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-Summary. The performance of Ensemble Prediction Systems and, more generally, of Probabilistic
~ Prediction Systems (PPSs), i. €. systems that predict a probability distribution function (pdf) for the state
of the physical system under consideration, is evaluated in terms of two specific qualities. The first
quality is statistical consistency between the predicted pdfs and the a posteriori verifying observations, and
the second quality is variability in the predicted pdfs... Concerning prebabilistic prediction of binary
events, the corresponding Brier score is decomposed, following Murphy (1973), into two terms that
precisely measure the two above qualities. Concerning prediction of numerical variables, several
integrated measures of statistical consistency are considered.
The various diagnostics thus defined are applied to the Ensemble Prediction System of ECMWEF. The
“latter is also compared to an economical 'poor man's' PPS, built on statistical properties of past
deterministic forecasts. The poor man's system has much better statistical consistency than the ECMWE -
EPS, and globally performs better up to a range of about three days.

1.  INTRODUCTION

The quality of Ni;merical Weather Fdracasts is highly variablei from one meteorologic_:al
situation to another, and the need for a priori accurate assessment of the quality of individual
forecasts has been felt for a long time. This has led several major meteorological centres to
develop in the last few years Ensemble Prediction Systems (EPSs), in which a number of
numerical forecasts are performed from initial conditions whose dispersion is meant to
represent the uncertainty on the initial state of the flow. The resulting dispersion of the
forecasts can then be taken as an indication on the corresponding uncertainty on the future state
of the flow. The European Centre for Medium-range Weather Forecasts (ECMWF) and the
National Centers for Environmental Predictions (NCEP, Washington, DC, USA), among
others, are both running operational Ensemble Prediction Systems. Descriptions of these two
systems, as well as a number of diagnostics on their performance, can be found in Molteni et
al. (1996) and in Toth and Kalnay (1997) respectively.

A large experience has now been accumulated on Ensemble Prediction. A significant
correlation has been observed between the spread of the ensemble forecasts and the a posteriori
observed forecast error. And the results of EPSs have on repeated occasions increased the
confidence of forecasters in the expected occurrence of an unusual meteorological

development. A number of questions nevertheless remain, as concerns in particular the
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objective assessment of the quality of an EPS. These questions become critical when a change
is envisaged on an EPS, and it is necessary to decide whether a gain can be reasonably
expected from the change.

The present paper is devoted to the general question of the objective assessment of the quality
of Ensemble Prediction Systems. Rather than limiting ourselves to Ensemble Prediction
Systems‘ as they are operationally implemented at present, we will more generally consider
what we will call Probabilistic Prediction Systems (PPSs), i. e. systems that do not predict the

state of the physical object under consideration, but rather predict a p;obabzlzty distribution
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finite number of numerical values. These values may parametrically define the predicted pdf,
as do for instance the expectation and covariance matrix of a gaussian pdf. Alternauvely, asin
an EPS, they may define a finite number of states of the physical system under consideration,
meant for instance to be independent realizations of the 'underlying' predicted pdf.

As already mentioned by several authors (see, e. g., Wilson et al., 1996), one basic difficulty
in assessing the quality of a PPS is that the predicted object (a pdf over the space of possible
states of the physical system under consideration) and the verifying object (an observed state
of the system) are not of the same nature. It is therefore not possible, contrary to what
happens in deterministic prediction, to assess the value of a prediction from a measured
'distance’ between the predicted and verifying objects. Indeed, our opinion is that it is not
possible to assess in any way the quality of an individual realization of a PPS.

A number of various scores are used in this paper for evaluating the quality of a PPS. These
scores are interpreted in terms of the degree to which they measure two mutually independent
qualities, already discussed by other authors (see, e. g., Hsu and Murphy, 1986). The first
quality is that the predicted probabilities are in agreement with the verifying observations. A
prediction like 'the probability of rain is 40%' can be considered as exact only if rain is
observed to occur with a frequency of 40% in those circumstances when it is predicted to occur
with probability 40%. Agreement of this kind is absolutely necessary, for instance for users
who must make a decision on the basis of an objective quantitative risk assessment. The first
quality which a PPS must possess is therefore what we will call statistical consistency or
reliability, i. e., agreement between the a priori predicted probability distributions and the a
posteriori observations. That agreement is most generally defined by the following condition:
“for each possible probability distribution f, the a posteriori verifying observations are
distributed according to fin those circumstances when the system predicts the distribution f”.
A PPS which does not possess that quality is obviously flawed in some sense. On the other
hand, statistical consistency, as just defined, is clearly not sufficient for ensuring that a PPS is
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practically useful. A PPS which would always predict the climatological distribution of the
state of the atmosphere would be statistically consistent, but would nevertheless be devoid of
any practical utility. The effective usefulness of a statistically consistent PPS therefore
depends on the variability in the predicted probability distributions, or resolution. The practical
value of a PPS lies in the conjunction of statistical consistency on the one hand, and variability

in the predicted probability distributions on the other.

It is desirable to evaluate the quality of a PPS not only in terms of the intrinsic quality of the

results it produces, but also in terms of cost efficiency. To that end, we introduce, as a useful

aseline reference, an econom cal 'poor man’s EPS', which is built on an appropriate use of
analogues in past deterministic forecasts, and does not require any explicit integration of a

forecasting model.

Section 2 deals with the evaluation of the quality of statistical forecasts of individual binary
events (e. g. the temperature at a given location and at a given forecast range will be larger or
smaller than a given threshold). We use the classical reliability diagrammes and the associated
Brier score. Following previous authors, the latter is interpreted in terms of the two qualities
of statistical consistency and variability in the predicted probabilities, and is applied to the
operational EPS of ECMWEF. Section 3 deals with statistical prediction of the valye of a
particular meteorological variable, or 'prediction of the forecast uncertainty’. We use there the
histograms of the position of the a posteriori observed verification with respect to the a priori
predicted ensemble values, which is a measure of the degree to which the verification is
statistically distinguishable, or not, from the forecast ensemble values. We also use estimates
of the forecast-skill relationship, which are measures of the degree of statistical consistency
between the a priori predicted uncertainty, and the a posteriori observed error in the forecast.
Here again, these various scores are applied to the EPS of ECMWE. The performance of the
latter is once more evaluated in Section 4, this time in comparison with the performance of the

above mentioned poor man's EPS. A number of conclusions are drawn in Section 5.

This paper deals only with the performance of PPSs as predictors of probabilities. PPSs can
also be used for producing deterministic forecasts, by for instance taking the expectation of the
predicted pdf. The question of the quality of such deterministic forecasts is extremely

interesting in its own right, but will not be considered here.

We also mention a work recently done by Atger (1998), which, although it uses different
diagnostics, leads to conclusions which are very similar to curs concerning the performance of

present EPSs. Analogous conclusions have also been obtained recently by Ziehmann (1998).
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2. PROBABILISTIC FORECAST OF INDIVIDUAL EVENTS

We recall that the reliability curve relative to the statistical prediction of a given event E is
obtained by plotting, as a function of the predicted probability p, the actually observed
frequency of occurrence p'(p) of E in the circumstances when p has been predicted. Statistical
consistency is expressed by the equality p'(p) = p. The right top panel of Figure 1 shows five
reliability curves relative to the prediction at the six-day range, by the ECMWF EPS, of the
850-hPa temperature deviation from its climatological average. The five curves are relative to
events E of the form 'the temperature deviation is larger than t', where the threshold 7 takes
the values 1 = -8, -4, 0, 4, 8 K. Statistics have been accumulated over 34 realizations of the
EPS in the period from 1 january to 10 April 1997, and over 648 points located ona 5 x 5
degree grid between 30N and 70N around the globe, so that the effective sample size is M =
22032. A number of already well identified features of the ECMWF EPS are clearly visible.
The reliability curves are close to the diagonal p' = p, suggesting a high degree of statistical
consistency. The slopes of all five curves are slightly less than one, i. e. large values of
probability of occurrence are overpredicted, and small values are underpredicted. It is also -
seen that reliability curves are noisy, suggesting that, although the size of the sample over
which statistics have been accumulated is rather large, each probability p has not been predicted
often enough for the value of the corresponding frequency of occurrence p'(p) to be
statistically stabilized. The predicted probabilities are of the form p =n/N (n =0, ..., N),
where N = 50 is the size of the forecast ensembles. The lower right panel of Figure 1 (labelled
'Sharpness') shows the distribution of the predicted probabilities for the three thresholds T = -
4,0 and 4 K. It is seen that even for the middle value T = O (shown in green), extreme
probabilities tend to be predicted more often. This shows a rather large variability in the
predicted probabilities.

One classical measure of the quality of statistical prediction of a given event E is given by the
Brier score (Brier, 1950)

M
LY (-0
B=LY (-0 (2.1)

where M is the number of realizations of the PPS over which statistics have been accumulated.
For each realization i, p; is the predicted probability, while o; assumes the value 1 or 0
depending on whether the event E has been observed to occur, or not to occur. The Brier
score is equal to O for a perfect deterministic system, which always correctly predicts the
occurrence, or non-occurrence, of E. ‘
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It is convenient to use here a continuous, rather than discrete, representation of the
probabilities, and we will denote by g(p) the frequency with which the probability p has been
predicted. For p; = p, the quantity (p; - 0;)? takes the value (p - 1) with frequency p'(p), and

the value p? with frequency 1 - p'(p). The contribution of the probability p to the Brier score is
therefore equal to (1- p')p2 + p' (1- p)?2, and

B= f [(1- pOp2 +p' (1- p)2lg(p) dp

This is in turn easily transformed into (see Murphy, 1973)

B =B, + B, o (2.2a)
where |
B = j (' - p)2g(p) dp N - (22p)
and
B, =f p(-pl@ dp =- f @' -pc)2e@) dp + pe(1 - pe) ,(2.20)

In the latter expression
1
Pc = f p'(p) gp) dp
0

is the climatological frequency of occurrence of E (different PPSs would produce different
distributions g(p) and p'(p), but p. would remain the same). B, which is O for p'(p) = p, is
clearly a measure of the statistical consistency of the system. As for B,, it is a measure of the
dispersion, about p, of the actually a posteriori observed frequencies of occurrence p' of the
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event E. By decreases from p.(1- p,) for ‘climatological’ systems (i. e. systems that are not
able to predict the occurrence of E more accurately than with its climatological frequency of
occurrence) to O for a system in which p' takes only the values 0 and 1 (such a system, if it is
statistically consistent, is then a perfect deterministic system). If accumulation of statistics has
shown that the event E occurs with frequency p'(p) when it is predicted by the PPS to occur
with probability p, the right thing to do, the next time the system 'predicts' p, is obviously to
actually predict p(p) instead (see, e. g., Zhu et al., 1996). This a posteriori correction renders
statistically consistent an originally inconsistent system. It amounts to shifting horizontally to
the diagonal all points of the reliability diagramme. As for the Brier score, it is reduced in that
transformation to By. The latter quantity therefore measures the varia bility of the a posteriori

predictable probabilities of occurrence p'.

The Brier score B thus decomposes into two terms which independently measure the two
qualities whose conjunction has been considered above as making the effective value of a
Probabilistic Prediction System, viz. statistical consistency between the predicted probabilities
and the a posteriori observations on the one hand, and variability in the predicted probabilities
on the other.

In order to compare the accuracies of the statistical predictions of different events, it is
convenient to normalize the Brier score with the value it takes for a climatological PPS. We.

will in the following use the so-called Brier Skill score
BSS =1-Bl[p(1- p] _ (2.3a)

The value of the Brier Skill score increases from 0, for a climatological PPS, to 1 for a perfect
deterministic system. We will also use other scores, and in particular

BSS,= B, [p,(1- p,)] S SRR (2.3b)

which is a normalized measure of the statistical consistency of the system under consideration,
and

BSS,= B, [p.(1-p)] i - @3¢

which is a normalized measure of the variability in the probabilities it predicts. The values of
both scores BSS, and BSS,, decrease with increasing quality of the system
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The values of the Brier Skill score BSS corresponding to the five reliability curves of Figure 1
are given at the bottom of the Figure (upper right sequence of values). The best performance is
for the threshold T = 4K. The line below gives the value of the Brier Skill score for the a
posteriori corrected probabilities (i. e. the quantity 1 - BSS,, with the above notations). It is
seen that the improvement from BSS is numerically small. However, owing to the lack of
reference and to the fact that statistical consistency and variability of predicted probabilities are
intrinsically different properties, it is difficult to judge whether there is any real significance in
the fact that the change from BSS to 1 - BSS,, is numerically small.

The accuracy with which the quality of a PPS can be evaluated is unavoidably limited in
practice by various sources of uncertainty. Two such sources are the error which is
necessarily present in the verifying observations, and the finiteness of the number of
realizations over which the performance of the system is evaluated. In the case of an Ensemble
Prediction System, an additional source of uncertainty is the finiteness of the ensembles from
which predicted probabilities are estimated. Assessing the effect of these various sources of
uncertainty is essential for giving significance limits to the various scores one can compute for
evaluating the quality of a PPS. We will here describe the effect, on the Brier score, of the
finiteness of the forecast ensembles of an EPS. In the limit of an infinite number of
realizations of the system, and of perfect observations, the Brier score By of an EPS based on

forecast ensembles of size N is equal to

By =B+ f p(1-p)g(p) dp o4

where B is the ‘exact’ score, which would be obtained in the limit of infinite N. It is seen that
increasing N, with ensemble elements being drawn from the same statistical population, will
always result in a numerical decrease of the Brier score, i. e. in an increase of the quality of the
system. Although we think this increase is real, it only results from the fact that increasing N
has the effect of ’smoothing noise due to the finiteness of the ensembles. It does not
correspond to any improvement in the intrinsic quality of the system, measured by the limit
value B. The second term on the right-hand side of eq. (2.4) is a measure of the dispersion of
the a priori predicted probabilities p (see eq. 2.2c for comparison). It results that the numerical
impact of increasing N will be larger when the predicted probabilities have small dispersion
(small sharpness) than when they have large dispefsion. ‘
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The panel denoted ROC in Figure 1 shows the so-called Relative Operating Characteristics
curves associated with the three events Er, with T = -4, 0, 4 K (same colour code as for the
reliability diagrammes). For each event, a curve is built through a process, described in detail
in Stanski et al. (1989), based on a stratification by observations of the results of the PPS. As
a consequence, the ROC curve depends only on the dispersion of the effectively predictable
probabilities p'(p), and not on the statistical consistency of the system. Each ROC curve joins
the lower left corner and the upper right corner of the square in the figure. The extreme cases
of a climatological forecast and of a perfect deterministic forecast respectively correspond to
the diagonal of the square and to the curve consisting of the left and upper sides of the square.
The resolution of a probabilistic prediction system for the occurrence of an event E can
therefore be measured by the area below the corresponding ROC curve. That area is a different
measure than the quantity BSS, introduced above, in the sense that there is not a numerical
one-to-one relationship between BSS,, and the ROC area. But it is seen from the ROC panel
that the two measures lead to the same qualitative coriclusions, namely that the performance of

the ECMWE EPS is similar for the three events under consideration, with a slight but distinct
advantage for the case T = 4K (red curve). k ‘

3. PROBABILISTIC FORECAST OF INDIVIDUAL VARIABLES

We now consider a scalar variable x(z), such as temperature or geopotential at a given point, to
be probabilistically forecast at time ¢. The product of the forecast is then a one-dimensional
pdf. If a deterministic forecast is also available (such a probabilistic forecast could for instance
be the expectation of the predicted pdf), one can say that what the probabilistic forecast
produces is an a priori estimation of the forecast error, or more precisely an a priori estimation
of the forecast uncertainty.

In the case of an EPS, the predicted pdf for the variable x will be defined by the N values x; (i
= 1, ..., N) produced by the ensemble forecasts. Ranking these values in increasing order
defines N+1 intervals. If the verifying observation x, is an additional independent realization
of the same pdf which has produced the x; 's, x, will be statistically undistinguishable from the
x; 's, and will therefore fall with equal frequency 1/(V+1) in each of the intervals defined by
the x; 's. The histogram of the position of x, with respect to the x;'s therefore defines a
measure of the statistical consistency of the EPS. A perfectly consistent system will produce a
flat histogram. The left top panel of Figure 1 shows the histogram for the data sample already
considered in the previous section. It is seen that the verifying observation falls in each of the
extreme intervals much more frequently than in the middle intervals, which is just an indication
of the often observed fact that the spread of the ECMWEF forecast ensembles is too small. A

more accurate quantitative diagnotic is given by the sum of the squared differences, over all
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N+1 intervals, between the population s; of each interval and its expected value M/(N+1), viz.
N+ u | -
A= E -1 )2
It is easily seen that, if x, is distributed uniformly over the N+1 intervals, the expected value of
D is MN/(N+1), i. e. 21600 in the present case. The actual value is 3952146, almost 200
times as large. ' : L :

Another measure of the statistical consistency of a PPS can be obtained from the quantity

D = ENSK - ENSP - 3.1)

In this expression, ENSK is the 'ensemble skill', i. e. the squared diffefence (_kv - m)2, where
m is the expectation of the predicted pdf, while ENSP is the ‘ensemble spread’, i. e. the
variance of the predicted pdf. The expectation of D, for a given pdf, is 0. Denoting by <>
averages taken over a large number of realizations of the system, which sample the various
predicted pdfs, the quantity “

<D> = <ENSK> - <ENSP> | | | (3.2)
must therefore be 0. A similar argument shows that the quantity

y _xy-m o - (3.3)
. - | o |
ENSP

averaged over a large number of realizations of the system, must have mean 0 and variance 1.

A basic product that most users will expect from a probabilistic prediction system, before
quantified probabilities, is an estimate, even if only qualitative, of the confidence to be given to
the forecast. Basically, one will want to be sure that, if the spread of a predicted pdf is small,
then the corresponding uncertainty on the forecast is small, while the uncertainty is large if the
spread is large. This 'spread-skill relationship' is of course only one aspect of statistical
consistency, which can be globally measured by the statistical properties of the quantities D
and y above. Globally integrated quantities may not however be a very good measure of
spread-skill relationship, since it is conceivable that inconsistencies, such as small predicted
spread in case of large uncertainty and large predicted spread in case of small uncertainty, will
compensate in global statistics. A more accurate diagnostic of spread-skill relationship is
obtained by computing the statistics of D or y independently for limited subsets of the value of

10
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the predicted spread. The left bottom panel of Figure 1 shows the average of D (in unit K2),
computed for different values of the spread of the forecast ensemble (the spread being defined
here as the difference between the largest and the smallest values in the ensemble). The
significantly positive value of D shows again that the spread of the forecast ensembles is too
small in comparison with the deviation of the verifying observation from the ensemble mean.
But an interesting fact is that the average of D is essentially independent of the spread itself,
which means that the amount by which the actual spread is underestimated is statistically
independent of the value of the spread. A Consequencé is that there is a positive correlation
between predicted spread and forecast skill. ’

4. COMPARISON WITH A 'POOR MAN'S PPS'

4.1 Definition of a 'poor-man's' PPS

The objective of this Section is to propose a simple and costless PPS that can serve as a
reference for evaluation of EPSs. This 'poor-man's’' PPS is also an EPS, and assumes the
knowledge of only past control forecasts and their associated verifications (if possible

observations, if not analyses).

We consider as above a variable x() to be probabilistically forecast at time 7. We assume that
we have a set of K previous control forecasts xc(tk) from the samé prediction model, and the -
corresponding verification values x,(tg), withk =1, ... , K. At time ¢, we are only in
possession of the present control forecast x.(f). One simple way of constructing an ensemble
prediction with N members is to extract from the past record the N nearest-neighbour values of
xc(?) (N must be much smaller than K), and take as predictions the correspondingrveriﬁcation
values. We will denote by I the subset of these N indices between 1 and K. The ensemble
prediction of the value x(z) is therefore {xv(tx), k € I}. This set of predictions can be
manipulated just as any prediction ensemble. Note that by construction, this poor-man's EPS

is close to being statistically consistent, unless the sample of past values is not long enough.

In the following, we will compare the ECMWF EPS with the poor-man's EPS using the
measures previously defined in this paper. That is, we will compare reliability diagrammes,
Brier scores and spread-skill relationships. The comparison is done on the T850 field over the
extratropical Northern hemisphere as before. In the poor-man's EPS application, one has to
use a cross-validation scheme in order to increase the size of the data which the subset [ is to be
extracted from. For a given day, the “training” sample from which [ is taken simpiy consists
of all gridpoints on all other days. The number of nearest neighbours is taken exactly as the
ECMWEF ensemble size, i. e. N=50. | |

11
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4.2  Prediction of individual events

4.2.1 Brier Scores ;
As before, we consider the event that the temperature anomaly is larger than a given threshold
7. We first compare the Brier skill scores (BSS), for lead times ranging from 1 to 10 days,
and for values of the threshold T ranging from -10K to 10K. Figure 4.1 shows the results.
The top panel shows the BSS of the ECMWF EPS. The BSS decreases with increasing lead
time and is fairly insensitive to the temperature threshold, at least at short lead times. Note
however that probabilistic prediction of extreme temperature values has slightly lower skill. In
the case of the operational EPS, the too small spread must of course degrade the forecast for
large values of the threshold . More generally, we can expect prediction of extreme values to
be more sensitive to model errors as well as to sampling errors. Note also a dissymmetry
between positive and negative temperature anomalies, especially for long lead times, where the
best score is obtained for the threshold t = 4K. This fact, already noticed on Figure 1,

probably results from model systematic errors.

The middle panel shows the BSS of the poor-man's scheme. Quite surprisingly, the same
qualitative values and behaviour are found as for the ECMWF BSS, including the better
performance, at large lead times, for the threshold T = 4K. In order to compare the two EPSs,
we show, in the bottom panel, the difference BSS(ECMWF) — BSS(Poor Man). At short lead
times, i. e. for days 1, 2 and 3, the poor man's EPS beats the ECMWF EPS. By contrast, the
poor man's EPS is clearly beaten in the medium range (days 4 to 10).

We now decompose the BSS into the two components (statistical consistency BSS., and
variability BSS,) presented above. Figure 4.2 shows, in the same format as Figure 4.1, the
values of BSS, for the two EPSs, and Figure 4.3 the values of BSS,. First of all note that for
both systems the values of BSS, are one order of magnitude smaller than the values of BSS,,
meaning that the EPS skill is not greatly affected by inconsistency (a similar remark has
already been made above concerning the numerical values shown in Figure 1). The ECMWF
values are generally increasing with lead time, especially for negative anomaly thresholds,
again reflecting model systematic errors. Interestingly, all ECMWEF consistency curves seem
to intersect near the +5K threshold, where best consistency for long lead times is achieved.
This fact must be related to the best overall performance already noticed for the +4K threshold,
but we are not able to give for it a fully satisfactory interpretation.

The poor man's consistency curves all display a convex shape, with higher inconsistency at
extreme thresholds. This can be interpreted more easily by sampling effects, and in particﬁlar
by the relative difficulty of having good extreme statistics from a finite sample of 50 members.
Unlike for the global BSS, the poor man's scheme beats the ECMWF scheme at all lead times

12
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in terms of consistency. This is not really a surprise since the poor man's EPS is specifically
designed to be consistent, but it is still interesting to notice that such a good consistency is
obtained from only a few “training” days. The use of a larger training set of control forecasts
will certainly still increase consistency.

The values of BSS, (Figure 4.3), which measure the variability of the‘ PPSs, reveal a
behaviour very similar to that of BSS (compare with Figure 4.1, keeping in mind that
performance increases for increasing BSS, and for decreasing BSS,). An interesting feature is
that the ECMWEF scheme now beats the poor man's scheme for lead times larger than 2 days
instead of 3 days for the global BSS. We conclude that at day 3, it is only effect of higher

consistency which makes the poor man's EPS superior to the ECMWF EPS.

4.2.2 Reliability diagrammes

Figure 4.4 shows the reliability diagrammes for both the ECMWF and the poor man's EPSs,
for two threshold values, T = OK and T = 8K and three lead times 1, 6 and 10 days. For T =
OK, both the ECMWF and Poor Man EPSs are fairly consistent. Notice however that
ECMWEF reliability diagrammes have a substantial bias at low probabilities. This bias is
amplified for extreme temperature forecasts and for short lead times, while for longer lead
times the curve remains close to the diagonal (except for the noise). The poor-man's EPS
having less variability for T = 8K, it has no events of large probabilities especially at long lead
times, hence some curves of the bottom right panel of Figure 4.4 “stop”. An interesting fact
comes from the poorer quality of the ECMWF EPS at short lead times, linked to its poorer
reliability.

4.2.3 Dependence on the size of forecast ensembles

One particularly interesting question is whether one should continue increasing the size of the
ensembles or rather concentrate efforts on other points. Figure 4.5 attempts to address this
issue. We display the global BSS values as a function of the number of members N, for the
median threshold (T = 0K) and the extreme threshold (t = 8K). One argument for the
extension of the ensemble size is the better estimation of probabilities of extreme events. We
should therefore see in Figure 4.5 a larger sensitivity to N for the threshold T = 8K than for the
threshold T = OK. Such is not the case. It is to be noticed that convergence is actually reached
quite quickly at all lead times, for, say, N = 20-30. N otice that the sensitivity to N depends
much more on lead time than on threshold. It is much larger for long than for short lead times.
This is in agreement with one conclusion drawn above from eq. (2.4), according to which the
sensitivity to N depends on the dispersion of the a priori predicted probabilities. The

dispersion is smaller for long lead times, which corresponds, as seen in Figure 4.5, to larger
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sensitivity to N. This is true of both the operational and the poor man’s EPSs.

4.3  Prediction of a continuous variable and forecast skill

Figure 4.6 displays various integrated measures of the spread-skill relationship (which, as
already said, is one aspect of statistical consistency) for both the ECMWF and the poor man's
EPSs. The quantity ' ‘

- <ENSK> _
ENC= <ENSP> 1

is the quantity <D> above (eq. 3.2), divided by <ENSP>. Statistical consistency requires
ENC to be equal to 0, with a positive value indicating too small a spread of the forecast

ensembles. The quantity

_ <COSK>
coc <COSP> L

which is specific to PPSs based on a prior 'control' forecast, is defined as ENC, the control

forecast being used instead of the forecast ensemble mean for computing the skill of the

forecast and the dispersion of the ensemble. In the case of the ECMWF EPS, the control

forecast is a better forecast on average than a randomly chosen element of the forecast

ensemble (and not as good a forecast as the mean of the ensemble, with which it coincides at

the start of the forecast period), but it is difficult to quantitatively assess how it could be used -
for defining the predicted pdf. However, statistical consistency impiies that two quantities of

the form <COSK> and <COSP> must be equal, independently of what was used as a

reference to estimate the 'skill' of the forecast and the 'spread’ of the ensemble.

An additional measure can be calculated for the poor man's EPS. Indeed, control skill can be
estimated directly from the nearest neighbours by calculating the average square error of the
nearest neighbour forecasts themselves, i. e. by defining

FCSK =L %" (xet) - %,(t2))?
N kel .
while the “control spread” would be given, for the poor man's scheme, by

COSP =LY (x(t) - x,(10)?
N kel

Then we can define agaih a global measure

_<COSK> _
Fec= <FCSK> 1
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) Figure 4.6 shows the values of ENC, COC and FCC as functions of lead time for the two
EPSs. The poor man's EPS is absolutely consistent in the sense of the different measures,
while the ECMWF EPS displays a quite strong inconsistency, especially at short lead times.
The spread at day 1 is about 2.5 times too small while it is about 1.5 times too small at later
lead times. Notice also the large difference between day 1 and day 2. One can reasonably
suspect the singular vector formulation to be responsible for this. Indeed, since perturbations
are projected ohto the fastest growing directions, ECMWF has to keep very small amplitudes
for initial perturbations in order to obtain a reasonable spread at optimization time (2 days).
Hence the spread/skill ratio is way too small before day 2. The ECMWF EPS was of course
not designed for day 1-day 2 forecasts, but one can however question the underlying
methodology, since in principle a perfect PPS should have a perfect spread-skill relationship at
all lead times. A

In Figure 4.7, we examine the detailed spread-skill relationships, for all lead times. Individual
values of ENSP, COSP and FCSK are classified into 16 increasing-value equally-populated
categories, and for each category the average of ENSK is plotted against the average of ENSP
(resp. COSK against COSP, and COSK against FCSK for the poor man's EPS). Both EPSs
bear more or less the same deficiencies (and qualities). The alignment along the diagonal is
generally satisfactory except for small lead times (say below day 4). However the too small
mean spread is reflected here by most of the curve points lying above the diagonal for the
ECMWEF EPS. For the latter, large-spread forecasts are generally more skilful, in terms of
skill prediction, than small-spread forecasts. One should therefore rely more on ensembles
with higher spread than on ensembles with small spread. Another general feature is the relative
flatness of the spread-skill curve, especially at small lead times, revealing a lack of spread-skill
relationship. Surprisingly, the poor man's scheme also suffers from this deficiency, which is
not visible from figure 4.6. More experiments would be required, using simpler models, in
order to fully understand this behaviour.

It is interesting that, judging from Figure 4.7, both EPSs behave in rather similar ways. This
does not mean that individual forecast pdfs are similar. In order to illustrate this point, we
address the question of whether the spread of the ensembles has any dependency on the
temperature anomaly itself. Figure 4.8 shows COSP as a function of the control forecast of
the anomaly temperature' for both EPSs and for day 6. The poor man's spread clearly has
higher values at extreme temperatures, while this is much less obvious for the ECMWF
spread. Indeed, the former depends only on the temperature forecast itself (and therefore has a
link to the true temperature), while the latter depends on all flow variables. Roughly speaking,

the poor man's EPS only tells that when a control forecast gives an extreme value, the
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uncertainty is large. By contrast, the ECMWF EPS gives a substantial number of large-spread

values near the mean and also a number of low-spread values at extreme temperatures.

5. CONCLUSIONS

A number of diagnostics of the performance of PPSs (most of them classical and already
widely used) have been considered in this paper. They have been systematically discussed in
terms of the degree to which they measure the two qualities that we consider as making the
value of a PPS, namely statistical consistency between predicted probabilities and a posteriori
observations on the one hand, and variability in the predicted probabilities on the other.
Concerning probabilistic prediction of occurrence of binary events, the decomposition (2.2a-c)
of the Brier score defines a simple and adequate measure of these two qualities. Since
statistical consistency can always be achieved by a posteriori correction of the predicted
probabilities (provided a sample of realizations of the EPS is available that is large enough for
ensuring reliable statistics on the performance of the system), the term B, can be made equal to

0, and the performance of the system is in practice measured by the variability term B,..

The quality of the prediction of the forecast uncertainty on a given numerical variable or,
equivalently, of the prediction of the probability distribution for that variable, has been
discussed in both Sections 3 and 4. A number of diagnostics of statistical consistency
(histogrammes of the position of the observed value with respect to the predicted ensemble
values, as well as several quantitative measures of the agreement between the predicted spread
and the observed skill of the forecast) have been considered. One definite advantage of these
diagnotics is that, in all cases, what a perfectly statistically consistent PPS would produce is
known, so that one knows what to expect from them. As useful as they are, they must
however be interpreted with discernment. They are based on integrals computed over all (or at
least a large number of) realizations of the EPS, and mutual compensation can occur between
individually inconsistent subsets of realizations of the system. In particular, a posteriori
'calibration’ intended at establishing statistical consistency, as measured by one of these
diagnostics, may be illusory. The situation is in this respect totally different for the Brier
score, which is the integral of a positive quantity, in which mutual compensation cannot occur.
An interesting development will be to extend the Brier score, defined by eq. (2.1) for
individual events, to probabilistic- prediction of numerical variables. This extension is
theoretically possible.

The comparison between the operational and the poor man’s EPSs, presented in Section 4, is

very instructive. According to the scores used there, the poor man’s system performs better
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than the ECMWF operational system for forecast ranges of up to 2 days. A similar
conclusion, based on the comparison of the performance of the ECMWF EPS (and also of the
NCEP EPS) with a 'reference pdf' somewhat different from our poor man's scheme, has been
reached by Atger (1998). Similar results have also been obtained by Ziehmann (1998).
Concerning the ECMWF EPS, a reason for its relatively poorer performance at short range
might lie in the fact that the initial perturbations of the ensemble forecasts are chosen along the

dominant singular vectors of the flow.
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