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Abstract

Most orographic gravity wave drag parametrizations employ a two-dimensionality
assumption when describing the upward transmission of wave pseudo-momentum.
The issue of wave breaking is then reduced to the computation of a saturation wave
amplitude dependent on flow properties in the direction of the surface stress vector,
and an actual wave amplitude based on the Eliassen-Palm theorem. The saturation
amplitude (or equivalently, the saturation stress) then acts as an upper bound on
the actual wave amplitude (or stress). When the wind component in the direction of
the surface stress falls to zero at some height, so also does the saturation amplitude
and all stationary wave energy must be absorbed beneath. However, if the wind
direction changes with height, the Eliassen-Palm theorem does not hold in general
since wavevectors at right angles to the flow are subject to critical level absorption.

Here, some analytic solutions and numerical model simulations are described
which show the structure of the stationary gravity wave field when the wind backs
continuously with height. It is shown that a component of the wave energy is
effectively blown downwind of the mountain at any level and that the boundary
of this ‘asymptotic wake’ is defined by the surface composed of all fluid particles
(moving with the basic state wind) that have passed directly over the mountain
top. The net pseudo-wave momentum propagating vertically above the mountain is
slowly depleted by the selective filtering-out of individual wave components as they
are advected along, and just beneath the asymptotic wake surface.

A simple adaption of the orographic gravity wave drag parametrization scheme
used in the UK Meteorological Office’s forecast model to account for this three-
dimensional critical-level filtering process is described.

1. INTRODUCTION

changes discontinuously by 180 degrees.

The process of critical level absorption for orographically-forced gravity waves is usu-

ally associated with a surface along which the wind speed is zero and the wind direction

wavevectors of all azimuthal orientations will experience critical level absorption and only
a small proportion of the wave energy is transmitted (provided the Richardson number
is greater than unity). Grubi§i¢ and Smolarkiewicz (1997) have examined the 3D lin-

ear problem of uni-directional constant-shear flow over an isolated hill in the presence of
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an elevated critical level. They show how the parabolic wave envelopes familiar in the
constant wind solution widen on approaching the critical level. At the critical level, the
horizontal wind perturbation becomes unbounded and wavebreaking would be expected
in the unapproximated problem as wave energy piles up beneath the zero wind surface.

Such unbounded growth of energy does not occur for cases in which the wind direction
changes continously with height and where the mountain is isolated (Shutts, 1997). In
this situation, wave packets propagate up towards the height at which the horizontal
projection of their phase lines is parallel to the flow direction. The relative group velocity
tends to zero at this level in such a way that the wave packet takes infinitely long to get
there and so it gets blown indefinitely far downwind away from the hill. Piling-up of wave
energy is averted but even so it may be shown that the magnitude of vertical wind shear
in the wave packet grows slowly downwind — ultimately leading to wave breakdown a long
way downwind of the mountain.

The fact that the net vertical flux of horizontal momentum changes with height in flows
which back or veer might be thought to contradict the Eliassen-Palm theorem (Eliassen
and Palm, 1961) yet this, of course, is not the case because of the existence of critical
level absorption at all levels where the wind turns (Broad, 1995). Note however that if
the wind backs and then veers by a lesser degree at a higher level, the veering phase will
not be accompanied by stress deposition since the associated wavevectors have already
been removed in the backing phase (assuming that no wave energy can be transmitted
through the critical level).

Current orographic gravity wave parametrization schemes, whether or not they treat
mountain anisotropy, essentially make use of 2D linear, hydrostatic wave theory under
the WKB assumption i.e. they assume that the wave field takes the form of a wavetrain
with slowly-varying vertical wavelength dictated by local flow parameters. This precludes
the representation of partial internal wave reflections or wave trapping (actually, the
current scheme used in the UK Meteorological Office forecast model does make some
crude allowance for these processes). On the basis of these same assumptions — together
with the assumption that critical levels are perfect absorbers — it is straightforward to
calculate the height-dependence of the total momentum flux vector when represented as
a Fourier integral over all wavenumbers (Shutts, 1995). This lead to a proposed revision
to that part of the gravity wave drag parametrization scheme that assumes the wave

stress is height-independent if its magnitude is less than the saturation stress for that
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level. In the presence of wind backing or veering, part of the net momentum flux may be
removed in accordance with the linear Fourier description of the wave field and a chosen
anisotropic spectrum function for the orography. Unfortunately, this compromises the
wave saturation concept (Lindzen, 1981) which is based on a monochromatic description
of the wave field. Now, with wind turning, even an infinitesimal-amplitude localised wave
disturbance is associated with some measure of wave breaking !

Whilst it is fairly straightforward to deduce that some kind of wave absorption always
occurs in flows which back or veer with height, it is not so obvious how this would manifest
itself. What after all is the form of the resulting stationary wave field and where does
wavebreaking occur in the horizontal ? To some extent the latter question parallels that
of trapped lee waves — what is their dissipation mechanism and how far downstream do
they travel before dissipation occurs ? These issues are central to gravity wave drag
parametrization since flow deceleration is experienced in regions of wave breaking.

In the middle atmosphere where gravity wave drag has a dominating effect on the
global circulation, these critical level filtering effects assume an even greater importance
for a number of reasons. Firstly, at these levels stationary gravity waves are probably no
more important than travelling wave modes forced by any number of alternative physical
processes (e.g. convection, shearing instability). Under these circumstances, the turning
of the wind that is relevant is that perceived from the wave’s reference frame and so even
if the wind field was zonal, a meridionally-propagating localised wave disturbance would
see a turning wind profile. Another consideration is that at these levels the saturated
wave spectrum is more likely to be azimuthally isotropic than the major forced gravity
waves of the troposphere.

Gravity wave drag parametrization schemes used in middle atmosphere ‘climate mod-
els’ are of a quite different nature to those used by the NWP modelling community since
they do not directly involve forcing parameters such as the orographic sub-gridscale height
variance. Instead they assume that enough gravity wave energy is generated by tropo-
spheric sources to ensure wave saturation from the lower stratosphere upwards. Wave
drag is then dictated by the selective removal of pseudo-momentum in a set of chosen
azimuthal directions according to various nonlinear descriptions of the saturated gravity
wave spectrum at the high vertical wavenumber end (e.g. the doppler spreading hypothe-
sis of Hines, 1997). Since these parametrization schemes are typically initiated at heights

between 10 and 20 km there is the interesting possibility of running two GWD schemes

99



Shutts, G. J. and Gadian, A : Critical Level Filtering Of Orographic Gravity Waves . . . .

concurrently — one to represent the effects of orographically-forced waves and the other

to represent a background spectrum of waves (e.g. McFarlane et al, 1997).

2. LINEAR THEORY

The structure of the stationary wave field in uniform, stratified flow above an isolated
hill has been presented by Smith (1980) using linear theory in the hydrostatic limit.
Gravity waves with a characteristic vertical wavelength of 27U /N (where U is the uniform
flow speed and N is the buoyancy frequency) are found immediately above the hill like
the solution for a two-dimensional ridge except now the disturbance energy decays with
height. This decay in the hydrostatic (non-dispersive limit) is caused by the ‘filtering out’
of wavevector contributions by advection parallel to their associated phase lines. That
this should happen is clear from group velocity arguments.

Non-dimensionalizing the dispersion relation for hydrostatic gravity waves in a non-

rotating system using N~' as a time scale and U/N as a length scale gives:

o=k (1)
0o k

O =5 =1 " &m (2)

o [
Cov =31 = "&m (3)

and

dc K

Coo=5 = (4)

where o is the wave frequency, K = (k? + [2)*/? and the wavevector (k,[,m) is asso-
ciated with group velocity (Cyz, Cgy, Cy2).

Since ¢ = 0 for stationary waves, eq.(1) gives

which upon substituting into eqs.(2) and (3) gives:

(Coes o) = 350, H) . ©

If ¢ is the angle made between the phase lines and the z-axis then

(k,1) = K(—sinv, cos9) (7)
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and eq.(6) becomes
(Cya, Cgy) = F cos ¥ (8)

where 7 is the unit vector pointing in the direction along the phase lines rotated 90 degrees
clockwise from the vector (k,1).

This merely states that the horizontal group velocity is just the component of the wind
downstream along the phase lines. For wavevectors pointing in the z-direction, ¢ = n/2
and the horizontal group velocity is zero. Therefore, for orographic ridges with axes lying
at right angles to the flow direction, the group velocity vector is vertically upward and
no spreading of wave energy occurs in the downstream direction. If a velocity component
parallel to the ridge axis were added, this would have no effect on the resulting wave field.

An isolated hill generates a full azimuthal spectrum of gravity waves and so lateral
dispersion of wave energy is inevitable as the individual wave components are advected
parallel to their phase lines. Wave energy in the ‘beam’ above the hill leaks out by
advection and this forms a paraboloidal surface about which the disturbance energy is

concentrated (Fig. 1).
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Fig. 1. Typical horizontal wave pattern generated by uniform, hydrostatic flow ovér an
1solated hill.
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At low levels, the parabolic wave locus is defined by waves whose phase lines are al-
most parallel to the direction of the flow and therefore whose vertical component of group
velocity is small. Smith (1980) showed that these are associated with a ‘singular wake’
in which the vertical wavelength decreases progressively downstream and near the sur-
face. Ultimately, the related increase in vertical wind shear would cause wave breakdown
through shearing instability.

The behaviour of these wave modes is similar to those approaching a zero wind speed
critical level where the vertical component of the group velocity tends to zero. However in
this cspecial ase all wave modes get absorbed, not an infinitesimally small angular sector
of the wave spectrum. If the wind vector rotates continuously in height then this critical
level behaviour extends to all waves whose wavevectors lie in the azimuthal sector at right
angles to the sector swept out by the wind vector (i.e. the sector formed by a 90 degree
clockwise rotation of the sector mapped out by the wind vector). The singular wake (or
asymptotic wake as it will be referred to hereafter) therefore effectively follows the wind
vector as it rotates with height.

Shutts (1997) used ray-tracing arguments to study the asymptotic behaviour of the
wave energy as wave packets approach their critical levels in a flow with a turning wind
vector. Here is was shown that since the vertical group speed tends to zero on approaching
a critical level, the wave packet is blown indefinitely far away from the hill and spreads
laterally in the process. This results in the wave energy tending to zero at the critical level
in contrast to the zero wind speed critical level of uni-directional flow where the energy
increases indefinitely. Using wave action conservation arguments for a basic flow with
wind vector (Up, Az) where Uy and A are constants it was shown that the wave energy
density was proportional to z — z.(¢) where z, is the critical level height dependent on
the azimuth angle ¢ of the wind at that height.

The structure of the wave field at a distance from the hill can be found by the stationary
phase technique. The details of the derivation are not presented here but can be found
in Shutts (1997) : the main results will however be summarised now.

The solution is for the turning wind field defined above and for a flow with constant

buoyancy frequency. The equation of the vertical displacement 7 is:
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oz Tl (9)

where ( is a transformed vertical coordinate defined by:

1
= 10
¢ 1+ (Aztan¢)/U, (10)
and p = 3/ sin ¢ with 8 = N/A. The vertical coordinate 7 is defined so that the height

range between the ground and z. maps to the 7 interval 1 to co when -7/2 < ¢ < 0.
Wave modes with 0 < ¢ < 7/2 are associated with decreasing ( with height, tending to
ZEero as z — 0o.

If h(r,6) is the height of a hill defined in polar coordinates r and 0, then the linearized

lower boundary condition on 75(r, 8, () is
n(r,0,1) = h(r,0) (11)

and the upper boundary condition requires that individual wave modes are associated
with pure upward energy propagation — either at their critical level or at infinite height.
For the bell-shaped hill given by:

ho

h(r,8) = EOE (12)

where hg is the maximum height of the hill and a is a measure of its width, the stationary

phase approximation for 75 is given by:

’K. exp(—K,

*

; &' )
77(T*7 ’C) ~ 2h0 COS(/"‘O log CO) (13)

for positive (o where the asterisks denote non-dimensional variables e.g. T« =r1/a,

_ B Go—1 ,
K= r.cosf |sinfcosf tan 6log (o (14)
with po and (o given by:
po = B/ cosb (15)
and
T (16)
°T - Az cot /U,

Eq.(13) is not straightforward to interpret due to the dependencies of K, and (, on

z and 6. However, the factor K, exp(—K.) has a maximum of e~! at K, = 1 and wave
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modes close to this value dominate the amplitude function. This being the case, setting

K. = 1in eq.(14), and noting that near the critical line ¢, becomes very large, we may
deduce that (o is roughly proportional to r. since the logarithmic term in o is easily .

overwhelmed. Therefore, eq.(13) suggests that the magnitude of 5 is proportional to
~1/2

T« ' in the asymptotic wake.

It is easily verified that as A — 0 in eq.(13), the well-known constant wind formula

K, exp(—K.,) ( Nz )
~ 2hg—— 7
g 0 Tw €08 Upsinf (17)
is recovered where K, is now given by:
Nzx ;
K, = . 18

Notice that in this case, the above argument suggests || decays as 1/r. along the parabolic

wave locus i.e. faster than in the asymptotic wake.
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Fig. 2. North-south vertical cross-section of |u’| 200 km downwind of an isolated hill (1 km

high and with width parameter a = 20 km) for (a) a uniform westerly flow of 10 ms1 (b) a
flow which backs uniformly with height from a surface westerly towards a southerly flow at
large heights i.e. U = 10 ms™! and V = 3 X 10732 ms~! when z is in metres. The full linear
greyscale range (white to black) represents the range 0 to 0.3376 ms=! and the line indjcates

the asymptotic wake boundary.
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It is instructive to compare vertical ¥ — z cross-sections of the wave field downwind
of the hill for the constant flow case and the wind-backing case. Figs. 2 (a) and (b)
show u' (the perturbation wind in the x-direction) in a vertical plane at x=125 km for
a mountain centred at z = 0 with a = 20 km. for these cases. Static compressibility of
the basic density field is ignored' here so the ‘density amplification’ effect is absent. The
symmetry of the constant wind case is destroyed by the wind backing, reducing v’ for
negative y and increasing it for positive y. Wavevectors pointing into the fourth quadrant
(in a Cartesian system centred on the mountain) see a decreasing wind component with
height which causes shorter vertical wavelengths and larger horizontal wind fluctuations
compared to the constant wind case. These modes are blown parallel to their phase lines
into the first quadrant up until they reach their critical levels. The ‘quiet zone’ lying
about the symmetry axis of the constant wind case now extends over a greater range of
angles as the wind vector rotates anticlockwise with height.

Gravity wave drag parametrization requires a mé,thematical expression for the height
variation of the vertical momentum flux, V/w/. This may be written as a Fourier integral
over all horizontal wavevectors of solutions to the vertical structure equation for stationary
internal gravity waves. If the wave motion is hydrostatic and partial internal reflections
are ignored, it may be assumed that the surface momentum flux associated with each
wave mode is the same as that for corresponding uniform wind problem based on the
surface wind speed and direction. This assumption has frequently been employed in
gravity wave drag parametrization even though reflection and wave trapping (through
non-hydrostatic effects) are often important in reality. For orographic gravity waves of
horizontal wavelength greater than about 30 km it may be a reasonable simplification to
make.

The surface momentum flux obtained from the linearized problem of uniform flow over
a piece of orography contained within a rectangular horizontal area of dimensions X and

Y is given by:

Vil = —2NU, /0 ” / 7'//22 A(K, ¢) cos(¢ — xo)KKdK dg (19)
with
2 a
A(K,8) = [P | (20)

105




Shutts, G. J. and Gadian, A : Critical Level Filtering Of Orographic Gravity Waves . . . .

and where A(K, ¢) is the Fourier transform of the orographic height function A(z,y), Uy
is the wind speed and xo is the wind direction.

Under the assumption mentioned above, eq. (19) may be regarded as applicable to
flows with slowly-varying wind speed and direction with height so that U and y, are
now surface values and where the limits of azimuthal integration are modified to exclude
the sector of wave directions for which critical level absorption has occurred below. For
instance, if xo = 0 and the wind vector has rotated anticlockwise x degrees from the

z-axis at height z, then eq.(19) becomes

—— oo pw/2
Viwl(z) = —2NU, /0 /_ 1y, AU, ¢) cos SKKdK dg. (21)

3. NUMERICAL MODEL SIMULATIONS

In order to confirm some of the deductions made in the previous section concerning
the form of the wave field and vertical momentum flux in turning flows, simulations with
a non-hydrostatic numerical model were carried out. The model is that developed by T.
Clark (Clark, 1977, 1979) which has been used successfully in numerous published studies
(e.g. Clark and Gall, 1982; Clark and Miller, 1991). Whilst a full description of the
model would be out of place here we note that it employs the anelastic approximation
due to Lipps and Hemler (1982) and model variables are expanded about an idealized
input profile. The terrain-following coordinate of Gal-Chen and Sommerville (1975) is
used to represent mountains and has been proven for steep orographic gradients.

For the purposes of the experiments to be described here, the Coriolis parameter
was set to zero along with all surface energy and momentum fluxes. All parametrizations
involving water substance were switched-off and the relative humidity was effectively zero.
Under these conditions the model flow follows a dry adiabatic process and there is free
slip along the mountain surface. The model is set up with 106 points in z and y forming
a regular grid of resolution 4 km; and 160 levels in the vertical separated by 75 m. The
‘inner’ gridpoints of a horizontal slice through the model define a square region of side
416 km. The domain depth is 12 km and the high vertical resolution is chosen to help
resolve critical level processes.

Normally, the experiments are carried out with a damping layer in the stratosphere :
here we choose a basic state wind field which rotates uniformly with height from westerly
at the surface to easterly at the model top (i.e. the angular rotation of the wind is

proportional to height). The wind speed is held constant at 10 ms~!. In this configuration
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it has been shown that a damping layer is not necessary as all gravity waves suffer critical
level absorption before reaching the model top. A bell-shaped hill is specified according
to eq.(12) setting Ao = 100 m and a = 20 km (a plan view of the orography is given in
Fig. 3).

416.
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Fig. 3. Orographic height field used in numerical model simulation. Contour interval: 10 m.

With the above configuration, the model was integrated for 12 hours until a quasi-
steady state was achieved. In view of the slow time-scales associated with the approach
of wave packets to a critical level, the degree of steadiness was checked (and confirmed)
against a 24 hour simulation. Figs. 4 (a) and (b) show the u and w fields plotted at a
height of 3.68 km at the end of the 12 hour simulation. The trailing wake can be seen
in the u field which extends out of the northern boundary of the domain. The wind
direction indicated by the thick solid line extending out of the origin of the hill, marks
the azimuthal limit of the quiet zone in the gravity wave field. At a distance from the
hill, waves propagating into the sector defined by the z-axis and this line would have
suffered critical level absorption before getting up to this level. For a hill of this size,
the perturbation u in the wake is rather weak (~ 0.2 ms™!). The w field resembles the

corresponding solution for uniform flow except rotated by an angle smaller than that by
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which the wind has backed.

(ce] Uv\

¥-Y PLOT AT Z= 2 .68KM TIME=  729.0@niN X-Y PLOT AT Z= 3.6BKM TIME=  720.DGMIN
ux’ FIELD 1M/S) uz FIELD M5
MODEL= 1 ARTEO! FRAME © MADEL= 1 ARYBO1 FRAME
ale mm.......u..‘mmu(uv..m,m...../,../,I.‘,.;,,,...“.y.n T B L S L B

LLULOE 0]

TETIR T T T
T TPy

‘nllxun11l||nxunn|||uulluullllH-|||||nI|||lll|nnvlnlllulnullllHnuln\lnllnll

£ . E 3
08 E— W\ 208 E— 3
E o £ E
E E 3
<] 202 43 Q <02
XIKME KIirH)
FIELD M2 HIN.DEL 1.06048E401 1 21943E+01 1.@A200E-0) FIELD ite HIN DEL  3.54213E-02 -5 65775E-02 3. 500352-03
TOMT. NaxMINLEY  §.0080AE-01 —1.01G00E=01 207 TONT. BAX MIH,LEY  3.51503E-B2 -5.40873E-00 23

Fig. 4. (a) u (b) w fields at a height of 3.68 km after 12 hours of integration for a basic

state flow which backs with height. Contour intervals: 0.1 ms™! and 0.0039 ms~! respectively

A comparison between the vertical momentum flux in the model and that determined
from eq.(21) is shown in Fig. 5 (a). The values have been normalized against the analytical
value for uniform flow over a bell-shaped hill i.e. —poNwhZalU;/4XY. The agreement
between the two curves is quite good although the model’s momentum flux decays more
rapidly with height due to implicit diffusion in the finite difference representation of the

flow.
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Fig. 5. Polar plot of the normalized vertical momentum fluz for (a) the 100 m hill and (b)
a 1 km high hill. Analytical curves are given by the dashed lines and the numbers indicate

heights in km.

Two aspects of the momentum flux profile need to be considered with respect to the
related two-dimensional problem where the hill is an infinite ridge lying parallel to the
y-axis. Firstly, the direction of the momentum flux vector swings out to angle greater
than 45 degrees — though its magnitude is rather small at this point. For a 2D ridge the
direction of the momentum flux would not change with height. Secondly, the magnitude
of the wave stress decreases steadily with height in the wind-turning case but would
be height-independent in the 2D problem up until the critical level at the mid-level -
where the wind component normal to the ridge vanishes and all of the stress would be
deposited (according to linear theory). Gravity wave drag parametrizations based on a
monochromatic description of the wave stress (like the above 2D case) would clearly be
erroneous for a flow such as this. |

It is instructive now to consider the effect of a bigger hill. Fig. 5 (b) shows the

normalized vector wave stress for a bell-shaped hill of height 1 km. as simulated by the
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numerical model. Now the magnitude of the vertical momentum flux exceeds the linear
value by a factor of about 1.5 near the surface and remains greater than the linear curve
throughout. The tail-back of the model wave stress curve to zero, for heights below 1 km,
1s an artifact of the method of calculation below mountain top level. Note that the range
of angles spanned by the momentum flux vector is now greater than that of linear theory

(e.g. about 45 degrees at a height of 6 km).
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Fig. 6. u on the northern domain boundary after 12 hours in the simulation of backing flow

over a 1 km mountain. Contour interval: 0.5 ms™!

The details of the quasi-steady flow in this case are too complicated to present here
but Fig. 6 shows the form of the critical level wake in a vertical cross-section of u on
the domain’s northern boundary. The wake takes the form of an intense (but thin) shear
layer or vortex sheet sloping from a height of § km on the western boundary to 2.2 km on
the eastern boundary. A rough estimate of the vertical shear in the vortex sheet is ~ 102
s~ which is comparable with the buoyancy frequency and implies that the Richardson
number is of order unity. Profiles of potential temperature show that the stability is weak
in some parts of the wake and so the waves must be close to, or actually, breaking. Linear

theory requires that the vertical wind shear in the wake increases downwind and so this

vortex sheet is likely to persist for long distances and contain turbulence.
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4. PARAMETRIZATION SCHEME

From the above discussion, it is clear that the vertical momentum flux is not constant
in layers where the wind backs or veers (unless the wind vector has previously visited those
azimuthal directions at lower levels). Analytic and numerical model simulations suggest
that eq. (21) can be used to replace the Eliassen-Palm assumption in orographic gravity
wave drag parametrization schemes i.e. the requirement that wave stress is constant with
height in the absence of wave saturation. If a local Cartesian system is set up with the
z-direction taken as the surface wind direction, then the momentum flux at any height

may be written as:

oo ‘”/2+X'u
Vi = —2NU, / / A(K, §) cos K K dK dg. (22)
0

—7/2+x
where x3(2) is ‘most backed’ wind direction (measured as a positive angle from the
z-axis) beneath height z and x,(z) is the ‘most veered’ direction and is of negative sign.
In order to use eq. (22) in a parametrization scheme, it is necessary to choose a conve-
nient analytical form for A(K, ¢) — the orographic height variance spectrum function. The
UK Meteorological Office GWD parametrization scheme assumes the following definition

for A(K,¢):

%o

3/2
i ) [a cos® ¢ + 2bsin ¢ cos ¢ + csin? ¢] (23)

KA(K,$) = (

with 5% < ac and ¢ > 0 to ensure positivity (Gregory et al, 1997). The power law factor was
motivated by the observation that the Earth’s orographic spectrum does indeed appear
to follow a power law though the exponent varies somewhat between about 1 and 1.7,
depending on the mountain range (and possibly its geological age) (Bretherton, 1969).
There is some redundancy in having two constants K, and a but they are included here
for aesthetic considerations. The constants can be determined from the mean of the
orographic gradient tensor H;; given by:

Oh Oh

z; Oz;°

Hi; = (24)

over a model grid box. Eq. (22) may also include other factors such as a mountain Froude
number function to account for flow blocking. It may be applied up to the height where
wave saturation (in the monochromatic sense envisaged by Lindzen, 1981) is diagnosed.

To be consistent, the saturation stress 7, is diagnosed using
T, = apU2 /N (25)
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where U, is the component of the wind in the direction of the wave stress at the current
height, p is the density and « is some constant of proportionality. Note that this definition
is at odds with that adopted by Gregory et al (1997) who always resolve the wind in the
direction of the surface stress on the basis that the wave field can be associated with an
equivalent monochromatic wave field whose wavevector lies in the surface stress direction.

Within layers where the saturation stress magnitude (7,) is reached it is not obvious
what the direction of the stress vector should do. However, it seems reasonable to assume
that if the wind backs or veers, then the same considerations that apply in the linear limit
should apply to the saturated wave field i.e. the azimuthal range of wavevectors carrying
momentum is restricted to those that lie in the range —7/2 + xp to 7/2 + xv.

One of the computational benefits of representing directional wind shear in gravity
wave drag parametrizations should be the vertical ‘smearing’ of flow deceleration incre-

ments, helping to avoid the unpleasant side-effects of ‘drag delta-functions’.

5. DISCUSSION

One might question the importance of wind turning effects in NWP simulations on the
grounds that large directional wind shear is not that commoﬁ. Such a statement is difficult
to support when the full range of atmospheric flow situations is considered. It is certainly
true that the strong westerly winds in middle latitudes are usually accompanied by strong
westerly thermal wind shear and therefore little wind direction change with height. In
fact, thermal wind considerations demand that flows which back (veer) with height are
accompanied by cold (warm) thermal advection (e.g. the passage of fronts). Where
depressions track over mountain ranges one should expect to see large directional wind
shear to the north of their centres, but perhaps the most obvious location for directional
wind shear is in the boundary layer, particularly in stable ﬁowsrpast mountains. This
latter case is just one aspect of the important problem of boundary layer-orographic
gravity wave interaction however.

Beyond the troposphere, the wind direction may deviate quite substantially from the
surface direction and wave momentum deposition could occur over deep layers. Regions
where there are climatological zero wind speed critical level conditions (e.g. above the
subtropical Trade Winds and in the summer, lower stratosphere) must also be favoured
locations for strong directional wind shear. The effect of this will again be to smear the

deceleration caused by stationary gravity waves in the vertical .
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As mentioned in the Introduction, middle atmosphere GWD parametrization schemes
are quite different in nature, addressing as they do the travelling wave spectrum. One
might wonder to what extent the issues of saturated gravity wave spectra affect the
orographic wave problem. As seen earlier, waves comprising the asymptotic wakes are
essentially frozen into the flow until such times as they dissipate through convective or
shearing instability; or until they find a synoptic flow environment that permits them to
propagate vertically again. In our chosen flow, which backs uniformly from westerly to
easterly, all of the wave vector contributions to the surface drag get dispersed laterally and
trapped in the mean flow at their respective critical level heights until they eventually
dissipate. The associated pseudo-momentum flux is scattered in wave packets whose
energy spreads out in the horizontal — collapses in the vertical — and whose particle
motions are eventually affected by the Coriolis force.

The interesting point here is that one often regards quasi-inertia gravity waves as
carrying little vertical momentum flux since w is much smaller than those values found
immediately above mountains. But in this 180 degree wind rotation problem, all of the
wave pseudo-momentum finally appears in this form and covers a very large horizontal
area. It suggests the possibility that a significant fraction of the vertical momentum
flux generated by mountains (and other wave sources) may be exist in an omnipresent
‘background’ of low frequency inertia-gravity waves. Although the fluxes are locally small,
their large areal extent might compensate to make the net flux worthy of parametrization.
Vertical fine structure in the horizontal wind field, as seen in radiosonde ascents, may
therefore represent important momentum transfer.

If this speculation is well-founded then it suggests that the type of GWD parametriza-
tion scheme used in middle atmosphere studies (based on a saturated spectrum of low
frequency gravity waves e.g. Hines, 1997) should actually be used throughout a NWP
model. What is required is a better appreciation of the processes that affect gravity waves
with low vertical group speed that propagate a long way horizontally from mountains.
The properties of wave groups travelling away from mountains will be affected by tempo-
ral variation in the flow (which may alter the absolute wave frequency measured from the
ground) and spatial variations in the flow which change the wavevector. These consider-
ations apply both to trapped and untrapped wave motion. It may be that horizontal and
vertical wind shears in tropospheric flow are sufficiently effective in ‘mopping-up’ sluggish

gravity waves that a saturated spectrum cannot be formed there.
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Whatever the merits of parametrizing the background spectrum of low (intrinsic)
frequency waves, study of the three-dimensional structure of orographic gravity waves
in flows which turn with height appears to be an important step in improving our

parametrization techniques.
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