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ABSTRACT

Ensemble forecasting provides the preferred approach for evaluating the uncertainty in
forecasts of nonlinear deterministic systems, yet questions remain as to how best to con-
struct ensembles over uncertain initial conditions, and which other uncertainties should
be sampled. Forecasts of physical systems are effected by a variety of uncertainties in
addition to uncertainty in the initial condition. By considering a perfect model scenario
with an exact understanding of observational uncertainty these complications are ban-
ished, highlighting the importance of a perfect ensemble. In this paper the formation of
ensembles over initial conditions is contrasted in perfect and imperfect model scenarios
ranging from the 1963 Lorenz equations, through the thermally driven rotating annulus,
to the Farth’s atmosphere. Simple tests for consistency between. operational constrained
ensembles with their methods of formulation are proposed and illustrated. In addition,
variational assimilation (which always converges to some result) is contrasted with &
shadowing (which requires the proposed trajectory to agree with the observations within

- the observational uncertainty). In a perfect model scenario, a good variational assimila-
tion technique will yield an :-shadowing trajectory, while in an imperfect model scenario
this is not the case; the inability of the model to shadow provides information on model
error. Constructing ensembles over uncertainties other than those in the initial condition,
such as ensembles over different models, are briefly noted.

1.  INTRODUCTION

Ensemble forecasting attempts to quantify the uncertainties inherent in the prediction of nonlinear
systems; it is most often invoked against uncertainty in the initial condition. In this case, an ensemble
of initial conditions is evolved under a fully nonlinear model with the aim of quantifying some aspect (s)
of the uncertainty in the forecast. In this paper, we consider the question of self-consistent ensemble
formation in both perfect and imperfect models. Consistency tests can be based both on restrictions
imposed by the dynamics of the system, and on restrictions required for the coherent formation of
dynamically interesting subspaces (e.g. those spanned by singular vectors, or by bred vectors). After
a discussion of dynamics in a perfect model state space in section 2, the complications of working
in an imperfect model-state space are discussed in section 3. Here a test statistic is introduced
which teﬂects the relevance of the linearized dynamics and which is easily computed whenever twin
perturbations are available. A consistency test is illustrated in a laboratory fluid dynamics model, and
then applied to operational NWP ensembles. The competing goals of decreasing sampling uncertainty
and improving the properties of the population being sampled are discussed in section 4. Section
5 contrasts variational assimilation and t-shadowing in the imperfect model scenario; near regions
where the model can not +-shadow, variational approaches may needlessly degrade the analysis. We
examine perturbations which successfully :-shadow data from the lab experiments, in particular their
projection into the common constrained vector subspaces is presented. The paper concludes with
some general discussion in section 6. ' "

2. NONLINEAR DYNAMICAL SYSTEMS
The interpretation of numerical experiments is vastly simplified by working within a perfect model

scenario; usually the system and the forecast model are taken to be identical, they evolve in the
same state space, and hence it is known a priori that there exists a model trajectory which is
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Figure 1. A schematic illustration representing a trajectory of the system (solid line) in its state space.
Observations (+) are at equally spaced intervals (At) in time. Infinitesimal perturbations will evolve according
to the linear propagator, as indicated by the circle evolving into the ellipse. The linear propagator is only
approximate for finite uncertainties; an initial magnitude can be defined so that the approximation error is
bounded for any given fixed time (in this case At). The extent of the linear range (indicated schematically by
the dashed line) will vary with location. The two dotted lines are trajectories from “nearby” initial conditions.

indistinguishable from the the particular system trajectory of interest. This framework, also common
in theoretical studies of nonlinear dynamical systems, is illustrated in figure 1 which shows a fudicial
trajectory of the system and the behaviour of nearby points in the state space. There are, of course,
alternative scenarios such as using one model as the system and another model with a somewhat
different structure (e.g. a lower spatial resolution) as the forecast model. Interpretations of such
experiments still suffer both from the obvious fundamental similarities of the two variants, and from
the fact that the practitioner is aware of these. ’

The perfect model scenario can never be realized in the study of any physical system, yet it provides
an accessible testbed which will be contrasted with imperfect models below. One nicety of the
perfect model scenario is that almost everything is well defined; for example, it makes sense to speak
of Lyapunov vectors (defined below) in a perfect model scenario, while they may not be well-defined
in other modelling scenarios, as discussed in the next section. A perfect model of the dynamics and
an exact understanding of of the observational uncertainty (e.g. the observational error covariance
matrix) are not sufficient to construct an accountable forecast probability density function (PDF).
For example, if the dynamics are restricted to a manifold with dimension less than that of the state
space! then an ensemble distributed only via the covariance matrix will include initial conditions
not on the manifold. The initial ensemble will not reflect the true initial PDF in state space, and
consequently the PDF derived from the ensemble at final time will be incorrect. Thus, as the size of
the ensemble increases, the final PDF will not improve accountably: the error will exceed that due
to sampling uncertainty. In short, we can compute the probability of an observation X.ps given the
~ true state X4y and the covariance matrix, but we cannot compute the probability that a point x is
the true state given only X,s and the covariance matrix unless we know whether or not the point x
lies on the manifold (see Smith 1996 and references therein for additional discussion of this point).
No smooth multi-normal distribution can represent a perfect ensemble in this case.

The invariant manifold of a dynamical system describes the subspace of the state space within
which the system will evolve. All physically relevant states of the system lie on this manifold. It is
common to assume, without justification, that this manifold is the entire state space; this can not be

iOr.even further restricted to an attractor.
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the case whenever the state space includes physically unrealizable states (which can not lie on the
manifold). Further, physically realizable states need not be uniformly distributed: some regions of
state space may be more densely populated than others and some physically realizable states will lie
on transients (never be visited more than once) and hence do not contribute the long term statistics.
The probability distribution of the climatology of the system, which lies on this manifold, is often
called the natural measure; note that this measure need not be either homogeneous or isotropic on
the manifold. : '

2.2 Ensemble formation

Consider a true initial condition x(¢) (the state of the system at time t), and an analysis Aa(t) (a
best guess of x(t) given all the information available at time ¢t + At and a particular model). Even
if the observational error is nothing more than quantization error, obtaining a perfect ensemble is
non-trivial. An observation with quantization error defines x(t) to be within a hyper-cube of the state
space, but gives no further information. How might one generate an ensemble of initial conditions
which are not only within the observed hyper-cube, but also on the attractor? One method, suggested
by Lorenz (1963), is simply to integrate the system of interest and collect exact analogs. Exact, that
is, to within our measurement accuracy, thereby obtaining points within the same hyper-cube and
also on the attractor. The trajectories of these analogues will lie on the attractor, even though they
are only observed to finite precision. Even this approach assumes successive analogues in time sample
the attractor without bias (i.e. that they have no statistical correlation whatsoever), an assumption
unlikely to be fulfilled by any deterministic system. For operational forecasting models such an
approach is infeasible even in the case that the model’s climatology is sufficiently similar to that of
the system. An alternative is suggested below.

The aim of the perfect ensemble is to forecast an estimate of the correct PDF. The error covariance

matrix assigns a relative probability to each member of the ensemble depending on its location

relative to the analysis. An alternative aim would be to predict the reliability of the forecast by
considering only those members which are likely to contribute significantly to the spread of the

ensemble. Here “likely to contribute” reflects a relatively high initial probability of occurrence, and

“contribute significantly to the spread” indicates an initial condition whose image at the forecast time

is far from that of the analysis. If the distance between the analysis and the true state is sufficiently

small (infinitesimal will suffice), one may approximate the dynamics over a time At by the linear

propagator, M(Ao(t), At). The leading right singular vectors of M(Ay(t), At) indicate the directions

along which infinitesimal perturbations which will have grown the most during the interval [0, At].

As indicated in figure 2, the image of finite perturbations evolved under the fully nonlinear flow will,

in general, differ from their image under the linear propagator. The issue is whether or not this

difference is significant; we shall return to this question in the context of the internal consistency of
ensemble formulation below. For the moment, we will define singular vector (SV) ensembles as those

which are restricted to a subspace spanned by the leading singular vectors of M(Aq(t), tp:), Where

the optimization time, #,,, is fixed. B

The global Lyapunov vectors, LV, are defined at a point x through the eigen-decomposition of
M(x, At) in the limit At — —o0; obviously x must lie on the invariant manifold for the LV, to be
well defined (a trajectory must exist along which to take the limit). Finite time Lyapunov vectors
(LV) are similarly defined for finite At < 0. In the perfect model scenario there will exist a model
trajectory arbitrarily close to the fudicial (system) trajectory. In this case the Lyapunov vectors at
a point x(t) of the system are relevant for the analysis Ag(t) provided that the analysis lies on the
manifold (and, of course, assuming infinitesimal uncertainties). It is often argued that the leading
LV represent “the” orientations of sustainable growth; this is true and thus the LV, are often
irrelevant for finite time forecasts, since their local orientations are dependent upon events arbitrarily
far away in the past/future. For arbitrarily long finite spans of time, perturbations along the first

Lyapunov vector (indeed even along the unstable manifold, should one exist) of a chaotic system may -
decrease with time. .
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Figure 2. A schematic illustration showing a system trajectory (solid line), observations (4) equally spaced
in time and the extent of the linear range (dashed lines), as in figure 1. Evolution under the linear propagator
reflects the growth of infinitesimal perturbations (the circle evolves into the ellipse); forward evolution defines
the SV. Finite perturbations will evolve nonlinearly under the model, F, (the circle evolves into a ‘wavy’ closed
curve near the ellipse). If the perturbation lies within the linear range, then the evolution of the perturbation

under the model is well approximated by the linear propagator. The linear evolution over historical times
yields the Lyapunov vectors (LV), defined in the text. '

SV ensembles avoid this dependence on irrelevant events in the far future by considering the linear
evolution over a fixed optimization time ¢,p;; but if rate of uncertainty growth changes with location,
a global value of %,y is not desirable: in regions of rapid uncertainty growth, the nonlinearities may
become important at times less than £,,. In low-dimensional dynamical systems, the first singular
value, oy, of M(x(t),topt) often varies greatly with x; if, for some x, o7 is so large that nonlinearities
are important? after a time At < fop, then the singular vectors of M (x(t), topt) need not reflect the
directions of interest. Nightmare vectors (NV) are defined by setting some threshold on the allowed
linear growth, say a factor of 4; if this threshold is not exceeded within 0 < t < t,p then the NV
are identical to the SV. However, if the threshold is exceed at time At' < topt, then the NV are
the right singular vectors of the linear propagator evaluated over this (shorter) time. The behaviour
of a variety of ensembles within the perfect model scenario is discussed by Smith, Ziehmann and
Fraedrich (1997) where the importance of these effects in the Lorenz 1963 and Moore-Spiegel systems
is illustrated; these low-dimensional systems allow verification via large perfect ensembles formed
by finding analogues from a long integration. In some cases, the NV ensembles out-perform two
member perfect ensembles detecting regions of rapid uncertainty growth in (much larger) perfect
ensembles. While all methods perform relatively well in the Lorenz case, the importance of locating
an initial condition on the manifold is apparent in the Moore-Spiegel system, where two-member
perfect ensembles consistently out-perform all the dynamically constrained ensembles in reflecting
the true increase in the spread with time. More detail (and figures) are given in the reference.

2Cleany this wil end upon the initial magnitude of the perturbations.
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Figure 3. Schematic illustration of the projection of a system trajectory into the imperfect model state
space (solid line) with projections of true states at time ¢ denoted by S(t). The analysis (defined in text)
at time £ = —1 is updated from Ag(—1) to A4i(—1) when information at ¢ = 0 becomes available, giving
an improved estimate of the projected system state, S(—1). Evolving the model from Ag(—1) gives a model
trajectory (dashed line) distinct from the projected system trajectory. An alternative trajectory (dotted line),
e.g. provided using a variational assimilation technique, is shown; it is assumed that this trajectory extends
continuously through analysis values A;(—t) as ¢ - —oo, enabling the definition of LV, at Ag(0). The
projections of the system LV and SV at S$(0) into the model state space (assumed here to exist) are shown, as
are the SV at A((0).

3. IMPERFECT NONLINEAR DYNAMICAL MODELS

In general, of course, the model is not the system. A few of the complications this introduces are
illustrated in figure 3. One crucial difference is that the model state space is no longer easily identified
with the system state space. Schematically, figure 3 shows the true system trajectory “projected”
into the model state space, but this projection need not be one-to-one, and the projected trajectory
need not be a trajectory of either the system or the model (just as the path of an ensemble mean
need not be a trajectory of either the model or the system).

The projection of the true state at time ¢ into the model state space is denoted by S(¢). The best
estimate of the optimal model state® at time t available at time ¢+ At, is taken as the analysis A, (t)-
As additional information becomes available, the analysis is updated, e.g. the analysis Ag(t = —1)
available at ¢ = —1 is updated at ¢t = 0 to A;(—1) by incorporating additional information; this later
analysis is indicated as being nearer to the projected true state S(—1). If the assimilation used to
determine the analyses can provide a continuous trajectory through each A;(—t) as t — oo, then
the LV, about Ag(0) are well defined*. Otherwise, since the model is imperfect, the LV of the
model may not exist even in cases where LV are well-defined in the system state space. Similarly,
the projection of the SV and LV of the system into the model state space may not exist (the system
may not be equivalent to any system of differential equations; and then even if the system SV and
LV exist, the projection may not be meaningful). The SV depend only upon the forward integration
of the model, and thus can be defined at Ag(0), as can the NV.

Ideally, the projected system SV at S(0) exist and are well approximated by the model SV at Ag(0);
the question of whether this is actually the case is unanswerable. If we are able to find a model
trajectory consistent with each observation (that is, within the observational uncertainty) for ¢ €
[0, 7.], then the model :-shadows the system over a time 7,. This approach may be taken to define a
set of analysis values, A, _4(t),t € [0, 7,]; including A, (0) in the ensemble constructed at t = 0 yields
a forecast consistent with all the observations up to (at least) t = 7,. For a sufficiently large 7,, A, (0)

31n this context, “optimal” will be a function of the problem at hand.
4Often, Ao(0) does not lie on the invariant manifold of the model and hence no such continuous trajectory exists:

running freely, the model would never return to within a small (finite) neighbourhood of Ao (0). If this is the case, then
global Lyapunov vectors are not defined at this location.
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Figure 4. Defining ©: Equal and opposite perturbations at ¢ = 0, 6t (0), evolve so as to no longer symmetric

at time t: the error in assuming linear dynamics, ||6% () + 67 (2)|], is scaled by the average magnitude of the
evolved perturbations to give the test statistic ©. '

defines an optimal® model state at ¢ = 0; we may now require that the SV evaluated at x = Ao(0) be
similar to the SV at x = A, (0) for the model SV available at time ¢ = 0 to be considered relevant:
such similarity will clearly be a function of the optimization time, the observational uncertainties and
the local structure of the model state space. If the SVD about these two points differ significantly,
then the SV ensembles will not reflect the relevant subspace, even for infinitesimal perturbations at
t = topt. This test of relevance, however, requires both knowledge of the optimal model state (which
is known only after the fact) and additional model integrations. Below, we turn to a test of the
internal consistency of the SV ensemble which avoids both of these constraints.

As noted above, in order to formulate a SV ensemble in an internally consistent manner, the linearized
dynamics must provide a good approximation of the model dynamics up until ¢op; for the operational
perturbations: the ensemble must be consistent with the assumptions under which it is formulated.
If the evolution of operational perturbations becomes highly nonlinear for some t < %55, then the
SV defined on [0,%,,:] need not reflect which perturbations will have grown the most at ¢ = 55 (or
which will first feel the nonlinearity). The extent to which the linearized dynamics are a relevant
approximation may be computed from the results of twin perturbations already present in operational
ensembles, thus avoiding additional model integrations.

If the control trajectory, initiated from Ag(0), is taken as the fudicial trajectory, and the deviations
of a positive (negative) perturbation from the control in evolution are denoted by 8% (t) (67 (t)), then
a test statistic for linearity, ©, may be defined as

R RO
0. 1815 = G5 @+ 6 O o

(where || - || is an appropriate norm); © will, of course, vary with the Ao(0) of initialization. ©
reflects the error which would be made in assuming linear dynamics; as long as the perturbations are
growing linearly, 67 = —6~ and © = 0. © quantifies the error made in assuming this linear equality
as a fraction of the average magnitude of the evolved perturbations. Thus © = 0 implies that the
linearized dynamics may® be exact; © = 0.5 implies that an error made will be at least 50% of the

average magnitude of the evolved perturbations. The definition of © is reflected by the schematic in
figure 4. ‘ ‘

How might this information be used? Figure 5 shows the fraction of initial conditions for which
© < 0.2 as a function of time for SV perturbations from a model of the thermally driven rotating
annulus (see Smith 1992, Read et al. 1991, Smith 1996). Results are shown for three optimization
times (t,p: = 2,4,8 time steps), and two initial magnitudes (0.01°C, 0.1°C). Note that the data
separates into two regions: for a perturbation size of 0.1°C (the lower set of curves) the loss of
linearity is extremely rapid, the fraction of initial conditions for which the linear approximation
holds at the 20% level (i.e. © < 0.2) is about 10-15% of the initial conditions at ¢ = 4 and less than

5In terms of prediction.

61t is crucial to remember that © = 0 is only a necessary condition from linearity; one can contrive examples (e.g.
cubic noniinearities) where © = 0 for some perturbations and yet the linear approximation is wildly inaccurate
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Figure 5. Twin experiment linearity results of SV perturbations from a model of the thermally driven rotating
annulus. The fraction of initial conditions for which © < 0.2 is shown as a function of time for 2 different initial
perturbation magnitudes. At each magnitude there are 3 sets Qf results, obtained by varying the optimization
time (fop: = 2,4, 8 time steps); there is little difference between these sets.

5% at t = 8. Perturbations of this magnitude are comparable with the true experimental uncertainty
in the annulus and thus figure 5 indicates that adopting an optimization time of 4 or 8 time steps
is inadvisable: the growth of realistically sized perturbations is nonlinear before such optimization
times. The upper curves correspond to initial perturbations of magnitude 0.01°C; in this case the
linearized dynamics dominates for over 90% of the perturbations at ¢ = 4. Thus, if the uncertainty
in the analysis was of order 0.01°C, an optimization time of t,,; = 4 would be reasonable; in general
the larger the analysis uncertainty the shorter a justifiable t.,; for a given system.

For any operational forecast system using twinned perturbations one may compute ©(t) as a test
of internal consistency. Results from the 25 twins in a single SV ensemble forecast from ECMWF
(topt = 48 hours) of 500 mb height are shown in figure 6. In this single case, ©(t,p¢) ranges from 0.5
to > 1.0 (see panel 1, fig. 8); the error in assuming linearity at the optimization time ranges from
50% to more than 100% of the mean magnitude of the evolved perturbations, which seems rather
large. The third panel in figure 6 shows Buizza’s correlation £ statistic (Buizza 1995)

(6,67 1) |
NP nT RO @)

The line representing a correlation coefficient of 0.7 is indicated since this is taken as the ‘threshold’
value, below which nonlinearities are considered to dominate (Buizza 1994); here it is crossed between
36 and 84 hours. Note however, that £ = 0.7 corresponds to the perturbations deviating by ~ 45°
from anti-parallel; the correspondmg error in assuming linearity is ~ 75% of the mean magnitude of
the evolved perturbations (i.e. © > 0.75). There is no inconsistency here since both statistics are
necessary conditions for linearity; £ reflects only the orientation of the evolved perturbations, and
is blind to their relative magnitudes. The difference between the magnitudes, as a fraction of their
mean magnitude, is shown on the second panel of figure 6: note that at 48 hours the magnitudes in
one case differ by > 20% (in this case, the corresponding value of £ = 0.5 while © > 1.0).
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Figure 6. Linearity results of 25 twin SV perturbations (¢,p:=48 hours) for the 500 mb geopotential height
from the operational ECMWTF model. The perturbations were initiated at 00h on December 12th, 1996 and the
norms are taken over the Northern hemisphere excluding the Tropics (22.5° N - 90° N). The panels show, from
top to bottom, © (see eqn. 1), the difference in magnitude of the positive and negative evolved perturbations
as a fraction of their sum, and Buizza’s £ statistic (see eqn. 2), all as functions of time.
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Figure 7. Schematics of breeding. (i) The ideas of breeding vectors: A perturbation &g (solid line at ¢ = 0)
is added to the analysis x; at initial time and both are iterated forward under the model (dotted lines). The
evolved perturbation A; (dashed line) is then rescaled to the magnitude |#g| of the initial perturbation to
give the new BV &; (solid line at ¢ = 1) which is used as the perturbation from the new analysis x;. If the
dynamics are linear for magnitude |8p| of perturbation, then twins of BV may be generated by considering
+&p which will evolve to £+A; and be rescaled to 461 .... If the dynamics are not linear there is a choice of
how to generate BV twins. (ii) Method a: Chose one of the evolved twins (here the positive) over the other,
rescale and introduce its symmetric image. (ii) Method b: Alternatively the difference between the evolved

twins may be rescaled and its symmetric image introduced.

One would like to construct a similar consistency test for operational BV ensembles. Figure 8 shows
the statistics of figure 6 for a NCEP BV ensemble forecast. The construction of BV does not require
the linearization hold, per se; yet in order for the BV subspace not to depend sensitively upon the
breeding perturbation size, perturbations of that magnitude should evolve linearly over the breeding
cycle. The generation of bred vectors is illustrated in figure 7. Ideally twin perturbations about the
control are evolved for one breeding cycle, at the end of which each is rescaled (usually shrunk) to the
original magnitude; if the linearized dynamics describes this evolution then the rescaled perturbations
remain symmetric about the evolved control. If not then one must either (i) chose one of the twins
over the other and introduce its symmetric image (method a), (4%) double the size of the ensemble by
introducing symmetric images of both perturbations, or (iif) combine the two in some way, e.g. use
the difference between the evolved twins and its symmetric image (method b). Operationally, NCEP
performs the third of these options. If the dynamics are linear then this is equivalent to method aq,
otherwise the operational definition is sensitive to nonlinearities. Data is not available at the breeding
cycle time of 6 hours, however examining ©(t = 12) suggests that nonlinearities will often produce
ambiguities at the 10-15% level at each 6 hour time step. Applying a rescaling mask would introduce

additional ambiguities.
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Figure 8. Linearity results of 5 twin operational BV perturbations (generated by NCEP) for the 500 mb
geopotential height from the operational NCEP model. The perturbations were initiated at 00h on Qctober
10th, 1997 and the norms are taken over the Northern hemisphere excluding the Tropics (22.5°N-90°N). The
panels show, from top to bottom, © (see eqn. 1), the difference in magnitude of the positive and negative
evolved perturbations as a fraction of their sum, and £ (see eqn. 2), all as a functions of time.

4. ON THE INTERPRETATION OF NON-PERFECT ENSEMBLES

4.1 Almost all Perturbations Lie “Off the Attractor”

The interpretation of forecast probability density functions based upon perfect ensembles is straight-
forward. When the observational uncertainty is due only to quantization error as discussed in Section
2.2, then each member of the ensemble is equally likely; the distribution of the ensemble members
at forecast time may be interpreted as an unbiased estimate of the true forecast PDF. This forecast
PDF will be accountable: its only shortcoming will be due to sampling uncertainty. Under a perfect
model, as the number of ensemble members increases, the distribution of ensemble members will
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converge to the true system PDF arising from the observational uncertainty. This is what makes
such ensembles “perfect”. If the observational uncertainty is more complex than quantization error,
then the members of the ensemble will no-longer carry equal weight; those “closer” to the analysis
usually receiving greater weight. As long as the statistics of the observational uncertainty are known
(i.e. if the error covariance matrix accurately reflects the observational uncertainty), then again the
forecast PDF will suffer only from sampling uncertainties which will decrease (accountably) as the
number of ensemble members increases.

Current operational ensemble formation schemes are not accountable for at least three reasons: (i)
in general, members are not weighted with respect to their likelihood given the analysis’, (ii) the
members are often chosen in a low dimensional subspace of the state space (as defined by SV, BV,
LV, etc.) and (i) the members are not weighted with respect to the invariant measure of the system
(and so they are both (1) “off the attractor” and (2) ignore the variations in the initial probability
density on the attractor, or manifold, even when the manifold intersects the constrained subspace).

Consider the Lorenz attractor; while the true initial condition is on the attractor, the relative probab-
ilities assigned by the error covariance matrix correspond to ellipses centered a.bout the observation.
The major axis of these ellipses is determined by the accuracy with which we observe and need not
coincide with the orientation of the local structure of the attractor itself.

In general an unconstrained ensemble, sampling with respect to the covariance matrix for example,
will select points in the entire state space and will not respect the fact that the true initial condition
lies on the attractor. Constrained subspace ensembles (SV, BV, LV, etc.), will sample a subspace
of the full state space, but in general this subspace will not be confined to the attractor either;
indeed subspaces based on the linearized dynamics might have only a small intersection with the
attractor. This is the origin of the claim that they may point “off the attractor”; in fact almost
any Euclidean (i.e. flat) subspace will have a very limited intersection with the attractor. Thus
constrained ensembles will represent a different initial PDF than an ensemble composed solely of
points on the attractor. As the constrained ensemble increases in size, this difference will become
apparent since the sampling uncertainty of these forecast PDFs will not decrease accountably. No
constrained ensemble of this kind can be perfect. Unconstrained ensembles, in contrast, sample the
entire state space: these cannot be accountable either if the true initial condltlons lie on a manifold
of lower dimension.

4.2 On Increasing N: Distinguishing Sampling Uncertainty and Sampling Error

When increasing the size of an ensemble, one may target either sampling uncertainty, sampling error,
or both. Sampling uncertainty comes about whenever a finite sample of N members is drawn from
a larger, perhaps infinite, population. As N increases the distribution obtained from the sample
converges toward that of the population. In addition, the larger value of N provides a better resolved
sample PDF. Alternatively, sampling error will arise when the population which is sampled differs
from the population which is actually of interest. Increasing N will always decrease the sampling
uncertainty, but this may well result in a better approximation of the wrong PDF! Thus when
increasing NV, one is forced to divide resources between the options of improving the sampling density
and improving the population being sampled.

An operational example is provided by the increase of the ECMWF SV ensemble from 33 to 51
members. The first method discussed above would have implied drawing the additional 18 members
from the same 16-dimensional subspace as the first 33. This would have decreased the sampling
uncertainty and the operational ensemble would have described the PDF of this 16-dimensional
subspace with greater resolution. In practice, the second method was chosen: the 51 members are

TOf course, if they are chosen uniformly with respect to the distribution of observational uncertainty this weighting

is implicit.
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taken from a higher dimensional subspace, improving the relevance of the population from which
elements are drawn.

5. VARIATIONAL ASSIMILATION AND SHADOWING

Given a perfect model and an infinite series of good observations, variational data assimilation tech-
niques (see Talagrand and Courtier 1987 and references thereof) allow the construction of a model
trajectory which is consistent with the true trajectory to within the observational uncertainty. As
argued by Pires et al. (1996), it will sometimes be difficult to reduce uncertainties which lie along the
stable manifold in this case. In contrast to Pires et al. we note that over any finite period of time,
displacements in the (asymptotically) stable directions may increase, allowing uncertainties along
these directions to be reduced as well. \

Given finite data and an imperfect model, variational assimilation will still locate the minimum
of any given cost function, but the trajectory thereby identified need not resemble either the true
trajectory or the data. Alternatively, one may seek a model trajectory which is consistent with
the observations to within the observational uncertainty; such a trajectory is said to t-shadow the
observed true trajectory (see Gilmour and Smith 1997). In general, there will exist regions of the
state space through which the model cannot shadow the observations due to model error. When the
trajectory passes through such a region, variational techniques will tend to corrupt portions of the
trajectory which could have been shadowed in order to decrease the cost function in a region which
can not be made consistent with the observations. Rather than forcing an unphysical “best fit”,
shadowing trajectories simply terminate in such regions, allowing the resulting trajectory to remain
consistent with the observations where this is possible, and illuminating regions of state space where
this is not possible for further study.

An example for the annulus data is given in figure 9; the solid line reflects the observations. A series
of ensemble forecasts are reflected by the dots scatters about solid curve, while a large circle denotes
the initiation of a new ensemble (at t = 11,17,21,29). In this case, the ensembles are unconstrained;
they loose calibration after about 4 steps, and spread is on the order of a quarter the range of the
data after 6 steps. The dashed trajectory reveals, however, that there exists a model trajectory which
shadows the observations to within 0.2°C of each observation for 26 steps - significantly longer than
the prediction time.

Is there some method by which we could have increased the probability of including this particular
initial condition in the relevant ensemble? Figure 10 is a scatterplot of the dot products between this
“dream perturbation” (DP) (the unit vector from the observation to such an initial condition) and
the leading BV (method a), the leading SV, and the leading LV. Restricting attention to only those
initial conditions where at least one of the constrained subspaces has a large projection upon the DP
(say, CV e DP >'0.8), shows that the BV consistently outperform other methods; the reason for this
is not clear. Work is underway to construct a constrained subspace consistent with local distribution
of the data, in an attempt to determine whether the DP reflects the need to restrict perturbations
to be “near the attractor.”

6. CONCLUSIONS

Ensemble forecasts provide a powerful tool for prediction by providing probabilistic information
regarding the occurrence of an event; in order to utilize the information available from ensemble
forecasts, they must be interpreted using knowledge both of the method of formulation of the ensemble
and of the model representation of the system. Further, assumptions made in formulation must hold
operationally for the ensemble to be internally consistent. : '
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Figure 9. An observed temperature time series (solid line) from the annulus and an «-shadowing traject.ory
(dot-dashed line) from a RBF model which stays ‘close’ to (within 0.2°C of) the observed trajectory for 26 time
steps. Four 6-step ensemble predictions are shown: an ensemble of 128 points, normally distributed within
0.075°C of (each component of) the initial observation, is initiated at times 11, 17, 23 and 29 (circles) and
iterated under the model to give a distribution after 1,2,3,4,5 and 6 steps (dots), the mean of which is denoted

(+)-

The perfect ensemble can be formulated in a perfect model scenario with an exact understanding of
the observational uncertainty and knowledge of the invariant manifold of the system. It is the easiest
to interpret, since the PDF of the ensemble is an accountable representation of the true system
PDF; the only error is that due to sampling uncertainty. In physical systems, where models are

imperfect, perfect ensembles are not realizable, and long return times may make the formation of
perfect ensembles impractical.

Combined with restrictions on the size of ensemble which can be afforded operationally, ensembles
are often no longer formulated to give an approximation to the true PDF of the physical system, but
may be constrained to subspaces with aims of capturing the spread. While dynamically constrained
ensembles can be consistently used to increase the spread, this is usually done at the cost of knowing
the relative probability to assign these faster growing initial conditions. Ideally, the CV computed
about an analysis value should be a good approximation to the projection of CV (which may or
may not exist) about the related system value. An additional assumption made in formulating SV
ensembles is that the linearized dynamics are a good approximation to the full nonlinear model
dynamics out to the optimization time for the magnitude of perturbation employed in the ensemble.
This assumption is fundamental to the use of the SV subspace, as if it holds then then the SV are
the directions which will have grown the most over [0, topt]-

The operational use of twin (equal and opposite) pairs in ensembles enables this linearity assumption
to be tested. Results from the annulus show that the onset of the breakdown of linearity varies
with the magnitude of the perturbation. Results from operational ECMWF SV ensemble 500 mb
heights show that linearity is not a good approximation for the majority of cases at the operational
optimization time of 2 days. Similar timing in the loss of linearity is found for the NCEP BV 500
mb heights; while the motivation of BV ensembles does not explicitly depend on linearity providing

4L€ wi€ Motivation o1 n hn
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Figure 10. Scatterplot of the relative projections of all pairs of (SV, LV, BV) onto the dream perturbation:
BV vs. SV (), BV vs. LV (circle plus) and LV vs. SV (diamond cross). The line y = z is also shown.

a good approximation, the operational definition of BV is sensitive to nonlinearities. Further work
is needed to determine the usefulness of NV ensembles as an alternative to SV ensembles, and to
investigate the effect of nonlinearities on the various possible definitions of BV.

-shadowing combines observations with the model dynamics to find an initial condition from which
the model trajectory agrees with the observations (to within observational uncertainty) for the longest
time; such an initial condition may be considered to be the optimal initial condition and the best
approximation to the model representation of the true system state. Results of how well the different
CV project onto the DP (the vector from the observation to such an optimal initial condition) are
shown for the annulus; further work is needed to determine if the DP reflects the need to restrlct
perturbations to be “near the attractor”.

In the perfect model scenario, it is natural to focus on ensembles over different initial conditions. In
practice, additional uncertainties may also be accounted for (see Draper 1995 ). Forecasts of physical
systems will be effected not only by uncertainty in the initial condition, but also by uncertainty in
(1) model structure, (i) model parameters (within a given structure), (i) external forcing and (iv)
uncertainty in the verification conditions. Experience with the annulus shows ensembles over small
variations in parameters has thus far been of limited use; in this case large model errors tend to be
highly correlated between models. This may reflect shortcommgs in model structure which cannot
be accounted for by small changes in parameter values. Alternatively, ensembles over several models
with different structure significantly reduces the correlation between forecast errors of the models.
The question of whether better ensemble forecasts can be obtained by somehow combining these
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models or by maintaining an explicit ensemble over different models remains open. Ensembles over
different models provide immediate access to state-dependent model error which appears to be of
significant value.
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