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Summary

Empirical orthogonal function (EOF) analysis of deviations from the ensemble mean was used to
validate the statistical properties of T 159 51-member ensemble forecasts run at the European
Centre for Medium-Range Weather Forecasts during winter 1996/97. The main purpose of the
analysis was to verify the agreement between the amount of spread variance and error variance
accounted for by different EOFs. A suitable score was defined to quantify the agreement between
the variance spectra in a given EOF subspace. The agreement between spread and error
distribution for individual PC was also tested using the non-parametric Mann-Whitney test. The
analysis was applied at day 3, 5 and 7 forecasts of 500-hPa height over Europe and North
America, and of 850-hPa temperature over Europe.

The variance spectra indicate a better performance of the EPS over Europe than over North
America in the medium range. In the former area, the excess of error variance over spread
variance tends to be confined to non-leading PCs, while for the first two PCs the error variance is
smaller than spread at day 3, in very close agreement at day 7. When averaged over a 6-EOF
subspace, the relative differences between spread and error PC variances are about 25% over
Europe, with the smallest discrepancy (15%) for 850-hPa temperature at day 7. Overall, the EPS
produces a quite reliable estimate of the probability distribution of the atmospheric state over
Europe.

1. Introduction

Medium-range ensemble forecasts are currently a part of the operational activities of two major
numerical weather prediction (NWP) centres, namely the European Centre for Medium-Range
Weather Forecasts (ECMWF) and the National Center for Environmental Predictions (NCEP) of the
United States (Toth and Kalnay 1993; Molteni et al. 1996; Toth et al. 1997; Buizza et al. 1998). The
validation of ensembles is undoubtedly a difficult task, and suitable verification precedures are under
development at both centres in order to quantify the performance of these complex forecasting

systems.

As already recognized in pioneering studies on stochastic-dynamic predictions (e.g. Epstein 1969), the
purpose of ensemble forecasting is to provide an estimate of the time-evolving probability density
function (PDF) for the atmospheric state. Given the enormous number of degrees of freedom in

current NWP models, it is obviously impossible to analyse such PDF in the full phase space of the

323



MOLTENL F. & R. BuizzA: VALIDATION OF THE ECMWF ENSEMBLE PREDICTION SYSTEM...

model, and a suitable subspace must be chosen to validate the PDF properties. Usually, a first selection
is made through the choice of one particular variable and vertical level; secondly, one may restrict the
subspace dimension further by either considering a particular geographical area, or projecting the
forecast fields onto a finite set of orthogonal functions, or using a combination of both techniques. A
particularly simple example of the former method is given by the probabiliStic verification of grid-
point properties; even in such a case, however, the reliability of the predicted PDF is assessed by

averaging the statistics over all grid points in a given area.

Empirical orthogonal functions (EOFs) are a well-known and efficient tool to reduce the
dimensionality of the atmospheric phase space. As such, they are particularly suitable for the analysis
and validation of the properties of the modelled PDF. Depending on how EOFs are defined, different
types of validation can be perforrﬁed. If EOFs are computed from a large sample of observed
anomalies, and subsequently model fields are projected onto them (or viceversa), the comparison of
PDFs of observed and modelled principal components (PCs) provides an estimate of the (flow-
dependent) 'quasi-systematic' error of the model, while forecast verification can be performed by

comparing time series of observed and predicted PCs (e.g. Ferranti et al. 1994; Wang and Rui 1996).

In the case of medium-range ensemble predictions, the relationship between ensemble dispersion and
error is a more crucial issue than the average skill of individual forecasts. Here, EOF analysis can be
more suitably used to determine which axes account for the largest proportions of ensemble spread on
a case-to-case basis (as in Brankovic et al. 1990), and to verify whether forecast errors project on these
axes in a way which is consistent with the ensemble PDF. In computing a covariance matrix from the
ensemble members, the ensemble mean is naturally assumed as a reference point. Therefore, it is

appropriate to use the error of the ensemble mean for such a comparison.

It is evident that one can only draw conclusions on the consistency between spread and error PCs by
analysing such statistics on a relatively long period (one season at least). It should be pointed out that,
in this type of analysis, the comparison of the PDFs of the observed and predicted PCs provides a
probabilistic forecast verification, rather than an analysis of model systematic error. Since the position
of the reference point (the ensemble mean) in phase space varies with time, one may find that the error
projections have either a larger or a smaller variance than the ensemble PCs, even in the case when the

climatological distributions of analyses and forecasts are the same.

In this paper, an EOF decomposition of spread and error is used to validate the performance of the

M M nnsr

System (EPS) during winter 1996/97. it is worth remembering that
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since 10 December 1996 the EPS has been based on one unperturbed and 50 perturbed members at
T,_159L31 resolution (i.e. triangular truncation at total wavenumber 159, linear grid for specrtal
transforms and 31 vertical levels), while previously it included one unperturbed and 32 perturbed
members at T63L.19 resolution (see Molteni et al. 1996 and Buizza et al. 1998 for a full description of
the system). In Sect. 2, the methodology and data used in the study are described in detail. Ensemble
EOF patterns are presented in Sect. 3, while statistics on principal components of spread and error are
analysed in Sect. 4. A brief comparison with the performance of the lower-resolution EPS run during
winter 1995/96 is also shown in Sect. 4 using EOF statistics, while a similar comparison based on
more traditional scores is presented in the Appendix. Sect. 5 addresses the issue of the presence of

multimodality in the ensemble distribution. Finally, results are summarised in Sect. 6.

2. Data sets and validation methods.

a) Variables and space-time domains for EOF analysis

In defining a suitable space-time domain for the EOF analysis, choices about parameters, levels and
geographical areas have to be made. In addition, one has the option of analysing fields at one
particular forecast time or portions of trajectories over a time interval. As far as parameters and levels
are concerned, our choice was a rather standard one (500-hPa height and 850-hPa temperature), and
was based on the availability of a number of other verification statistics (some of which are presented

in the Appendix).

As far the area and time domain are concerned, one should remember that a much flatter spectrum of
EOF variances is obtained for hemispheric EOFs than for regional (i.e. European-scale) EOFs.

Similarly, more EOFs are needed to describe trajectories than instantaneous fields at a given level of
explained variance. Since the purpose of the analysis is to compare the spectra of spread and error
variances in EOF space, it is desirable that the difference in variance between EOFs is larger than the
sampling errors associated with the estimates of error variance. On the other hand, one would like the

spatial domain to be large enough to guarantee that the EOF patterns are synoptically meaningful.

As documented in the following sections, a continental-size domain at a single forecast time allows
80% of the ensemble variance to be explained by 5-6 EOFs, with a change in variance of one order of
magnitude between the first and the fifth/sixth EOF (typically, between 30-40% and 3-4%). This
corresponds to an average variance ratio of about 1.5 between consecutive EOFs in the leading part of
the spectrum. The uncertainty in the variance ¥ for a sample of » independent elements is given by

the standard deviation of sample estimates:
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(H o(V)=[(K-V?)/n]"”

where K is the kurtoysis, or 4-th order moment, of the distribution. In the case of a standardized‘
gaussian distribution and a sample of 90 data, o(¥)/V is 15% for n=90, 21% for n=45. Since the auto-
correlation of error PCs is small, one may conclude that a 3-month sample of daily forecasts should

provide a good signal-to-noise ratio for the space-time domain described above.

In the following, the first winter of 51-member T 159 ensembles (namely, from 11/12/96 to 12/3/97)
will be analysed. Statistics will be presented for the first six EOFs computed (separately) at fc. day 3,
5 and 7 for the following variables and areas:

500-hPa geopotential height (Z) and 850-hPa temperature (T) over Europe ( 30-75 N, 20W-45E );
500-hPa geopotential height (Z) over North-America ( 30-75N, 60-150W ).

b) Definition of EOFs and PCs
Given an ensemble of m members, let D be the matrix whose columns represent the deviations of
individual members from the ensemble mean for one particular variable and forecasttime over a given

area. EOF analysis provides a singular-value decomposition of D as:
(2) D=ESP!

where the m columns of matrices E and P represent the EOFs e; and the time series p; of the
standardized PCs respectively, S is the diagonal matrix of the standard deviations s; , and the ‘7

superscript denotes the transpose. These vectors are normalized as follows:

(3a) (e,e)=¢' We=29;
(3b)  (pi,p;)=pi p;=m Y

where W is a diagonal matrix of latitude-dependent weights.

Since in our case m is much smaller than the number of grid points covering the selected area, it is

convenient to compute the PCs as eigenvectors of the space-covariance matrix:
4) (D'WD)p,=msp;

and then the EOFs from the relation:
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() e=(ms)' Dp;.

If the vector d* represents the deviation of the verifying analysis from the ensemble mean (ie the
opposite of the ensemble-mean error), the standardized projections p;” of this vector onto the EOFs e;

are given by:
6) pf=s'(e,d)=5"¢Wa=(ms’) p/(D'Wd")

c) Analysis and verification of PC distributions

When the analysis described above is repeated over a set of # initial dates, we obtain for each PC two
sets of coefficients, representing deviations from the ensemble mean of the ensemble members and of
the verifying analyses (for brevity, in the following we shall refer to them as to the spread-PCs and
error-PCs, bearing in mind that the sign of the error is reversed for consistency with the spread
definition). If j=1,..,m is the index of the ensemble members and k=I,...,n the index of the initial
dates, we can indicate the two datasets as {p; }; and {p, }{" respectively, where the EOF index / varies
from 1 to the dimension of the selected EOF subspace ny, . If the ensemble provided a correct
estimate of the atmospheric PDF as a function of time, then the distributions of PC datasets {p; }; and

{p. } should only differ because of sampling errors.

By construction, the mean of each {p, }; is equal to zero and its standard deviation (and mean-square
value) to one. A first check is therefore to compute the mean and standard deviation of {p, };* and
verify their differences from the reference values. Since the sign of the EOFs is arbitrary, and the
EOFs vary from day to day, it is not evident a-priori what is the significance of a difference in the
mean value. To make the EOF sign non-arbitrary, it was decided to orient each EOF in such a way
that the control forecast (corresponding to j=1) always has positive PCs. In this way, a significant
positive bias may be a sign that the analysis agrees with the control forecast more closely than
expected on the basis of the ensemble PDF (as it would be expected, for example, if the ensemble PDF

was biased towards a climatological distribution).

Instead of checking the similarity of the mean and standard deviation using parametric tests, it was
decided to use the non-parametric Mann-Whitney test to evaluate the consistency of the spread and
error distribution. The test was implemented in such a way to represent a validation of the rank

histograms (O. Talagrand, private communication) already used for the verification of grid-point data:
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° for eaéh EOF and initial date, the error-PC was converted into a rank (ranging from 0 to m17) by
comparing it with the m values of the spread-PC; the consistency of the spread and error PDFs
would imply a flat distribution of such ranks;

° the sum §;” of the » ranks {7, }" was computed, and the probability P, that a random sample of
n elements had a sum greater than (orequal to) S was evaluated;

° the fraction Fo, of outliers (ie of error-PC with rank either 0 or 77) was also evaluated, together

with the probability Po, of such a value being exceeded in a random sample.

The Mann-Whitney test was also peformed on the squared values of the PCs, which is equivalent to a
test on the similarity of variances. In this case, the probability of the rank sum being exceeded by
random sampling will be denoted by P2, (In the following the EOF index i/ may be omitted, being

implicit that all statistical indices are computed for each EOF separately.)

d) Definition of the EVE score (Error of Variances in EOF space)

For the ensemble spread, the partition of variance between EOFs is represented by the average fraction
of variance £/ accounted for by each EOF. In estimating the corresponding value for the error PC,
either the sample Variance (computed with respect to the sample mean) or the mean-square-value
should be used, depending on whether the sample mean is significantly different from zero or not.
Since, as discussed later, the cases in which there is a significant bias are a minority, we will use the
mean-square value of error-PCs as 'safer' estimates of error variances ¥V} along the various EOF axes.
If a plot of £ as a function of the EOF index provides the spectrum of the spread variance, the
corresponding spectrum of the error variance (normalized with respect to the total ensemble variance)

is given by f V.

For a given EOF subspace where i=],...,n;, an index of the similarity between the two spectra can

be defined as:
(7) EVE = Zi vfivar ]Via_ 1 ]/ Zifﬁrur

where EVE stands for Error of Variances in EOF space, and can be viewed as the L' norm of the

spectrum difference, renormalized by the total variance in the subspace.

e) PDFs of spread and error PCs

Finally, PDFs of spread and error-PCs have been computed using a gaussian kernel estimator (e.g.

Silverman, 1986), where different smoothing parameters have been adopted for the {p;/}, and {p, }/

328



MOLTENI, F. & R. Bu1zzA: VALIDATION OF THE ECMWEF ENSEMBLE PREDICTION SYSTEM....

dataset to account for the much fewer data in the latter sample. To evaluate the significance of the
difference between the two PDFs, PDFs have also been computed for m-/ subsamples obtained by
selecting the j-th ensemble member (with the exclusion of the control forecast) from each ensemble,
and therefore including the same number of data as the error-PCs. The dispersion of the subsample
PDFs around the PDF for the total sample of spread-PCs provides a confidence band, in which the

PDF of error PCs should be included in the absence of systematic differences.

3. Spatial paftems of ensemble EOFs

In this section, some examples of EOF pattérns at different forecast times will be briefly discussed.

For brevity, attention will be focussed on 500 hPa height fields over Europe.

Fig. 1 shows the spatial pattern of the first three EOFs for the 3-day forecast started on 11/12/96,
together with the (analysis - ensemble mean) error and its projection onto the 3-EOF subspace. The
EOFs are scaled by the associated standard deviation; the fraction of variance explained by each EOF
and the standardised error PCs are listed above the corresponding EOF paﬁel. In this particular case,
the first EOF explains twice as much variance as the second one, and its strucure is concentrated in tlie
Atlantic portion of the domain; ensemble spread over continental regions is mostly accounted for by
the following EOFs. Together, the first three EOFs explain over 78% of the ensemble variance, and

the error projection onto this subspace provides a fairly accurate representation of the field.

Fig. 2‘ is the same as Fig. 1, but for the 3-day forecast started on the following day. The first EOF has a
similar structure to the first EOF of the previous day, but with an eastward shift of the main features;
conversely, the error pattern is shifted westward. For this day, the first two EOFs explain a
comparable proportion of variance. Howerer, the 3-EOF subspace explains a smaller amount of
variance (73%) than in the previous day, and indeed the error projection is a less effective

representation of the total field.

The spatial scale of EOFs tends to increase with forecast time, as shown in Fig. 3, which now refers to
the day-7 forecast started on 12/12/96. With a 69% fraction of explained variance, again the 3-EOF
subspace provides a realistic projection of the forecast error. A comparison with the previous day (not
shown) shows a closer similarity for EOF 1 than at fc. day 3, while the similarity is much weaker for

subsequent EOFs.
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@) An-Emean 961211 D+3 Z500hPa -~ ©) EOF 1 Var: 42.0% PC(an): 1.50

N

Fig. 1 a) Difference between verifying analyis and ensemble mean of 500-hPa height at fc. day 3,

for the ensemble started on 11/12/96. b) As in a), but projected over the first three EOFs of ensemble
spread. c), d) and e) First three EOFs of ensemble spread for 500-hPa height over Europe

Wi AUl \JP\«.
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©) EOF 1 Var: 33.9% PC(an): -0.71

@) An-Emean 961212 D+3 Z 500hPa

d) eor 2 var: 27.0% Pc(an): -0.82.

Emean Projection onto 3 EO-Fs

b) An

EOF 3 Var: 11.9% PC(an): 1.73

e)
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Fig. 3 AsinFig. 1, but for the ensemble started on 12/12/96 at fc. day 7.

332



MOLTENTI, F. & R. BurzzA: VALIDATION OF THE ECMWEF ENSEMBLE PREDICTION SYSTEM...
4. Distributions of spread and error PCs.

a) Spectra of variance in EOF space. (
For each variable, domain and forecaSt time, the variéncé distributions of spread and error in EOF
space are represented by the values of /7 and £ V" respectively. Fig. 4 shows the variance spectra
at fc day 3, 5 and 7 for the 6-EOF subspace of 500-hPa height over Europe. A 95% confidence band
for variance estimates based on one value per day (as for the error PCs) has also been computed from
the spread-PC distribution using Eq. 1, and its lower and upper limits ére also plotted. The cumulative
fraction of variance explained by the subspace and the EVE score defined by Eq. 7 are listed above

each panel.

As far as the spread variance is concerned, it is interesting to note that its spectrum is slightly steeper at
day 3 than at day 7, and the proportion of explained variance actually shows a (very modest) decrease
with forecast time. This cohtradicts the experience with 'traditional' EOF analysis of high-frequency
versus low-frequency variability (or of short-range versus medium-range forecast errors), where the
reference state (usually the time mean) is fixed in phase space. In such an analysis, many more EOFs
are needed to explain a given fraction of variance for high-frequency (or short-range) fields than for

low-frequency (or medium-range) fields.

However, when the reference point varies in time following an observed or modelled trajectory, the
EOF spectrum is related to the /ocal embedding dimension of the attractor when the short-range
evolution of the system is considered, to the global embedding dimension when the long-term
evolution is analysed (over a time comparable to the limit of deterministic predictability). It therefore
appears that, by day 3, the stretching of the ensemble cloud from a sphere to an ellipsoid (associated
with linear perturbation growth) has ’already taken place, and the 'local' phase space dynamics is
already strongly influenced by non linear processes. Indeed, the (anti-)correlation between PCs of
ensemble members which start from opposite perurbations is alreédy small at day 3, ranging (on

average) between -0.45 for PC 1 to -0.15 for PC 6.

Comparing the error variance with the spread variance, one notes that at all forecast times the ratio
between error and spread increases with increasing EOF index. At day 3, the spread along the first two
EOFs is actually larger than the error, while the error variance significantly exceeds the spread
variance only from the 6th EOF onwards. At day 7, the projections on the first two EOFs have almost
perfect statistics, while the error exceeds the spread from the 3rd EOF. This indicates that the

discrepancy between error and spread comes from errors which have small projections on the axes

associated with the leading dynamical instabilities. Flow-dependent model errors are likely to exhibit
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Fig. 4 Variance distribution for spread and error PCs of 500-hPa height over Europe in winter 1996/97, at fc. day
3 (a), fc. Day 5 (b) and fc. day 7 (c). Black solid line: variance of spread-PCs; black dashed line: variance of error-
PCs; grey solid lines: limits of the 95% confidence band for estimates of spread variance based on one value per day,
as in the samples of error-PCs. Cumulative variance and EVE score are listed above each panel (see text).
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such a behaviour, although one cannot rule out the existence of slowly-growing analysis errors which

are not described by the leading singular vectors.

It should be noted that the EVE score has similar values at the three forecast times considered, with the
smallest (i.e. best) value being obtained at day 7. While a comparison of the total variance of spread
and error shows very little discrepancy around day 3 and an increasing gap in the medium range (see
the Appendix), the EVE scores reflects the presence of both overstimated and underestimated PC

variances at day 3, and the better fit between error and spread spectra in the medium range.

This behaviour is even more evident when looking at the results for 850-hPa temperature over Europe,
shown in Fig. 5. At day 3, the error variance is overestimated by the ensemble for the first 5 EOFs,
with a significant difference for the first two. Already at day 5, however, efror variances are either
within the confidence band or close to its upper limit, and the fit between the spectra of error and
spread variance is even better at day 7. For this variable, the EVE score clearly decreases with forecast
time, and the day-7 value (15.4% only) indicates a very satisfactory performance of the EPS over

Europe in the medium-range.

For the North American region, the analysis of 500-hPa height (see Fig. 6) provides a less optimistic
picture. Underestimation of error variance by the ensemble spread is evident for all EOFs at day 5 and
7, and at the latter time none of the EOF variances is within the confidence band. The EVE scores
increases from a value slightly better than the European score at day 3, to a value 2.5 times as large at
day 7. For this region, either some type 6f fast-growing analysis errors are poorly represented in the
initial conditions, or model errors tend to feed the leading dynamical instabilites in a more severe way

than they do over Europe.

Finally, the performance of the lower-resolution EPS used in winter 1995/96 is verified in Fig. 7 by
looking at the variance distribution of 500-hPa height over Europe in that period. The comparison
with Fig. 4, which shows the same statistics for the latest winter, reveals a dramatic improvement in
the EPS consistency, especially in the late-medium range. At day 7, the 6-EOF EVE score indicates
that the discrepancy between spread and error variance was four times larger in winter 1995/96 than in

1996/97 (see the Appendix for a comparison between the two winters based on ‘traditional’ scores).

b) PDFs of spread and error PCs

In this subsection, some examples of PDFs of spread and error PCs for 500 hPa height over Europe

will be presented, together with the results of the Mann-Whitney test on the similarity between the two

ot ik 1 111 Lil 11
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Fig. 5 AsinFig. 4, but for 850-hPa temperature over Europe in winter 1996/97.
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6-EOF space day3 Z500hPa Europe
: Cum. var. = 93.6%, EVE = 47.6%
50
. 40
9
o 30
0
c
2 20
]
>
107
]
0
PC index
,6-EOF space day5 Z500hPa Europe
: Cum. var. = 89.7%, EVE = 68.6%
50
;i — 40_
2
o 30
(1]
o
8 20+
©
>
10
0 1 1 L ! e - MI
0 1 2 3. 4 5 6 7
PC index
6-EOF space day7 Z500hPa Europe
Cum. var. = 87.1%, EVE =89.9%
50
_. 40+
2
© 30
(&7
=
8 20
«©
>
10
]
0 7
PC index

ig. 4, but for 500-hPa height over Europe in winter 1995/96.



MOLTENL, F. & R. BuizzA: VALIDATION OF THE ECMWE ENSEMBLE PREDICTION SYSTEM...

distributions.

Fig. 8 shows the error and spread'PDFs for the first three PCs at day 3. The significance of the
difference between the two PDFs can be visually judged by comparing it with the width of the PDF
band originated by subsamples of one perturbed member per ensemble; for an objective assessment,
the Mann-Whitney statistics defined in Sect. 2c are listed above each panel. The PDF of the control
forecast, always possessing positive PCs by construction, is also plotted. Looking at the PDF for the
first PC, one clearly notices the smaller variance of the error PDF with respect to the spread
distribution. On average, the analysis tends to reside on the same side of the control forecast with
respect to the ensemble mean, and the Mann-Whitney tests confirm the significance of the
discrepancies. A positive bias can also be found for PCs 2 and 3, but with much smaller significance.
It is interesting to note that the deviations of the control from the ensemble mean tend to become larger

for higher-order PCs; this is true also for the day-3 PCs of 850-hPa temperature (not shown).

At day 7 (see Fig. 9), the differences between the spread and error PDFs of the first two PCs are
clearly within the uncertainty associated with sampling. For the first PC, the error PDF has two well
separated maxima, one of them corresponding to the average position of the control forecast. The
spread PDF, however, is unimodal, with just a hint of non-gaussian beﬁaviour. A more definite
unimodal shape is shown by the PDF of spread PCs 2 and 3. However, while for PC 2 the
correspondence with the error PDF is very strong, for PC 3 the error shows a flatter distribution with
larger variance. Note that, since the differences between the spread and error PDFs of PC 3 have a
rather symmetric character, the bias is very small and the Mann-Whitney test on the actual PC values
fails to detect the significance of such differences. However, the test performed on the squared PCs

indicates that sampling has a very small probability (0.5%) to be the only source of the discrepancy.

S. Multimodality in the ensemble distributions.

As shown in the previous section, some of the PDFs of error-PC show a bimodal structure which is not
reproduced in the PDF of spread PCs. A particularly evident case of such a behaviour is the first EOF
of 500-hPa height over Europe at day 7, shown in Fig. 8a. From this figure, however, one may note
that the PDF of the error PC is well within the band of the PDFs of one-member subsamples, and
therefore one should assume that the difference between the spread and error distribution is not

significant.

Hdwever, bimodality should not be a constant property of ensemble PDFs. It should only be evident

in cases when the ensemble trajectories tend to bifurcate, after passing through an instability region in
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Fig. 8 Probability density functions (PDFs) of spread and error PCs of 500-hPa height over Europe at fc. day 3 in
winter 1996/97, for PC 1 (top), PC 2 (centre) and PC 3 (bottom). Black solid line: PDF of spread-PC; black dashed
line: PDF of error-PC; black dotted line: PDF of spread PC for the control forecast; grey solid lines: PDFs of spread-
PC for subsamples including one perturbed ensemble member per day. See text, sect. 2c, for the definition of the

statistics above each panel.
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Fig. 9 Asin Fig. 8, but for fc. day 7.
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phase space which may lead into two distinct flow regimes (e.g. Palmer 1993; Trevisan et al. 1998).
Indeed, when real atmospheric data or operational forecast errors were analysed, bimodality associated
with the divergence of initially-close trajéctoriés was detéctable dn'](y'in certain regions of phase space;
where reglmes are more clearly separated in phase space (Molteni and Tibaldi 1990; Trevisan 1995).
On the other hand, if one looks for bimodality in individual ensembles, one faces the problem of

dealing with too few data to assess the statistical significance of the result.

From a pragmatic point of view, it is still worth trying to assess the ability of the EPS to produce
'reliable’ bimodal or. multimodal distributions, since some of the EPS products (namely the ensemble
clusters) are implicitly based on the hypothes1s of multlmodallty A way to address the problem is to
define an index of bimodality for the PC dlstrlbunon in individual ensembles, sort the » ensembles in
one season according to the value of the bimodality index, and then recompute the PDFs of error and
spread PCs from the two shbsahlples ivn'cluding the n/2 eﬁsemblgszwith smallest and largest bimodality

index.

Given the set of PCs from the m members of one ensemble, the dafa were first sorted in ascending
order, and all possible partitions into t\iloés-ubsets were considered; the bimodality index (BI) was
defined as the maximum fraction of variance explainéd by the means of two such subsets. It is evident
that such an index would have value one if the PC had just two possible values (say +1 and -1),
therefore being perfectly bivmddal‘. Besides, ‘it agrees with .the-criterion used in many clustering

algorithms to find an opﬁmal partition in a multi-dimensional space (e.g. Michelangeli et al. 1995).

Fig. 10 shows the spread and error PDFs for the day-7 PC 1 (as in Fig. 9a), recomputed from the two
subsamples with smallest and largest blmodallty 1ndex As far the spread PC is concerned, the index
clearly separates ensembles with unimodal and blmodal dlstrlbutlons However, the error-PC
distribution is bimodal in both cases, with the two maxima being actually better separated in the cases
when the ensemble has a small bimodality index. Although more encouraging results have been
obtained for other areas and variables, sampling errors are often stronger than the signal one would
like to detect. On the basis of this analysis, whether unimodality/bimodality in the ensemble is a
reliable indicator of the bifurdation properties of actual atmospheric trajectories remains an open

question.

6. Summary and conclusions

EOF analysis of deviations from the ensemble mean was used to validate the statistical properties of

T.159 51-member ensembles during winter 1996/97. The main purpose of the analysis was to verify
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Fig. 18 As in Fig. 9a, but for two subsamples obtained by dividing the ensembles into two groups
according to the bimodality index of spread PC 1 at fc. day 7. a) Ensembles with smallest bimodality
indices. b) Ensembles with largest bimodality indices.
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the agreement between the amount of spread variance and error variance accounted for by different
EOFs. A suitable score, named "Error of Variance in EOF space" (EVE), was defined to quantify the
agreement between the variance spectra in a given EOF subspace. The agreement between spread and
error distribution for individual PC was also tested using the non-parametric Mann-Whitney test. The
analysis was applied at day 3, 5 and 7 forecasts of 500-hPa height over Europe and North America,

and of 850-hPa temperature over Europe.

The variance spectra indicate a better pérformance of the EPS over Europe than over North America
in the medium range. In the former area, the excess of error variance over spread variance tends to be
confined to non-leading PCs, while for the first two PCs the error variance is smaller than spread at
day 3, in very close agreement at day 7. Medium-range values of the EVE score for a 6-EOF subspace
are about 25% over Europe (zero implying perfect agreement), with the best value (15%) for 850-hPa
temperature at day 7. Conversely, over North America the EVE score for 500-hPa height
monotonically increases from 24% at day 3 to 55% at day 7. These results are confirmed by the
Mann-Whitney test. Overall, the current version of the EPS produces a quite reliable estimate of the
probability distribution of the atmospheric state over Europe, and shows substantial improvements
with respect to the lower-resolution, smaller-size ensembles which were operational in the previous

winters.

The fact that over Europe the day-3 spread exceeds the error along the leading EOFs, together with a
small but consistent bias in the error PC at this forecast range, are a likely consequence of the
constraint used to set the initial perturbation amplitude, namely that hémispheric rms spread and error
should be equal at the optimization time of singular vectors. The slight 'overshooting' by the
ensembles along their dominant EOFs tends to compensate the component of error variance
attributable to model errors. In view of this, the fact that EPS perurbations now span a larger
subspace, including singular vectors with smaller amplification factors, is certainly beneficial to the

realism of the short-range forecasts.

Finally, the result that the variance spectrum of spread PCs is slighly steeper at day 3 than at day 7 is a
clear sign that, for short-range forecast errors, a 'climatological' covariance matrix is a poor
approximation of the covariance matrix appropriate for one particular initial state. In a statistical
analysis of operational forecast errors currently carried out at ECMWF (L. Ferranti, private
communication), an EOF decomposition of forecast errors over the Euro-Atlantic region in three
winter seasons revealed that 22 EOFs were needed to explain 75% of the variance at day 3, 11 EOFs at

day 7. In our analysis (performed over a smaller area), just 4 EOFs were needed (on average) at both
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times. If this result is extrapolated to the first-guess errors used for data assimilation, one concludes
that a flow-dependent error covariance matrix should have a much steeper spectrum of variance than a
climatological covariance matrix. The potential positive impact of using time-dependent information
on the background-error covariances is evident, and it is also clear that little benefit should be expected
by using a climatological error covariance to define the initial norm of the singular vectors which

define the EPS initial perturbations.

Appendix.

In this appendix, results of more traditional verification techniques are presented for the same
variables, areas and periods chosen for the EOF analysis. The main purpose of this comparison is to

highlight the limitations of over-simplified validation indices.

Given a grid-point ﬁe]\d J defined on a set of grid points g in a geographical domain G, letf (g, ¢, t)
be the value predicted at grid-point g and forecasttime ¢* by the j-th member of an ensemble started at
initial time ¢, and £, (g, ¢, t’) the corresponding verifying analysis. Besides, let £, (g, ¢, t) and £, (g, ¢, 1)
be (respectively) the ensemble-mean and the ensemble standard deviation of £, (g, ¢, ). If the initial
time ¢ spans a time interval 7 (usually a season), the space-time rms (root-mean-square) error of the

ensemble mean is defined as:

Ala) Eg (t)=rms{|f(gtt)-1u(8 L 1) |} g, rer

and the rms spread with respect to the ensemble mean by

Alb) S r(t) =rms {f(g 4 1) }eq, rer-

In order to be statistically consistent, an ensemble forecast should be such that, at any time and grid
point, the difference ( f,-f,,) belongs to a distribution with zero mean and standard deviation equal to f.
Since this condition can only be verified by averaging the ensemble data over a suitable space-time

domain, two reliability indices can be defined as follows:

A2a) Rg(t)=Eg (t)/Sg (1)
Azb) -Rg (t,) =rms {‘f;(g’ 1A t’) '.ﬁn(gi 4 t’) t/f.;(g! t’ t)}geG, el

where the 7 subscript has been dropped for simplicity. These two indices are conceptually equivalent,

345



MOLTENL, F. & R. BuizzA: VALIDATION OF THE ECMWE ENSEMBLE PREDICTION SYSTEM...

but formally different: in R;, the ensemble error and spread are first averaged in space (over the G
domain) and time, and then their ratio is computed, while R, is defined as the space-time average of
error-to-spread ratios computed at individual grid-points g. It will be shown below how the different

definition may affect the validation results and their interpretation.

In fig. 11, the R; index is used to compare the performance of the EPS over Europe (a) and North
America (b) in winters 1995/96 (dashed line) and 1996/97 (solid line). After a spin-up period of
about 24 h, the R; index reaches a near-constant value, with a relative minimum just after forecast day
2 (corresponding to the optimization time of singular vectors) and a weak relative maximum'yaround
day 6. In winter 95/96, the ensemble-mean rms error was signiﬁcanﬂy larger than the rms spread in
both areas and throughout the forecast range; In winter 96/97, as shown by the EOF analysis, the
discrepancy has been strongly reduced, especially over Europe, where the R; index is only marginally
greater than 1 after day 4. Over North America, the difference of RG from unity was about‘ tw‘ic.e as

large in winter 95/96 than in 96/97, but it is still significant in the latter winter.

Figure 12 shows the same curves as Fig. 11, but for the R, index. The improvement occurred in the
latest winter, and the better performance of the EPS over Europe than over North America, are evident
also from these graphs. However, according to the R, index the ensemble consisténcy improves
monotonically from day 1 onwards, and the differences from unity are larger than those of the Rg
| index over both areas and at all forecast times. In the early medium range, the Ré values for Europe in

96/97 are as large as the 95/96 values of R;; in the same area.

This example shows that simple area-averaged indices of ensemble consistency can certainly reflect
changes in performance between different period and regions, but their absolute value and time
evolution are sensitive to the particular way in which the average is performed. The definition of R
can certainly mask some discrepancies between the spatial distributions of error and spread, such as
those revealed by the EOF analysis over Europe at day 3 (when the R; value is practically equal to
one). On the other hand, the R, index is strongly sensitive to errors oécurring in areas with small
spread: the improvement of consistency with time suggested by R, is not supported by the EOF
analysis in all cases (especially for North America), and is probably an artifact of the more uniform

distribution of spread in the late medium range.
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Fig. 12 Asin Fig. 11, but the spatial and seasonal average of R, of the error-to-spread

ratios at individual grid-points.
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