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EFFECT OF SURFACE GRAVITY WAVES ON HEAT FLUX

P Janssen

1. INTRODUCTION

In the past decade evidence has been collected on the sea state dependence of the drag coefficient for
momentum transfer. This was made possible because of an increased accuracy of the measurement of
turbulent wind fluctuations, thereby obtaining a reliable estimate of the momentum flux - <6udw> (where
du, dw are the fluctuating parts of the horizontal and vertical component of the wind). All this was
found to agree with theoretical work on the interaction of wind and waves (Janssen, 1982, 1989, 1991):
the sea state dependence of the theoretical drag coefficient is in fair agreement with the HEXOS

observations (Janssen, 1992).

The state of affairs is, hoWever, less clear regarding the sea state dependence of heat and moisture flux.
Observational evidence of wind and sea state dependence of the Dalton number C g and the Stanton
number C_ does not exist, not because these quantities have not been measured but because the
measurement of heat flux -<T' w'> and moisture flux -<m’ w’>is less accurate, giving such a large
scatter that no reliable dependency may be inferred. An exception is perhaps the laboratory work of
Ocampo-Torres et al (1994) which does show some wind and sea state dependence of the moisture flux.
Regarding the sea state dependence of these fluxes it should be noted that extra complications arise
because Cq and C,_ only depend on the square root of the drag coefficient C p- For heat exchange this

may be seen as follows. Denoting by AT the air-sea temperature difference, one has
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AT =
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where z, is a thermal roughness (usually taken to be constant), u, is the friction velocity,

*

g. = — <w'T'>and % the von Karman constant.

The heat exchange coefficient C , 1s given by

q. = C, Uy AT, | 1)
and, on elimination of AT1 o» one finds
c =ct_X __ @)
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where C,, = (u /U 10)2 . Assuming for the moment that z,. is sea state independent, we see that C . is,
through C,), sea state dependent as well, although the dependence is weaker because of the square root.
Since it was not easy to determine the sea state dependence of C,,, it is clear that experimentally finding

a sea state dependence of Cq is an even harder task.

All this assumes that z,. is independent of wind speed and sea state. Here I would like to investigate
whether this is the case or not. To that end, I have extended the theory of wind-wave generation to include
effects of (thermal) stratification. From previous work it is found that the mean flow is affected by the

waves through a diffusion term
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where K(z) denotes a turbulent eddy viscosity and D, denotes the effect of surface gravity waves on the

mean flow (hence D, depends on the wave spectrum). In the so-called passive scalar approximation the

evolution of the mean temperature T is found to be given as

Sr - lkplrp, 2T @
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where the turbulent eddy viscosity for momentum and temperature are assumed to be equal to each other.

With a passive scalar we mean a quantity that does not affect the dynamics of the flow to a significant
extent. In the case of flow over gravity waves, it is known that the momentum flux is mainly determined
by the input to the high-frequency waves. As for these waves the Richardson number g p' /p /(U 0)2 is
very small, the growth rate of these waves is hardly affected by temperature effects (see Janssen and

Komen, 1986) hence the wave diffusion coefficient D, is mainly determined by the shear in the flow.

Next, using an approximation for D, obtained from Janssen (1991), the steady state temperature equation
is solved in order to investigate a possible dependence of the temperature roughness on the sea state. A

brief discussion of our results is given.

It should be noted that this treatment may also be applied to the transport of other parameters, such as CO,

density or moisture, across the air-sea interface as long as the passive scalar approximation holds.



2. EVOLUTION EQUATIONS FOR TEMPERATURE
We consider a two-dimensional plane parallel flow whose speed and density depend on height.

Acceleration of gravity points in the negative z-direction and in equilibrium the air-sea interface is located
at z=0 (cf Fig 1).

We consider gravity waves superimposed on this equilibrium and, in particular, we are interested in the
effect of these waves on the mean flow and temperature distribution (as usual we assume the hydrostatic

approximation hence T' /T = -p'/p,).

For the waves we take the adiabatic equations with infinite sound speed. The rate of change of the mean
flow is then determined by turbulence (which is parametrized by a mixing length hypothesis) and the

wave-induced stress —<0u Ow> where Ou, 6w are wave-induced velocities of air, hence

9 U, = i(K(z) 9 U, -<bu 6w>) . (5)
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Here, K(z) = 1? |oU [0z |, 1=xz and the wave-induced stress was obtained explicitly in Janssen (1982),
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where the wave-diffusion coefficient depends on the wave spectrum ®(k),
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Here, (Jo:\/g_k is the angular frequency of the wave, k its wavenumber, v . =0w/ok is the group velocity
and ) is the normalised vertical component of the wave-induced velocity which obeys the so-called
Rayleigh equation. The wave number k in Eq (7) has to be expressed as a function of height through the
resonance condition U (z)=c, with ¢ the phase speed w/k of the waves. Equation (6) tells us that the
air flow at a certain height z changes in time owing to the resonant interaction of a water wave with the
air flow. In this fashion there is an energy transfer from air flow U, to the water waves, resulting in a

slowing down of the air flow. In other words, there is a possible sea-state dependence of the air flow.

In fact, detailed calculations using the complete quasi-linear approach of Eq (6) have already been

reported by Janssen (1989), and a parametrization of the wave effect has been presented by Janssen



(1991). We shall use this latter approach to obtain a parametrization of the wave diffusion coefficient in

the next section.

Here, we continue with a calculation of the effect of waves on the temperature distribution. In two

dimensions the appropriate equation for the temperature reads
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Separating fluctuations from mean quantities we have

T=T +6T
u=U +u ©)
w=0w

Inserting (9) in (8) and taking ensemble averages we obtain for a homogeneous sea
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while the (linear) equation for the temperature fluctuations becomes

d
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Here, in the spirit of Miles’ theory we have neglected the effect of turbulence on the wave-induced
temperature fluctuation. In addition, we have neglected terms in (11) which are quadratic in the

fluctuations (quasi-linear theory).

In order to solve for the temperature fluctuation we perform the usual Fourier analysis,

8T = f dk(dT e®+c.c.), O=kx-wt

: (12)
dw = f dk(®w e®+c.c.)
to obtain from Eq (11) the following relation between 8T and ow,
A 5w oT '
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where W=U -c. The wave-induced transport of temperature then follows at once, as

g, = —<ow 8T> = - f dk(8T &w*+6w 6T7) ' (14a)
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Note that (14b) has a singularity at W=0, corresponding to the resonant wave-mean flow interaction. For

growing waves this singularity is interpreted as

W R . as)

where the principle value term P/W gives a real contribution only. Therefore,
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The final step is then to relate the wave-induced velocity with the surface elevation 7); in linear

approximation we have

—nN=w
atn

hence
z=0: 0w = —iwdf

This suggests that one can write for z>0

oW = -iwdf| %

where Y is the normalised wave-induced velocity. Introducing then the wave number spectrum

®k) = 2[5 17

we obtain for the wave-induced temperature transport



q,=D, =T (18)

where D w is identical to the diffusion coefficient for momentum.

Therefore, the mean temperature equation becomes

3 3 3 3
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and in the next section we shall search for equilibrium solutions of (19).

3. PARAMETRIZATION OF THE EFFECT OF WAVES AND THE TEMPERATURE
DISTRIBUTION
In order to make progress we need an approximate expression for the wave diffusion coefficient for z>0.

The starting point is the momentum balance in the steady state

) ) U, ou, 52
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Integrating once with respect to height we have

T, *tT, =T @n

. 2 .
with T=u, the surfacestressand T, the wave-induced stress. From Janssen (1991) we know that from 2>z

a good approximation for the wind profile is

z+z,

U
U2 = 7* In , 222, . (22)

Zo +z1

Then, by means of the stress balance we obtain for the unknown roughness z,

z, = Zo( 1 -1), x=T /T ' ‘ (23)

e

and T, is determined from the wave model.



It should be remarked that for large height one has for the wind profile

U = EKi In(z/z,), 2z, . (24)

with z, = z, + z; = zfy1-x.

Now, substitution of (22) into (20) gives as an expression for the wave diffusion coefficient

hpn XA
D, = 2xu,

(25)
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which is formally only valid for z>z,. We also need the wave-diffusion coefficient in the range O<z<z,.
Since (25) has the desired property that D ~0 for z~+0 (because the wave spectrum vanishes for high
frequencies) we simply use (25) also for 0<z<z o

In order to be able to calculate the heat transport, we make the additional assumption that close to the sea
surface this transport is determined by molecular conduction. To that end we introduce an
additionaldiffusivity Ov ,(with 8 an empirical constant) and in the steady state the equation for the

temperature becomes (after integration over height z):

- ) oU o ‘ ' ,
» va a_z Ta + (l” azo +6vz] a—z To ‘= q. ’ (26)
hence
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Solving this differential equation for AT = T, - T_ with boundary conditions AT=0 at z=0 gives

1 +£) } (28)
x-

where x_ are the negative roots of the denominator of the RHS of Eq (27),
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Introducing the heat exchange coefficient C a according to

q, = C UIOATIO

q.

we obtain

q., :
C = — (30
o UAT, )

where U, follows from (24) and ATIO follows (28). Introducing then the drag coefficient C p according

fo

.
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T=C, U}~ C, = [mlo/z] | (31)
2

we finally arrive at

_ q* 173
a. D -
u, AT,

(32)

In Fig 2 I have plotted Cq_ versus ng for different sea states and wind speeds. Remarkably, an
approximate square root dependence of Cq* on C, is clearly seen, especially for large C,, (i.e. large
winds). De Cosmo et al (1996) have obtained a similar result from the HEXOS data, although the scatter
is quite big. In order to understand what is happening I use the following approximation for AT which

is valid for small viscous roughness length z,; then

o= l o
x,=Vaz, x =2z

and the temperature profile becomes for large z

AT = % {ln i] +1n( i)} (33)
zv Z1

2xU
and the heat exchange coefficient becomes
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2%Cy ,
c, = 2 . (34)

Taking fixed sea state and noting that z, ~ l and 21 ~ u*2 we note that presumably the denominator
of (34) is approximately constant (i.e. independent of u,) and therefore C g is approximately dependent

on the square root of C,.

Furthermore, in Fig 3 I have plotted Cé versus wind speed for different sea states. The temperature
difference was 1° K. Clearly, there is a much weaker dependence of Cq on wind speed compared to the
wind speed dependence of C,,. Also, Cq is less sensitive to the sea state. In this context it should be

noted that very young waves with T /T=0.99 hardly ever occur in nature and should therefore be regarded

as an extreme case.

It is of interest to study the behaviour of the heat fluxes on a global scale. To that end the WAM model
was run on analysed ECMWF winds which resulted in an estimate of the wave-induced stress. Hence,
the roughness lengths for momentum and heat transfer are known. Fig 4 shows C g, Versus wind speed,
while Fig 5 shows the corresponding drag coefficient versus wind speed. Note that Cq* shows hardly any
wind speed dependence, in agreement with the HEXOS observations of De Cosmo et al (1996). However,
the scatter is much less. This much reduced scatter is also evident in the plot for the drag coefficient C),
(Fig 5) and is probably related to the different time and length scales of the numerical simulation (6 hrs
and 3°) and the HEXOS observations (averaging time is 1 hr). The longer time and length scale in the

numerical simulation presumably leads to smoothing of the results for C),, Cq* and wind speed U,,.

Finally, it is noted that the HEXOS results regarding moisture and heat flux give almost identical mean
relations between transport coefficients and wind speed. This is surprising since one would expect that
spray would play a role in the process of moisture transfer. In the range of wind speeds observed during
HEXOS (U,;<18m/s) this is-apparently not the case, and therefore also for moisture transfer the passive
scalar approximation seems appropriate. In Fig.4 I therefore have included the mean observed HEXOS
relation for moisture flux (De Cosmo et al, 1996) and laboratory observations from Ocampo-Torres et al,
1994. While from the HEXOS observations no wind speed dependence of the Dalton number could be
inferred, the laboratory observations do seem to suggest a systematic trend with wind speed. In this
context it should be noted that the minimum in the observed Dalton number from the laboratory which

occurs at about 3 m/s corresponds with the minimum wind speed needed for wave generation. For winds



above 3 m/s a rather sudden increase in mean square slope of the waves was observed corresponding with
an increase of Dalton number with wind speed. In this manner Ocampo-Torres et al, 1994, could establish

a relation between moisture transfer and the sea state.

4, CONCLUSIONS
We have investigated the dependence of heat and moisture flux on the sea state. The sea state dependence
is much less pronounced than for momentum transfer since both the Stanton number C g and the Dalton

*

number C  depend on the square root of the drag coefficient.

Makin and Mastenbroek (1996) also made an attempt to model the impact of ocean waves on the heat flux
by using a more sophjsﬁcafed turbulence’ closure model. These authors claim that a mixing length model
such as used in this noté Would result in a decrease of exchange coefficients for increasing wind speed
and that a so-called two-equation eddy viscosity model is needed to obtain an increase with wind speed.
The present results seem to indicate that a more sophisticated turbulence model is not required to obtain
the desired trend with wind speed because the ocean waves also have, through the wave-diffusion

coefficient D o 8 direct impact on heat exchange.
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Fig. 2 Dependence of Stanton number C_ on the drag coefficient C .
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Fig. 3 Sea state dependence of Stanton number.
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Fig.4 Simulated Stanton number versus wind speed. The horizontal line denotes the mean HEXOS result for
moisture flux (De Cosmo et al, 1996) while the dots denote the laboratorty results of Ocampo-Torres et al (1994).
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Fig. 5 Simulated Drag coefficient versus wind speed.
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