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1. INTRODUCTION

The importance of critical levels in geophysical flows stems from their omnipresence and
complex wave/mean-flow interactions in their vicinity. A critical level is a surface at which
the Doppler-shifted frequency w’ = U-R—wofa plane wave with the horizontal wavenumber
vector ¥ and frequency w vanishes. For mountain waves resulting from a steady forcing by
the flow over topography, w = 0 and the critical levels arise wherever U - & = 0. The name
critical derives from the singularity of the linearized inviscid time-independent equations (and
their solutions) at such levels (Miles 1961; Booker and Bretherton 1967), indicating that the
transience, momentum and heat diffusion as well as nonlinear steepening and amplification
of waves are important in their vicinity (Maslowe 1986; chap 4.11 in Baines 1995). For
the local Richardson number Ri(= N?/U?) > 1/4 at a critical level, linear inviscid theory
predicts that infinitesimal perturbations are smoothly absorbed and deposit their momentum
into the mean flow below the critical level. Whether this occurs in reality, depends on the
amplitude of perturbations as well as the effectiveness of viscous processes in preventing
nonlinear steepening and wavebreaking.

In atmospheric flows over complex terrain, gravity waves encounter their critical levels,
in general, at different altitudes where the projection of the mean velocity U (z) on a given
wavenumber vector £ = (k,[) vanishes. A number and location of critical levels is determined
by a degree of directional wind shear and topographic spectrum. The associated filtering of
orographic gravity waves in directional wind shear is discussed by Shutts elsewhere in this
volume. In this paper, which is largely based on work by Grubisié and Smolarkiewicz (1997),
we address primarily unidirectional, steady, constant-shear flows with a critical level located
where U = 0. In section 2 we review the analytical model and describe its steady-state

solutions consisting of a 3D wave pattern forced by a small-amplitude isolated axisymmetric
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obstacle in the presence of a single critical level. Since linear inviscid solutions are singular
at the critical level, we use a numerical model to assess the impact of dissipation and local
nonlinearities on the solutions. In section 3 we discuss numerical solutions for both the
unidirectional wind profile and a simple case of wind turning with height. We determine,
in the parameter space spanned by the nondimensional mountain height A (= hoN/ Up) and
the Richardson number Ri, the bounds of a regime in which our linear solutions for the
unidirectional wind profile are valid everywhere except in the vicinity of the critical level
where numerical solutions, as well as natural flows, are regularized by viscous dissipation
(Kelly 1977; Worthington and Thomas 1996). Beyond this regime, wavebreaking can be
expected to occur in 3D flows with a single critical level. In section 3.3 we comment briefly
on the effect of wind turning with height on the existence and location of wavebreaking.

Conclusions are presented in section 4.

2. ANALYTIC SOLUTIONS

The linear analytic model of a stably-stratified, inviscid, non-rotating, hydrostatic flow past
a small-amplitude, gently-sloped 3D hill is based on the incompressible Boussinesq approxi-
mation of the Euler equations cast in the Cartesian framework (z,y, z) and linearized with

respect to a hydrostatically balanced reference-state. The model equations are

poUuz + powl, = —p, , (1a)
poUv, = —p, , (1b)

0 = —p.—pg, (1c)

Uy + vy +w, = 0, (1d)
Up. + wp, = 0, (1e)

where (u,v,w) are the perturbation velocity components, and p = p(z,y,z) and p = p(z,y, 2)
are the perturbation pressure and density, respectively. The reference state density is 5(z) =
po(1—N?z/g), where the Brunt-Vaisila frequency N and the reference density pg are assumed
constant. The ambient velocity profile

U(z) = Us (1 - i) , (2)

Ze

has a critical level at z = z.. The hydrostatic approximation is justified given k < N/U(z =

0) < oo, since when the wind decreases with height, the importance of non-hydrostatic effects
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decreases aloft. Our analysis is limited to Ri > 1/4, sufficient for the stability of a parallel,
stratified, inviscid, incompressible flow with respect to the Kelvin-Helmholtz waves (Drazin
and Reid 1971).

Equations (la)-(le) can be solved for w, or equivalently, for the vertical displacement of
isopycnal surfaces n = z(z,y; z0) — zo, where z is the upstream height of a given isopycnal
surface. The w and 7 fields are related through the linearized kinematic condition w =7 =~
U7, whereas p can be expressed in terms of 7 as p = —p,7 in lieu of (1e). Using the Fourier
integral representation of solutions and introducing a new variable { = z — 2, leads to a

following form of the equation for the vertical structure of the Fourer modes 7(k, [, z)

1%2

g + 207 + Ri ;i =0, BERC)

where Ri = (N/U.,)? = (Nz./Us)*, k? = k* + 2, and k and [ are horizontal wavenumbers in
the  and y directions. Equation (3) is subject to

i(k,1,2=0) = h(k,1) , (4)

and the radiation boundary condition aloft. In (4), il(k,l) denotes the Fourier transform
of the mountain shape. The equation (3) is solved for a class of constant-shear flows past
a bell-shaped mountain h(r) = ho(1+r?/a?)">?, r = (22 + y?)"/2. Further details of the
mathematical model and solution techniques can be found in Grubisi¢ and Smolarkiewicz
(1997). In the following we briefly describe properties of the linear analytic solutions. The
displacement fields below and above the critical level are shown ‘in Fig. 1. Below the critical
level, the wave pattern bears resemblance to that characteristic of the constant mean flow
(Smith 1980). Above the critical level, however, it is significantly different as the wave

components emerge strongly attenuated by the factor

exp {-——7!' [Rl (cosp)™2 —1/ ]1)2} (5)

Here ¢ represents the angle between the horizontal wavenumber vector K and the direction
of the mean flow. In this directional filtering, the components with wave fronts parallel to
the mean flow (¢ = 7/2) are almost entirely removed leaving only components with wave
fronts perpendicular or nearly perpendicular to the mean flow.

Infinitesimally close beneath the critical level, wave solutions oscillate rapidly and the local
vertical wavenumber and displacements become infinite. Similar as in 2D, in the limit

z /" z, the vertical velocity, which is proportional to (z,—z)'/2, becomes infinitesimally small
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Figure 1: FFT representations of the displacement fields of the isopycnals with the undis-
turbed heights z.(1 = 0.15) below (left panel) and above (right panel) the critical level,
respectively. The mean flow (with Ri = 1 and A = 0.1) is from left to right. The mountain
is displayed using thick solid lines with the contour interval 0.025 A.

whereas both horizontal velocity components, proportional to (z. — z)~%/2, tend to infinity.
This indicates that, at least in the linear approximation, motions become progressively more
horizontal as the critical level is approached. It also indicates that the shear in the vicinity
of critical level will be large, leading eventually to the breakup of waves through the shearing
or convective instability. Below the critical level, the paraboloidal wave envelopes (locus of

points where the wave amplitude is maximal) have the following form

2 VR | (2
1“(1 ﬁ)

__—-—':—w
- N - A 1/2 .
, e = [82 4 (1—c9?) 7, &

2 7,
c = 4Ri > 1. On approaching the critical level, the envelopes widen with height (Fig. 2) so

; (6)

1/2

where 7 = [ 2% + 2] z/a, § = y/a, 2 = z N/Uyp, and
that infinitesimally below the critical level they become plane surfaces perpendicular to the
mean flow direction.

The pressure perturbation at the ground is characterized by a fore-and-aft asymmetry with
a stronger positive pressure anomaly over an upwind slope, and a weaker negative anomaly
farther in the lee. As a consequence of this shear-reduced positive correlation between the
pressure anomalies and the mountain slopes, drag is always smaller than in the uniform wind

case. For both positive and negative linear mean shear, mountain wave drag is equal to

D= %po NUsahf[(c— DK (c2) + (2 - 0B (/)] , (7)
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Figure 2: Asymptotic wave envelopes for mean flows with a linear negative shear (Ri = 1,
h = 0.1, solid lines) and zero shear (Ri = oo, h = 0.1, dashed lines) at elevations z = 0.1
(thin lines), 2 = 0.5 (medium lines), and z = 0.99 (thick lines). The shaded circle at the
origin illustrates the approximate size of the obstacle at half of its height.

where K and E denote the elliptic integrals of the first and second kind, respectively,
and ¢ = 4Ri > 1. Figure 3 displays D as a function of Ri normalized by limg; .o D =
7/4 po NUpahd. As Ri — 1/4, limp; 174D = 1/3 po NUyahl, and, in contrast to equiva-
lent 2D flows (Smith 1986), drag does not vanish. Zero drag in 2D flows is a consequence
of a fore-and-aft symmetry of the linear solutions at strong shears. In 3D, this symmetry
is maintained only for modes with wave fronts normal to the mean flow, whereas all others

induce asymmetric pressure perturbations leading to a non-zero drag.
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Figure 3: Mountain-wave drag (normalized by Do = 7/4 po NUsahl) as a function of the
inverse mean-flow Richardson number. The solid curve represents the analytic result (7),
and the dashed curve the corresponding 2D result Dyp/Do = [1 — 1/(4Ri)]"/? (with a = 1
in Dg). Diamonds display numerical results discussed in section 3.1.
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In the remainder of this paper we compare numerical and analytical solutions, in order to
assess the realizability of the linear solutions as well as the impact of local nonlinearities and
dissipation on the singularities predicted by the linear model for unidirectional flows. We
also discuss a transition to the nonlinear regime characterized by wavebreaking aloft both in

unidirectional and flows in which the environmental wind turns with height.

3. NUMERICAL SOLUTIONS

The numerical model used in this study has been described in Smolarkiewicz and Margolin
(1997). It is representative of a class of nonhydrostatic atmospheric models that solve the
anelastic equations of motion in the standard nonorthogonal terrain-following coordinates.
Here, we present selected results from a series of over 30 experiments with 2 < 0.3 and
Ri € [0.25, 9]. In all experiments Uy = 10 ms™}, N = 0.01 s™%, a = 5000 m, resulting in
Us/Na = 0.2 and the mostly hydrostatic perturbations. The physical domain, 20a x 20a x 3z,
with the mountain centered in z = 0 plane, is covered with 81 x 81 x 91 grid points.

Further details on the numerical model and experimental setups can be found in Grubisié

and Smolarkiewicz (1997).

3.1 Unidirectional flows: Linear Regime

Figure 4 shows a regime diagram of the (iz,Ri) parameter space. The shaded region repre-
sents the “linear regime” where numerical solutions achieve steady state and agree closely
with the linear predictions. In Fig. 5, the linear-regime solution (run LS1) for weak shear

(Ri = 9) is illustrated with u-velocity perturbation in the central zz-plane. In accordance

0.30 185 [ R

Figure 4: Regime diagram of the critical-level flow past an axisymmetric obstacle for linearly-
sheared ambient wind. Stars and text labels denote performed numerical experiments, and
the shaded region represents the “linear regime”.
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with the analytical predictions, as the waves approach the critical level, the vertical wave-
length diminishes and the wave motions become increasingly more horizontal. Within the
linear regime, a good agreement between the analytical and numerical solutions is found
everywhere, except in the vicinity of the critical level where numerical solutions are regular-
ized by implicit viscosity of finite-difference approximations (Smolarkiewicz and Pudykiewicz
1992; Prusa et al. 1996), which mimics the dissipation inevitable in turbulent critical-level

flows. As a result, the waves approaching the critical level are smoothly absorbed as they

CONTOUR FROM —.39 TO .48 BY .11

103 =/

Figure 5: Perturbation of the u-velocity component in the central xz-plane from experiment
LS1. Vectors represent the total velocity.

deposit their momentum into the mean flow. This is reflected in the profile of the vertical
flux of horizontal momentum < vw > = +fw +fmuwdac dy, (Fig. 6), which displays strong
divergence for 0.75z. < z < 2., above a de;pool;;ar of constant momentum flux (cf. Eliassen
and Palm 1960; Broad 1995). Above the critical level, the flux is strongly attenuated and
the small positive values indicate the presence of upward-propagating waves in the reversed

mean flow—a residual transmission through the critical level.

3.2 Unidirectional flows: Transition to a Nonlinear Regime

From the regime diagram in Fig. 4 it is evident that linear analytic solutions, predicting
smooth wave absorption at the critical level, are valid for a range of mountain heights at
Ri > 1. The larger the Richardson number, the higher the threshold mountain height at
which the pile up of energy beneath the critical level will eventually lead to a non]ilnear wave

amplification there. However, for a linear velocity profile, large Richardson numbers imply
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Figure 6: Profiles of the normalized vertical flux of the horizontal momentum < uw > from

experiment LS7. T = tUp/a denotes nondimensional time.

weak vertical wind shear and critical levels at a.ltitudesabove those at which waves would

steepen and break in a case of constant (or weakly-sheared) wind profile. Thus, in order

to illustrate the transition from the linear regime, discussed in the previous section, to the

nonlinear regime characterized by wavebreaking above the mountain and beneath the critical

level, we chose experiments with Ri = 1 (LS3-LS5). For experiment LS3 (located near the

regimes’ interface in Fig. 4) nonlinear effects are weak and linear theory still provides a

qualitatively meaningful description of the flow. Farther into the nonlinear regime (runs

LS4, LS5), large amplitude perturbations are not confined anymore to the vicinity of the
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Figure 7: Numerical solutions from experiments LS3-LS5 (the nonlinear regime). From left
to right: i) isentropes in the central zz-plane from the experiment LS3 (Ri = 1.0, A = 0.1);
ii) as in i) but for experiment LS4 (Ri = 1.0, h = 0.2); iii) as in plate i) but for experiment

LS5 (Ri = 1.0, = 0.3).
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Figure 8: Normalized potential vorticity (x 10~ s7!) from numerical experiment LS5 (Ri =
1.0, h = 0.3) in the yz-plane at z = a/4 (left); b) in the horizontal plane at z = 0.8z, (right).

critical level but affect the flow everywhere above the lee slopes (Fig. 7). Numerical solutions
in Fig. 7 are snapshots at a point at which these flows were still evolving in time. Later into
the simulations, flows in this regime are similar to those discussed by Miranda and Valente
(1997) and by Miranda elsewhere in this volume, except that wakes in our solutions remain
steady. The dissipative nature of the wave/mean-flow interaction in the wavebreaking region
beneath the critical level gives rise to the “effective force” that the dissipating waves exert on
the mean flow causing it to decelerate (McIntyre and Norton 1990). Within this dissipative
zone the inviscidly generated vorticity (due to the tilting in vertical of the mean vorticity
vector plus baroclinically generated vorticity by the wave field) is diffused onto isentropic
surfaces giving rise to the PV anomalies downstream (Rotunno et al. 1998). Figure 8
illustrates these PV anomalies displaying normalized potential vorticity PV’ = (- V4/ |V4),
where (1 denotes the total vorticity vector (including the ambient component U,7). These
PV banners aloft (with amplitude ~ 10% |} |) originate from the wavebreaking region and

surround the stagnant region in the lee of the mountain.
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3.3 Wind turning with height
A simple extension of the unidirectional wind profile (2) to a case of wind turning with height
is provided by adding a constant component of the wind in the y-direction

V() = [0 (1= 2) o = et Wl ®

c

where ( = z — 2z, and @ = —Uy/2.. The resulting wind rotates counterclockwise with height
as indicated in Fig. 9. According to Shutts (1995), from a full spectrum of waves launched
by a flow over an axisymmetric hill and propagating upward in such an environment, a range
of waves with wavenumber vectors perpendicular to the encountered wind directions will be
selectively filtered out by critical level absorption. For profile (8) this implies absorption of
a range of wave numbers from the first and fourth quadrants. For these waves, the critical
levels are located at

Z(k,l):zc——V-;JEQg , (9)

a

where z. is the altitude at which U = 0, and tan 6, = [/k. With the critical levels being spread
out in vertical, it is reasonable to expect the flow to be less singular, and wavebreaking less
likely to occur. In Fig. 10 we illustrate this with the results of two experiments for A = 0.2
and 0.3, Ri = 1, and Vp=5 ms™'. The respective solutions for the unidirectional wind profile
(Vo = 0) are shown in Figs. 7b,c. For the wind profile turning with height, the strongest
flow perturbations are still found in the proximity of 2, the altitude at which a large portion
of the spectrum (k # 0, I = 0) finds its critical level. However, the perturbations extend
beyond this level as the waves that have not yet encountered their critical levels continue
to propagate upward. The large amplitude perturbations lie downstream of the mountain
in the central yz-plane as the wind vectors near z, are oriented mostly in the positive y-

direction. The degree of nonlinearity in these solutions is still significant and might lead to

X

Figure 9: Wind vectors turning counterclockwise with height from the surface direction

labeled as (U, Vp).
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x/a ' y/a

Figure 10: Numerical solutions at T' = ¢tUp/a = 18 for the wind profile turning with height.
Isentropes in the central zz-plane (left) and yz-plane (right) for Ri = 1.0, A = 0.2 (top) and
Ri = 1.0, h = 0.3 (bottom).

wavebreaking at later times and farther away from the mountain. However, it is apparent
that in the case of wind turning with height larger mountain heights are necessary to induce
wavebreaking aloft than for the unidirectional profile. For any particular wind profile, such

as (8), the degree of singularity is likely to depend on the orographic spectrum as well.

4. CONCLUSIONS

Using linear theory and numerical simulations, we have examined a three-dimensional, lin-
ear field of stationary internal gravity waves in a vertically sheared, unidirectional flow past
an isolated axisymmetric mountain. The assumed linear ambient wind profile and constant
environmental stability constitute perhaps the simplest scenario which provides a critical
level for all wave components at the height where the mean flow vanishes. Our Hnear the-

ory, formally valid for Ri > 1/4, is hydrostatic, Boussinesq, irrotational, and inviscid. The
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stationary wave pattern similar to the one for the constant wind profile has energy concen-
trated along the paraboloidal wave envelopes which widen on approaching the critical level.
Above the critical level perturbations are weak as the waves continuously and systemati-
cally transfer their energy to the mean flow beneath the critical level. In an inviscid model,
this pile up of energy, compressed vertical wavelength, and the large horizontal excursions
that the individual fluid elements undergo beneath the critical level, will eventually lead to
overturning of isentropic surfaces.

In view of the intrinsic singularity of the linear theory, we have conducted a series of
experiments with a numerical model suitable for simulating natural stratified flows to verify
realizability of the analytical results. Our numerical simulations for the unidirectional wind
profile confirm the theoretical predictions for a range of mountain heights given Ri > 1. The
larger the vertical scale of shear compared to the vertical wavelength of waves, the larger
the range of mountain heights for which the linear scenario of smooth wave absorption is
likely to occur. Within the linear regime, numerical solutions in the vicinity of the critical
level are regularized by the implicit viscosity of finite-difference approximations emulating
dissipation in turbulent critical-level flows. The wavebreaking beneath the critical level
occurs ultimately at the amplitude of orography at which the nonlinearities begin to dominate
over viscous dissipation in the proximity of the critical level. This marks the transition to the
nonlinear regime characterized by strongly accelerated flows over the lee slopes and wakes
with recirculating eddies. The important question here is whether and where critical-level
wavebreaking occurs in a more general case of wind turning with height when individual wave
components encounter their critical levels at different altitudes. The indications exist that
such flows are less singular in a sense of requiring larger mountain amplitudes to produce

wavebreaking aloft. This problem will be pursued farther in future studies.

5. REFERENCES

Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press,
482 pp.

Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a
shear flow. J. Fluid Mech., 27, 513-539.

Broad, A. S., 1995: Linear theory of momentum fluxes in 3-D flows with turning of the
mean wind with height. Quart. J. Roy. Meteor. Soc., 121, 1891-1902.

Drazin, P. G. and W. H. Reid, 1971: Hydrodynamic Stability. Cambridge University Press,
527 pp.

78



GRUBISIC, V.: CRITICAL LEVELS AND WAVEBREAKING ...

Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves.
Geofys. Publ., 22, 1-23.

Grubisi¢, V., and P. K. Smolarkiewicz, 1997: The effect of critical levels on 3D orographic
flows: Linear regime. J. Atmos. Sci., 51, 1943-1960.

Kelly, R. E., 1977: Linear and nonlinear critical layer effects on wave propagation. Geofluidy-
namical Wave Mathematics, Natl. Sci. Found. Reg. Conf. Math., Apllied Mathematics
Group, University of Washington, 194-210.

Maslowe, S. A., 1986: Critical layers in shear flows. Ann. Rev. Fluid Mech., 18, 405-432.

McIntyre, M. E., and W. A. Norton, 1990: Dissipative wave-mean interactions and the
transport of vorticity and potential vorticity. J. Fluid Mech., 212, 403-435.

Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10,
496-508. |

Miranda, P. M. A., and M. A. Valente, 1997: Critical level resonance in three-dimensional
flow past isolated mountain. J. Atmos. Sci., 54, 1574-1588.

Prusa, J. M., P. K. Smolarkiewicz, and R. R. Garcia, 1996: On the propagation and breaking
at high altitudes of gravity waves excited by tropospheric forcing. J. Atmos. Sci., 53,
2186-22186.

Rotunno, R., V. Grubisi¢, and P. K. Smolarkiewicz, 1998: Vorticity and potential vorticity
in mountain wakes. To be submitted to J. Atmos. Sci..

Shutts, G., 1995: Gravity-wave drag parametrization over complex terrain: The effect of
critical-level absorption in directional wind-shear. Quart. J. Roy. Meteor. Soc., 121,
1005-1021.

Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated obstacle.
Tellus, 32, 348-364.

» 1986: Further development of a theory of lee cyclogenesis. J. Atmos. Sci., 43,
1582-1602.

Smolarkiewicz, P. K., and L. G. Margolin, 1997: On forward-in-time differencing for fluids:
An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows. Atmos. Ocean,
35, 127-152.

, and J. A. Pudykiewicz, 1992: A class of semi-Lagrangian approximations for
fluids. J. Atmos. Sci., 49, 2082-2096.

Worthington, R. M., and L. Thomas, 1996: Radar measurements of critical-layer absorption

in mountain waves. Quart. J. Roy. Meteor. Soc., 122, 1263-1282.

79





