rate. Despite these differences,

“the leading 25 total energy and Hessian singular vectors explam nearly the same part of
the 2-day forecast error. ' o

Two experimental ensemble configurations are studied. One configuration uses per-
turbations based on Hessian singular vectors, the other uses total energy singular vectors
and 2-day linearly evolved singular vectors of two days before in the computation of initial
perturbation. The latter approach provides a way to include more stable and large-scale
structures in the perturbations. Ten pairs of ensembles are compared to the operational

- ECMWF Ensemble Prediction System. The ensembles using evolved singular vectors per-.
form slightly better. The Hessian singular vectors based ensembles show a slightly worse
performance and are lacking spread i in the medrum range. Possible directions to improve ’

the computation of Hessian smgular vectors are dlscussed

1  Introduction

The current operational Ensemble Prediction System (EPS) at the European Centre for Medium-
Range Weather Forecasts (ECMWF') comprises 50 non-linear integrations of the T1159 oper-

ational model version, with as initial condition the 12 UTC analysis perturbed along growing
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directions. The development of the EPS is documented in (Palmer et al, 1992; Molteni et
al, 1996; Buizza et al, 1998a) and recent ﬁndiﬁgs ihdicate that its performahce is quite useful
(Palmer et al, 1998). Two other numerical weather prediction (NWP) centres run an EPS on
a daily basis, namely the US National Centers for Environmental Prediction (NCEP) and the
Canadian Meteorological Centre (CMC). The approaches followed by the various NWP centres
to define their EPS differs considerably. At NCEP the breeding method (Toth and Kalnay,
1997) is used to create initial perturbations, while CMC generates initial perturbations by
running various assimilation schemes using perturbed observations but also takes into account
model errors by allowing different model configurations in the ensemble (Houtekamer et al,
1996).

At ECMWF singular vectors (SV) are used to obtain initial perturbations for the EPS
(Buizza and Palmer, 1995), as they are believed to sample the unstable linear subspace as
efficiently as possible. Currently, two sets of SVs at resolution T42L31 are computed, targeted
respectively for the Northern and Southern Hemisphere extra tropics and with an dptimization
time. of 2 days. From these, 25 perturbations are generated for each hemisphere seperately
(Molteni et al, 1996) and then the two sets of perturbations are added to yield global pertur-
bations. By adding and subtracting the global perturbations to the 12 UTC analysis the 50
perturbéd initial conditions for the EPS are defined. |

In order to obtain the forecast probability distribution function (PDF) under the assump-
tion of a perfect forecast model, one, ideally, would like to integrate the appropriate Liouville
equation (Epstein, 1969; Ehrendorfer, 1994). However, the large dimension of the current NWP
models makes this impossible. The SV approach provides a possibility to search for directions
in phase space where the errors in ﬁhe initial condition will amplify rapidly. Nevertheless, the
interpretation of results as derived from the EPS is not straightforward. The large discrepancy
between the size (50) of the ensemble and the dimension of NWP models (10°—107) may lead
to sampling errors in describing the forecast probability distribution function: initial directions
in phase space which result in erroneous forecasts may easily be missed. In fact, estimates
of the dimension of the linear unstable subspace for a 1449-variable T21L3 QG model are of
the order 102—10%, (Palmer et al, 1997). Another difficulty is that the SVs are computed to
produce large growth in the first 2 days of the forecast. It is possible that slower growing SVs
become more important in the medium range when error growth has become nonlinear. This
was indeed the case for perturbations which were specifically defined to trigger the onset of
weather regimes at forecast day 5 in the context of a 3-level quasi-geostrophic model (Oortwijn
and Barkmeijer, 1996). Weather regime transitions may be associated with large spread in

the ensemble. A study by Trevisan et al (1997) in a 2-level quasi-geostrophic model indicated
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that the use of singular vectors are pvreferable to Lyapunov vectors in ensemble forecasting to
detect the enhanced spread associated with regime transitions. In addition to this, medium
range forecast errors cannot solely be attributed to errors in the initial condition. Experiments
show that model errors can become equally important in causing forecast errors (Harrison et al,
1995; Richardson, 1998). Research is under way to complement the SV approach by allowrng
for model perturbations during the actual time mtegratlon of each ensemble member (Buizza
et al, 1998b).

In this paper we assume a perfect model approch and we shall focus on defining SVs in
accordance with analysis error statistics. The specification of the initial and, to a lesser extent,
the final norm plays a crucial role in this. In the ECMWF operatronal EPS SVs are computed
with the so-called total energy norm at initial and final time (see sectlon 2 for more detaﬂs)
It can be shown that among SImple norms, the total energy norm prov1des SVs whlch agree
best ‘with analysis error statistics (Palmer et al, 1997). In Barkmeijer et al (1998) a method is
proposed to mcorporate analysis error statlstlcs dlrectly in the SV computatlon Th1s is done
by taklng the full He531an of the 3D-Var cost funct1on as an approxnnatron to the i 1nverse of the
analysis error covariance matrix and using it to define a norm at initial time. The inverse of
the analy51s error covariance matrix A is not exphc1t1y known. Tt sufﬁces to be able to compute
¥ = A7!x for a given input vector x. By doing so the SV computation becomes consistent
with the 3D-Var procedure to determine the analyzed state. The total energy norm is still used
at optimization time. We call singular vectors calculated in this way Hessian singular vectors. |
Ehrendorfer and Tribbia (1997) state that such an approach to determine SVs prov1des an
efficient way to describe the forecast error covariance matrix when only ‘a limited number of
linear integrations are possible. In their SV computations, however, explicit knowledge of the
analysis error covariance matrix is used which is unavailable in an operational data assimilation
system. It is this complication which requires an efficient generalized eigenvalue problem solver

to compute SVs.

The purpose of this paper is to report on properties of these Hessian sihgular vectors de-
fined with .an initial norm giVen by the fu11 3D-Var Hessian and to describe their impact on
the performance of the ECMWF EPS. To that end two sets of 10 ensembles starting from days
in DJF 1996/97 will be compared where initial perturbations are created with total energy or

Hessian singular vectors.

The orgamzatlon of the paper is as follows. In the next section we introduce the computation

of the Hessian singular vectors The comparlson of the Hessian and total energy smgular vectors
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is given in section 3. Results from the ensembles are presented in section 4. The paper concludes
with a brief summary of the results and possible areas for future work. In the appendix, one

of the statistical tests, the relative operating characteristic, is briefly described.

2 Use of the 3D-Var Hessian

The computation of singular vectors requires the specification of a norm at initial time ¢, and

at optimization time ¢;. In this paper we consider singular vectors € which maximize the ratio

(Pe(t1), EPe(ty))
{e(ta), Ce(to))

Here (, ) denotes the Euclidean inner product (x,y) = X x;y;. The positive definite and

(1)

symmetric operators C and E induce a norm at initial and optimization time respectively. The
projection operator P sets a vector to zero outside a given domaih, e.g. south of 30°N as in this
paper. The first singular Veétor SV1 maximizes the ratio (1), the second singular vector SV2 .
maximizes (1) in the subspace C-orthogonal to SV1, and so forth. The evolved singular vectors
e(t1) = Me(to) form an E-orthogonal set at optimization time. Alternatively, the singular

vectors defined by (1) are solutions of the following generalized eigenvalue problem
M*P*EPMx = ACx ' - (2)

The adjoint operators M* and P* are determined with respect to the Euclidean inner product.
In the computation of the total energy singular vectors (TESV ), the total energy metric is used

at initial and optimization time, ie. E and C are identical and:

_1n 1, . -1 -y . —1
(x,Ey>_§/0 /E(VA ¢ - VATI¢, + VA™ID, - VATID,
Ip

c 1 . '
PR T TS5 )0 + 5 /E R4T. P, Inm, - lnmyds (3)

with ((g, Dg, T3, In7;) being the vorticity, divergence temperature and logarithm of the sur-
face pressure components of the state vector x and ¢, is the specific heat of dry air at constant
pressure, Ry is the gas constant for dry air, T, = 300 K is a reference temperature and P, = 800

hPa is a reference pressure.

In this TESV case C has the form of a diagonal matrix and the square root of C can be readily
determined. Multiplying both sides of (2) to the left and right with the inverse of the square
root of C, yields an equation which can be solved using the Lanczos algorithm (Strang, 1986).

Palmer et al (1997) study the impact of choosing different simple metrics at initial time, keeping
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the total energy metric at optimization time. It turns out that of the simple metrics considered,
the total energy metric is the most consistent with the analysis error statistics. In Barkmeijer
et al (1998) a method is proposed to make the singular vector computation consistent with

analysis error statistics by employing the Hessian of the 3D-Var cost function.

In the incremental formulation of 3D-Var a cost function J of the form
1 ‘ 1 - v o
T (0x) = -2—5xTB—15x + 5 (Hox - d)"R}(Héx — d) o (4)

is minimized. The increment §x®, which minimizes 7, provides the analysis x* which is defined
? 7 y

by adding 6x° to the background x°
xa :k xb + 5x° (5)

The matrices B and R are covariance matrices for background errors (x® —xt) and observation
errors (y° — H(x")) respectively with y° the observation vector and x’ the true state of the
‘atmosphere, H is the linear approximation of the observation operator H in the vicinity of x®
and d is the innovation vector ‘ | ' '
d=7y°— Hx ‘ ‘ ‘ (6)
The Hessian VV.J of the cost function is given by
VVJ =B '+H'R'H (7)

Provided that the background error and observation errors are uncorrelated, it can be shown
that the Hessian of the cost function is equal to the inverse of the analysis error covariance
matrix (see Rabier and Courtier 1992; Fisher and Courtier 1995).

In the Hessian singular vector computation the inverse of the analysis error covariance matrix
is used to define the norm at initial time. The operator C is specified to be equal to the full
Hessian of the 3D-Var cost function. The operator C = B~'+H”RH is not known in matrix
form and determining its square root is not feasible. In order to solve (2), a generalized eigen-
value problem solver, called generalized Davidson algorithm, is used (Barkmeijer et al, 1998).
This algorithm can solve (2) efficiently and requires only the ability to calculate y=S x, where
S is any of the operators appearing in (2). No explicit knowledge Qf any operator is needed. In

the following we assume that the total energy metric is always used at optimization time.

To improve the covergence of the generalized Davidson algorithm a coordinate transformation
x = L~'x is carried out with L LT = B. Applying the transformation L , the Hessian becomes

equal to the sum of the identity and a matrix of rank less than or equal to the dimension of
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the vector of observations (see also Fisher and Courtier, 1995). Thus, when no observations
are used in the cost function, the transformed operator (L~!)TCL™ is the identity and the
generalized Davidson algorithm becomes equivalent to the Lanczos algorithm (Barkmeijer et
al, 1998).

3 Hessian singular vectors

For 10 days from winter 1996/97 T42L31 singular vectors were computed using an initial norm
derived from the full Hessian of the 3D-Var cost function and with an optimization period of
2 days. Since the SVs will also be used to create EPS perturbations, we selected initial days
for which the ensemble spread and the ensemble control forecast at day 5 over the Northern
Hemisphere either have values that lie below or above their 1996/97 winter average. The final
norm in the defining equation (2) is the total energy norm (3). The solutions of this generalized
eigenvalue problem will be referred to as Hessian singular vectors (HSV). In evaluating the
Hessian, we used the new formulation of the background error covariances described by Bouttier
et al (1997), together with most of the conventional observations (SYNOP, AIREP, SATOB,
DRIBU, TEMP, PILOT, SATEM and PAOB) for the Northern Hemisphere.

The HSVs have properties considerably different from the total energy singular vectors
(TESV) which use the total energy norm also at initial time. Figures 1a,b give the TESV and
HSV spectrum in terms of total energy averaged over the 10 cases, each consisting of 25 SVs.
Clearly, the TESVs are initially (dashed line) more small scale than HSVs with a dominant
wavenumber around 30 compared with 10. The spectra at final time (solid line) for both sets
of SVs peak around wavenumber 10. Also the vertical structure of HSVs and TESVs are quite
different, see Fig lc,d. Most of the HSV total energy is initially confined to the levels around
300 hPa, whereas TESVs have most of the energy near the jet steering level (700 hPa). At
‘optimization time the vertical energy distributions of TESVs and HSVs are comparable. The
total energy amplification of HSVs is smaller as indicated by the area under the solid curves in
Figures la,b. ‘

On average TESVs grow approximately twice as fast as HSVs in terms of total energy. Fig-
ure 2 shows the total energy ampliﬁcation of the 15 leading HSVs and TESVs for a particular
day. Observe that, as a consequence of ‘using different norms at initial and final time, the

ordering of the HSVs does not correspond anymore with their total energy growth.

The large scale structure and energyrdistribution of HSVs is to a large extent determined

by the formulation of the background error covariance matrix B. Essential in defining the B
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Figure 1: (a-b) total energy spectrum and (c-d) vertical distribution of the total energy spectrum
of TESVs and HSVs respectively. Values at initial (final) time are given by dashed (solid) lines.
At initial time the total energy (m*s=2) has been multiplied by a factor of 100.
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Figure 2: Typical totall energy amplification of TESVs (solid) and HSVs (dashed).
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matrix are error statistics derived from the difference between 2-day and 1-day forecasts ver-
ifying at the same day (commonly known as the NMC method, Parrish and Derber (1992)).
The statistics obtained for a period of 90 consecutive days extending from December 1992 to
February 1993 are described in Rabier et é,l’ (1998). Power spectra of the error statistics indi-
cate that the energy spectrum peaks around total wave number 10. The vertical distribution
of the background error variance reaches a maximum near the jet level. Both these proper-
ties are reﬂected in the metric defined by the Hessian. Also, the background error covariance
matrix is specified to have broad horizontal and vertical correlations and thus penalizes the
occurence of baroclinic structures in the analysis erfor. Hence we may suspect that the 3D-
Var Hessian metric penalizes too much the sharp and baroclinic error patterns in the areas
which are picked up by the TESV singular vector computation. Thépaut et al (1995) have
compared power spectra of 3D-Var and 4D-var analysis increments in the vicinity of an extra-
tropical storm. The 4D-Var approach clearly allowed for more energy in total wave numbers
larger than 10. The NMC method is well suited. for statistical data assimilation in that it
provides a good estimate of the time- averaged global background error covariances.. However

it is likely that the average covariance structures are not optimal in dynamically unstable areas.

The differences between HSVs and TESVs can also be exhibited by using a similarity index
(Buizza, 1994), which measures how parallel subspaces are spanned by the leading HSVs and
TESVs. Values of the similarity index range from 0 to 1 and increasing values mean that the
subspaces become increasingly parallel. Figure 3 shows for each of the 10 cases the similarity
index beween the unstable HSV and TESV subspaces at initial and optimization time when 10
or 25 SVs are used to span the unstable subspace. It is clear from Figure 3a that the unstable
TESV and HSV subspaces are almost orthogonal at initial time. At final time the subpaces

have become more parallel although the similarity index is still quite low.

Given such small similarity indices one WOH@grs whether the two sets of SVs describe differ-
ent parts of the forecast error. To investigate tﬁis the operational 2-day Northern Hemisphere
forecast error £(48) was projected onto the 2-day linearly evolved HSVs and TESVs for each of
the 10 cases. In the projection 25 SVs were used. Denote by £(48) the portion of the forecast
error thus explained and the associated so-called pseudo analysis error by £(0) ( see also Buizza
et al, 1997): |

8) — z aM(SV:) = ME(0) ®)

where M is the tangent model. The percentage of the total energy of £(48) as explained by
£(48) is given in Fig. 4 for TESV (solid line) and HSV (dashed line). Both types of SVs describe
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Figure 3: Similarity index between TESV and HSV unstable subspaces at (a) initial and (b)
final time. Dashed (solid) lines. indicate that 10(25) singular vectors are used in spanning the
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Figure 4: - Explained part of the 2-day Northern Hemisphere forecast error in terms of totdl
energy. The dashed (solid) line indicates that the 25 leading TESVs (HSVs) are used.
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nearly the same fraction of €(48) in terms of total energy.

Despite their very different structures, TESVs and HSVs describe also similar geographical
patterns of the 2-day forecast error when 25 SVs are used in the expansion (8). Figure 5a,b
shows for 18 January 1997 12 UTC the pseudo analysis error £(0) at 500 hPa in geopotential
height using 25 TESVs and HSVs respectively and the corresponding £(48) is given in Fig.
5¢,d. The actual 2-day forecast error is given in Fig. 5e. For both sets of SVs the projected
forecast error £(48) is almost indistinguishable (correlation is 0.93). The patterns of £(0) are
more different (correlation is 0.59), although the centres of most of the maxima are located at
the same positions. The amplitude of £(0) when using HSVs in the expansion is larger than
£(0) obtained with TESVs (note the different countour interval). The corresponding £(0) and
£(48) for temperature yield similar results with correlations of 0.62 and 0.95 at initial and final
time respectively, see Fig. 6. This result holds for all the cases and shows that, despite their
different stuctures, TESVs and HSVs explain the same part of the forecast error.

When the number of SVs is decreased differences between the explained part of the forecast
error become visible, see Fig. 7. Here the 2-day forecast error from 30 January 1997 12 UTC is
projected onto 10 evolved SVs. The TESVs explain better the forecast error over the Atlantic,
whilst the HSVs describe some of the errors over Europe.

Note that in fig 6 the pseudo anlysis error £(0) computed with TESVs has larger amplitudes.
It is a direct consequence of the different distribution of total energy over the four components
of the SV state vector: vorticity, divergence, temperature and logarithmic surface pressure.
The baroclinic structure of TESVs causes that most of the total energy is in the temperature

component, whilst HSVs have a dominant vorticity component, see Fig. 8.

4 Hessian and evolved Singular Vect(jrs in the ECMWF
EPS * | o

For the 10 days for which HSVs were available, alternative ensembles have been integrated
using the same setting as the operational ensemble: 50+1 (control) 10 day T;159L31 nonlinear
integrations. In creating the 50 initial perturbations, now based on HSVs, the same method-
ology was followed as for the operational ensemble, see Molteni et al (1996), except that the
initial amplitude was set so that both TESV and HSV based ensemble configurations have a
nearly equal spread with respect to the control over the Northern Hemisphere (NH) at day 2.

This was done by tuning the parameter that sets the amplitude of the initial perturbations.
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) ci=60 m

Figure 5: (a-b) pseudo analysis £(0) in gedpoténiz'al hez'ght at 500 hPa and (c-d) corresponding
£(48), (e) 2-day forecast error from 18 January 1997 12 UTC. Contour interval is given above

each panel.
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Figure 6: Same as fig. 5 but for temperature at 500 hPa.
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Figure 7: Same as fig. 5 but for 30 January 1997 12UTC and using 10 singular vectors.

257



BARKMEIER, J. ET AL.: 3D-VAR HESSIAN SINGULAR VECTORS AND THEIR USE...

(a) (b)
100.0 - 100.0
80.0 - 80.0 -
= — 9
£ g0 . < 600 |
5 % 5
Q Q
5 g
& 400} T 400}
gel L
20.0 B 20.0 +
0.0 0.0
VOR DIV T LNSP ' VOR DIV T LNSP

Figure 8: Distribution of total energy in percentages over the SV state vectorvcomponents
(vorticity, divergence, temperature and surface pressure) at (a) initial and (b) final time. White
(black) bar corresponds to TESV (HSV).

configuration we exploited the use of evolved singular vectors in creating initial perturbations.
Additional to the perturbations p; of the operational EPS, 50 perturbations ep; are computed
in a similar manner (and using the same initial amplitude) but now based on the 2-day linearly
evolved singular vectors computed two days before. The initial perturbations pert; are defined

by adding the two sets:

pert; =p; +ep;,i=1,---,50 (9)

The use of evolved singular vector provides an easy way to, include more stable and large-
scale directions in the generation of EPS pérturbations.‘ In the following we refer to this
configuration as the ESV ensemble. , |

Figure 9a shows, as a function of forecast time, the root-mean-square (rms) error of the
control forecast for NH and the rms spread of the ensemble with respect the control for the
three EPS configurations, averaged over the 10 cases. Notice that the perturbations based on
HSVs cannot sustain the same spread in the medium range as is present in the operational
ensemble. Other verification areas show the same deficiency in spread in the medium range for
the HSV ensemble. Although evolved singular vectors are in the more stable directions of the
analysis error, they lead to an increased spread in the ESV ensemble not only during the quasi-

linear stage but up to day 10. There is little difference between the skill of the ensemble mean
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for all three configurations in terms of the rms error as can be seen in Fig. 9b. The ensemble
mean of the HSV (ESV) ensemble is on average slightly worse (better) for the medium range.

In fact, ensemble means of the three configurations reveal a quite similar spatial pattern
for eéch individual case. Figure 10 shows the difference of the ensemble mean and the control
forecast at forecast day: 5 for an arbritary HSV and operational ensemble. For a more detailed

discussion on this issue see Hersbach et al (1998).

4.1 Brier skill score and relative operating characteristic

Brier skill scores (Brier, 1950; Stanski etral, 1989) have been computed for probability.’predic-
tions of geopotential height anomalies exceeding a certain threshold (selected thresholds are
geopétential height 25 and 50 m positive/negative anomalies at 500 hPa) and analogously for
temperature (selected thresholds are temperature 4 and 8 K warm/ cold anomalies at 850 hPa).
Figuré 11 gives the Brier skill score as a function of forecast time for the 50 m positive anomaly
threshold at 500 hPa. In the Brier skill score the skill of the probabilistic forecast is compared
to climatology. It is 1 for a perfect forecast, 0 when the probabilistic forecast does not perform
better than climatology and negative for even worse forecasts. All three ensemble configura-
tions give indistinguishable results up to day 4 after which the ESV ensemble performs slightly
better. The same conclusion holds for the other thresholds and for the Brier skill scores for

temperaturé at 850 hPa.

qum signal detection theory (Mason, 1982; Stanski et al, 1989) so-called relative operating
characteristics (ROC) have been computed for the same variables and thresholds as the Brier
skill score, see also the appendix. A convenient measure associated with the ROC is the area
under the curve. It ranges from 1 for a perfect forecast system (i.e. for a forecast system with
zero false alarms) to 0. A value of 0.5 is produced by an useless forecast system which cannot
discriminate between occurrences and non-occurrences of an event. Figure 12 gives the ROC
area for a negative geopotential height anomaly of -50 m at 500 hPa over NH. Other thresholds
and ROC.areas for temperature at 850 hPa give similar results. A slightly better performance
of the experimental ensembles up to day 3. After day 4 the ESV ensembles continue to give
the best results; the HSV ensembles show a deterioration in the performance compared to the

operational ensembles. This confirms the results obtained with the Brier skill score.

4.2 Percentage of analysis outliers

At each grid point the 50 ensemble values partition the real line into 51 intervals. Under the

assumption of no model errors and a random sampling of the analysis error PDF eachi interval is
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1507

DAY

Figure 9: (a) average rms error of the T159L31 ensemble control forecasts (chain-dashed) and
the average rms spread of the operational (solid), the HSV (dashed) ensembles and the ESV
(dotted) ensembles. (b) average rms error of the ensemble mean for the operational (solid),
HSV (dashed) and ESVV_ (dotted) ensembles. All values are relative to 500 hPa geopo.tentvial
height over NH t ‘ |
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Figure 10: Geopbtentz'al h,ez'ght difference at 500 hPa between the ensemble mean and the control
forecast at day 5 for the (a) operational and (b) HSV ensemble starting from 9 February 1997
12 UTC. Solid (dashed) lines denote positive (negative) values and contour interval is 20 m.

BRIER SKILL SCORE

DAY

Figure 11: Brier skill score of the operational (solid), HSV (dashed) and ESV(dotted) ensemble
at different forecast times for a geopotential height anomaly threshold of 50 m at 500 hPa over
NH. |
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AREA

Figure 12: ROC area of the operational (solid), HSV (dashed) and ESV (dotted) ensemble for
a negative geopotentzal hezght anomaly of -50 m at 500 hPa over NH at dzﬁerent forecast times.

equ‘ally likely to contain the analysis value (when averaged over a verification area). Figare 13
gives the percentage of analysis values lying outside the ensemble forecast range for geopotential
height at 500 hPa in case of NH and Europe (averaged over the 10 cases). Because model errors
cannot be neglected and the initial perturbations do not form a random sample but are fixed-
amphtude perturbations, the percentage of analysis outliers differs from the expected- value
= % 100%. The experimental ensembles have less outliers than the operatlonal ensemble for
the short range with respect to NH. This coincides with the larger spread in the experlmental
ensembles during the first two days, see fig. 9a. Areas where ensembles produce less spread
than the operatmnal erisemble, such as Europe (not shown) for the HSV ensembles, yield larger

percentages of analysis outliers. The ESV ensembles result in the smallest percentage of outliers.

5 Final remarks

In this paper so-called Hessian singular vectors HSVs are computed which, at initial time, are
constrained by an estimate of the analysis error covariance metric. Up to now the calculation
of SVs as used in the ECMWF EPS are based on an energy metric at initial time which may be

onsu;leled as a first approximation of the anal\ sis error covariance metric (Palmer et al, 1997)
In computing HSVs the full Hessian of the cost functlon of the variational data assunllatlon is

used as an approximation to the cmalysw error covariance matrix. In this w ay the calculatlon
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Figure 13: Percentage of analysis outliers for the operational (solid), HSV (dashed) and ESV
(dotted) ensemble as a function of forecast time for geopotential height at 500 hPa in case of
(a) Northern Hemisphere and (b) Europe

of both SVs and the analysed state in 3D/4D-Var become consistent.

The HSVs are solutions of a generalized eigenvalue problem and by using a generalization of
the Davidson algorithm (Davidson, 1975) the leading SVs can be determined. It only requires
that the propagators of the linear and adjoint model and the Hessian of the 3D-Var cost
function are available in operator form, i.e. y = Sx can be computed, where S is any of these
operators and x is an input vector. The computation of 25 HSVs, as needed for the ensemble
perturbations, is of the order of 5 times more expensive than the computations of the same
number of TESVs. ,

Earlier results obtained with a T21L5 PE model (Barkmeijer et al, 1998) already indicated
significant differences between HSVs and TESVs. In the present study these results are con-
firmed for SVs with a resolution at T42L31. At initial time the horizontal structure of HSVs is
more large scale than TESVs with energy spectra attaiﬁing their maximum at wavenumber 10
and 30 respectively. The energy spectra at optimization time are comparable. Also the vertical
structure of HSVs and TESVs show a striking difference in terms of the energy distribution.
Most of the HSV energy is at initial time confined to the jet level, in stead of peaking around
the baroclinic steering level as is the case of TESVs. At final time both type of SVs show the
same vertical energy distribution. ,

The large scale structure and the vertical energy distribution of HSVs are to a large extent
determined by the formulation of the background error covariance matrix B. Currently the first
guess error statistics are based on the difference between the 2-day and 1-day forecast valid for
the same day (the so-called NMC method, Parrish and Derber (1992)). The B matrix defined
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in this way lacks a realistic description of flow dependent small-scale error structures. Also the
broad horizontal and vertical correlations will penalize the occurence of baroclinic structures
in the analysis error. From this it is clear that a singular vector computation using the 3D-Var
'Hessian is not optimal in dynamical unstable areas and will not produce small-scale baroclinic
structures like TESVs. |

A first improvement in malqing B more realistic would be to relax its static character
by including some ﬂoW—dependent error covariances. This approach is currently attempiged at
ECMWF by eXperimentingiwith a simplified Kalman filter in an 'operational environment(Mike
Fisher, pers. commun. 1998 ; Rabier et al, 1997). Here the B matrix is modified for each 6 h
analysis cycle in the unstable subspace spanned by the leading HSVs. Parallel to this, a full
Kalman filter is being developed in the context of a T21L3 quasi-geostrophic model (Martin
Ehrendorfer, 1998).- It will certainly provide a guideline for devising a strategy to implement
the simplified Kalman filter.

Finally, the impact of HSVs in the ECMWF EPS was 1nvest1gated Perturbations based on
HSVs were determined in a similar way as for the operational ensemble. Both the operational
and HSV ensemble configurations use perturbations that give comparable spread at day 2 for
NH relative to geopotential height.at 500 hPa. In addition to this, the use of evolved singular
vector was investigated. These 2-day linearly evolved singular vectors (ESV) computed two
days before provide an easy way to add large-scale structures to the EPS perturbations. The
initial perturbations for the ESV ensembles are defined by adding the operational perturbations
to perturbations based on the evolved singular vectors (using the same initial amplitude as used
for the operational perturbations). Results show that the HSV perturbations do not produce
the same spread over NH in the medium range as occurs in the operational ensemble. This
in contrast to the ESV ensembles where the spread is larger up to day 10. The percentage
of analysis outliers over NH has decreased for the experimental ensembles up to day 3. For
longer lead times the ESV ensembles have the smallest percentage of outliers. The statistical
tests such as ROC and Brier skill score for geopotential height at 500 hPa and temperature at
850 hPa do not show large differences between the three ensemble configurations. The impact
of the HSV or ESV perturbations is neutral/positive for forecasts up to day 3, after day 4
the ESV ensembles show a slightly better performance. Additional experimentation with ESV
perturbations confirmed a small but consistent improvement of the Brier skill score and ROC
and a substantial decrease in the percentage of analysis outliers. From 25 March 1998 onwards
the ESV perturbations are used in the operational ECMWF EPS (the initial amplitude was
slightly reduced from 0.6 to 0.5)
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6 Appendix

The relative operating characteristic (ROC) originating from signal detection theory is briefly
described here. The reader is referred to Stanski et al (1989) for a more detailed definition.

Consider a two catégbry contingency table:

_ Forecast=YES Forecast=NO Tot Observed
Observed=Yes X Y X+Y

Observed=NO Z %% Z+W
Tot Forecast X+7Z YW

The two entries X and Y can be referred to as hits and false alarms respectively. The hit
rate is then given by X/(X+Y) (percentage of correct forecasts) and the false alarm rate by
7/(Z+W) (percentage of forecasts of the event given that the event did not occur).

Signal detection theory generalizes the concept of hit and false alarm rate to probability
forecasts. Suppose a forecast distribution is stratified into 10% wide categories, and occurences
a; and non-occurences b; of an event are tabulated for each category. Here the j-th category
is related o a forecast probability between (j-1)x10% and jx10%. For a certain probability
threshold 5 %x10% the entries a; and b; can be summed to give the four entries of the two by two
contigency table, the hit and false alarm rate Calculated and a point plotted on a graph. The
four entries are given by W=20_ a;, Y="7_,b;, Z=y1%, ,a; and W=3;2, b;. By repeating
this process for all thresholds §x10%, j = 1,---,10, a curve is obtained called the relative
operating characteristic (ROC). ' .

A convenient measure associated with the ROC is the area under the curve, which decrease
from 1 to 0 when the false alarm rate increases. A useless probability forecast has in this
approach an area of 0.5, because such a system cannot discriminate between the occurrences

and non-occurrences of an event.
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