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1 INTRODUCTION

Mesoscale atmospheric models are utilized for many purposes. For short range operationa.l numerical
weather prediction, such models are applied several times a day at grid resolutions ranging from a
few kilometers to hundreds of kilometers. Mesoscale models are also applied for research purposes.
In' order to understand many mesoscale atmospheric phenomena it is necessary to apply models in
order to simulate these phenomena. Regional climate simulation is another application area. For
most mesoscale model applications, it is necessary to combine observed data with the abilities of the
models to simulate the mesoscale atmospheric pheﬁomena, i.e. it is necessary to apply mesoscale data
assimilation. There are many similarities between the general data assimilation problem for e.g. global
atmospheric models but several new problems will show up in mesoscale data assimilation.

The purpose of this paper is to review the status of data assimilation for mesoscale atmospheric
models. Particular emphasis is paid on data assimilation for mesoscale limited area models, since
such models are frequently applied by weather services for short range numerical weather prediction.
We will start with a review of problems associated with mesoscale data assimilation in section 2 and
operational and future observing system for mesoscale models will be reviewed and discussed in section
3. The status of development of mesoscale data assimilation techniques will be reviewed in section 4
and a particular review of activities within the international HIRLAM project will, finally, be given

in section 5.

2 PROBLEMS IN MESOSCALE DATA ASSIMILATION

The task of data assimilation for mesoscale limited area models involves several particular problems
in comparison with the general data assimilation problem for synoptic scale global forecast models.

Examples of such particular problenis are:
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e Mesoscale data assimilation includes a wide range spatial scales. In addition to the synoptic
scales of motion, we will have to treat also the mesoscale part of the spectrum. In general we
will not have observations to recover the whole spectrum, so we will have to rely on model

simulated features for the smaller scales of motion.

e In addition to circulation systems forced by flow instabilities, many interesting mesoscale phe-
nomena are strongly forced by inhomogeneities in the lower boundary conditions, e.g. land-sea
differences. This will require improved initial data on these lower boundary conditions and for

some phenomena coupled oceanographic models including data assimilation will be required.

e Geostrophic adjustment theory tells us that the wind field beéOmés moreA impo‘rtyﬁnt' for the
smaller horizontal scales. For the assimilation of wind information to be efﬁciegt, adjustment
theory also tells us that the wind must be given for deep layer enough. Thus, access to high
quality wind profile information becomes more important for mesoscale data assimilation. For

~ shallow mesoscale boundary layer structures, mass field information is likely to be impprtaﬁt,

however.

e Mesoscale flow is in general less geostrophic and more divergent than synoptic scale flow. This
makes initialization with traditional initialization techniques, like the non-linear normal mode
initialization, less useful. In particular for mesoscale non-hydrostatic models, appropriate normal

modes for such initialization are not available.

e Since mesoscale models generally are applied over regional areas only, lateral boundary conditions

impose severe problems also with regard to data assimilation.

e Moist processes become increasingly important with increased spatial resolutions. This makes
the assimilation of moisture parameters more important, in particular since the short forecast

range of mesoscale model applications makes improved spin-up of moist processes crucial.

2.1 Forced mesoscale systems versus instabilities

Considering the basic mechanisms for their origin, one may distinguish between at least two different
types of mesoscale circulation systems: (1) Circulation systems caused by internal flow instabilities,
e.g. mesoscale low pressure developments and, (2) Circulation systems forced by inhomogeneities of
the lower boundary conditions, e.g. sea and land breezes.

For the forecasting and simulation of these two different types of mesoscale circulation systems,
we need different data assimilation strategies. The first type of mesoscale circulation systems requires

a good description of the initial internal flow, i.e. the upper air wind, temperature and pressure
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fields, and in this respect the assimilation problem is not much different from the more general atmo-
spheric data assimilation problem for synoptic scales of motion. The mesoscale instabilities may add
requirements on refined spatial and temporal resolutions of the flow characteristics responsible for the
mesoscale instabilities.

The second class of mesoscale circulation systems may put more particular demands on the
mesoscale data assimilation, since we need to describe the lower boundary coﬁditions carefully. Con-
sider, for example, the mesoscale convective snowbands that occur in winter-time cold air outbreaks
over the open water surfaces of the Baltic Sea. One example of such convective snowbands is shown in
the satellite image given in Figure 1. It has been shown (Andersson and Gustafsson, 1994), that these
convective snow-bands can be predicted by mesoscale models, provided the sea ice conditions and the
sea surface temperatures are accurately described. For the particular case in Figure 1, the detailed
geometry of the ice conditions in the western part of the Bay of Finland and in the archipelagos of
Finland and Sweden turned out to crucial for the proper simulation of the major snowband along the
Swedish east coast. The establishment of initial sea ice conditions, with fine details as those seen in
Figure 1, is likely to require coupled oceanographic models including components for the sea ice. Such

coupled models require also oceanographic data assimilation techniques to be applied.
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Figure 1: Infrared NOAA-9 satellite image 11 January 1987 12.35 UTC.
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The Swedish Meteorological and Hydrological Institute (SMHI) is carrying out an atmospheric
re-analysis exercise for the cold winter 1986-87 within the framework of the BALTEX experiment.
A simple coupled oceanographic model was added to the atmospheric model for this re-analysis ex-
ercise. In the first re-analysis trial, no data assimilation was applied in the coupled oceanographic
model and, as it may be expected, a slow drift away from the observed conditions in the Baltic Sea
ice and water temperature conditions was experienced. Adding a simple assimilation of sea surface
temperatures improved the situation significantly. Once the sea surface temperatures were right, also
the forming/melting and advection of sea ice were simulated accurately. The time evolution of the
sea surface temperature according to observations and according to the sea and ice model with and
without data assimilation for one particular subarea of the oceanographic model is given in Figure 2.

Notice the differences in the ice-covered period with and without data assimilation.
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Figure 2: Time evolution of sea-surface temperatures in the subbasin " Archepelago of Finland” in the Baltic Sea
during November 1986 - May 1987; observations (full line), model without data assimilation (dashed line) and model

with data assimilation (dotted line).

2.2 Problems related to lateral boundary conditions

It has often been experienced that the limited area models in Europe have difficulties in forecasting
fast developing cyclones over the North Atlantic. Some of these forecasts have been investigated in
detail, and it has been possible to trace the origin of forecast failures, for example, to poor lateral

boundary conditions. Several such forecast failures were discussed by Gustafsson, Loénnberg and
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Pailleux (1996). Theoretical investigations on the propagation of initial data errors in numerical
forecast model integrations were first discussed by Charney (1949) and in the recent monograph by
Phillips (1990) the work done since then is summarized. Using maximum values of Rossby wave group

velocities, Phillips found that

”.... 1if a one-day forecast is to be made for a point near the ground in middle latitudes, the
state of the atmosphere at the beginning of the forecast must be known within the following volume:
18 kilometers upward; 8 400 kilometers to the north and south; 8 400 kilometers to the east; 1 100
kilometers to the west. (The west and east boundaries of this region should be shifted westward by an
amount equal to the average wind speed times one day to account for the advection by the mean zonal
winds.) ....”

It has been demonstrated (Gustafsson, 1990), that the use of inadequate lateral boundaries during
the data assimilation may have a more negative impact on the forecast quality than the use of inad-
equate lateral boundary condition fields directly during the forecast phase. The main reason for this
is that the advection of observed information from data-dense areas (e.g. North America) to data-

sparse areas (e.g. the North Atlantic) is replaced by the advection of lower quality ("old”) forecast

information during the data assimilation.

' o]

Figure 3: R.M.S. differences between 500 hPa radiosonde height observations and FMI 6 hour HIRLAM forecasts
for January 1992 and 00 UTC initial data.

The first-guess for a limited area analysis is normally a six hour forecast. At the boundaries, the
forecast values are a blend of the predicted values from the inner domain and of external boundary
forecasts. The first-guess values near the boundaries might then be based on older forecasts than
the first-guess in the inner area. Figure 3 and 4, provided by Peter Lonnberg FMI, show the rms-

values of observed-minus-forecast values for radiosondes in the FMI HIRLAM area. The rms-values
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at the boundaries are significantly higher than those in the inner area. Even the error values in the
North Atlantic area are clearly smaller than the North American values. The contribution to the
high errors at the North American radiosonde stations must come from a poor background field as
the observations themselves are of high quality. Figure 3 shows the situation in January 1992 with
the first-guess compared to 00 UTC radiosonde data. The 00 UTC first-guess at the boundary was
in January 1992 a 36 hour forecast from ECMWF. Corresponding statistics, but for 12 UTC data,
are shown in Figure 4. The boundary first-guess values are a 24 hour ECMWF forecast in Figure
4. As expected the rms-values are much lower at the boundaries at 12 UTC than at 00 UTC, while
the values in the inner area are comparable. Thé rms-values presented in Figures 3-4 support the
hypothesis that large deviations between background field and observations might excite noise at the
boundaries. Noise from the western boundary propagates quickly to the European continent and

contributes to the fast error growth in the HIRLAM forecasts after 24-36 hours.

)
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Figure 4: R.M.S. differences between 500 hPa radiosonde height observations and FMI 6 hour HIRLAM forecasts
for January 1992 and 12 UTC initial data.

Operational experience suggests that the handling of the lateral boundaries and the use of small
integration areas are significant error sources. Old boundaries generate significant errors in the data
assimilation cycle. Global, or at least hemispheric, data assimilation may be necessary to achieve
higher accuracy of the initial state. Most smaller weather services will have no choice, however, the
only possible way to continue independent numerical weather prediction is by application of limited
area models. Every effort must then be taken to obtain best possible lateral boundaries. One way out
of this problem for the smaller weather services would be cooperation among several smaller weather
services for running data assimilation systems over larger integration areas combined with national

applications of very high resolution models, confined to smaller integration areas.
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2.3 Problems related to moisture assimilation and spin-up

The time integration of each numerical forecast model from the initial analysis fields is associated
with a "spin-up” of the dynamical and physical processes included in the model. The state of "bal-
ance” that is a result of this spin-up is quite a subtle one, and the time-scale for the spin-up can
be considerable, depending on the nature of the physical and dynamical processes involved. Every
time new observations are influencing the model state through the data assimilation cycle, this subtle
balance is disturbed and the model integration has to go through a new period of spin-up. With the
application of high resolution limited area models, we are interested in the quality of forecasts ranging
from 6 hours to a few days. The short end of this forecast time range is well within the time period
needed for spin-up of certain processes. Taking this conflict between spin-up and forecast range into
account, it is of course necessary to take every possible measure to reduce the spin-up time and to
avoid data assimilation procedures which destroy the subtle balance created by the model spin-up.
An illustration to the spin-up of the operational SMHI HIRLAM mesoscale forecast model, including
cloud water as an explicit forecast model variable, is given in Tables 1 and 2. The tables present results
from verification of the predicted total cloudiness against satellite (AVHRR) derived total cloudiness
('Karlsson, 1996). Table 1 gives the verification results for August 1994, when the cloud water field
was initialized with zero values, and Table 2 gives the verification results for March 1995, when a
6 h forecast had replaced the zero values as an initialization for cloud Wate‘r.. r.I‘he 6 h cloud water
forecast obviously helps to reduce the spin-up of the cloudiness forecast, although the results should
be interpreted with some caution, since the cloudiness characteristics in August generally are different

from those in April, with increased dominance of clouds of convective origin.

AVHRR | +06h | +12h | +24h | +36h | +48h
Cloudiness(%) 57.8 39.3 | 43.3 | 463 | 47.3 | 479

Bias(%) - -18.5 | -14.5 | -11.5 | -10.5 | -9.8

RMS(%) - 19.8 | 15.7 | 131 | 12.6 | 12.0
Table 1: Comparison of monthly mean SMHI HIRLAM cloudiness forecast fields with monthly

mean AVHRR derived cloudiness fields for August 1994.

AVHRR | +06h | +12h | +24h | +36h | 4-48h
Cloudiness(%) 68.2 58.5 | 63.5 | 674 | 69.5 | 70.6

Bias(%) - 96 | 46 | -08 | 1.3 | 24

RMS (%) - 11.0 6.8 5.2 5.7 5.6
Table 2: Comparison of monthly mean SMHI HIRLAM cloudiness forecast fields with monthly

mean AVHRR derived cloudiness fields for March 1995.
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3 OBSERVING SYSTEMS FOR MESOSCALE ASSIMILATION

We may generally state that conventional observing systems, like the radiosonde network, have poor
spatial resolutions in comparison with the phenomena we want to describe in the initial data for
mesoscale models. Therefore we need to try to utilize remote sensing data for mesoscale data assimila-
tion. This adds significant difficulties to the data assimilation task, since the parameters measured by
remote sensing techniques are most commonly not direct model parameters, like temperature, wind
and humidity profiles measured by the radiosonde network. In addition, remote sensing observations
are often associated with complicated observational error structures. Provided the appropriate as-
similation techniques can be developed, however, remote sensing data have great potential for use
in mesoscale data assimilation. We will review a few of these potential possibilities below. Other

important sources of data for mesoscale models are:

e Aircraft data, in particular with regard to the rapid development of automatic data collection
and processing systems such as ACARS. ACARS reports are collected within the framework
of air traffic control systems. Wind and temperature profiles from take-off and landing of the
aircrafts are available in addition to the single level data from the flight tracks. ACARS have
been introduced oi)e_ra.tiona,lly over the North American continent and a similar system is being

built up over Europe.

e In the long term the use of satellite image information is an important data assimilation challenge
in the context of e.g. 4-dimensional variational assimilation. In the short term, some empirical
techniques may possibly be tried in order to improve the current humidity analysis or to improve

the initial cloud representation in the model.
° W';nd profilers
e High resolution TOVS data
e Scatterometer wind d#ta

e Surface data from e.g. automatic weather stations with high resolution in space and time

3.1 Weather Radar Data

Weather services around the world have invested heavily in networks of weather radars, mainly for
manual nowcasting and very short-range forecasting purposes. The output signal from weather radars
is reflectivity caused by precipitation and some of these weather radars also produce doppler mode

information. The reflectivity signal may be converted to precipitation intensity and the doppler mode
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signals may be used to produce radial wind vectors. Examples of weather radar networks are the
NEXRAD system in the USA and the NORDRAD system covering large parts of the Nordic countries.

The potential for using weather radar for mesoscale data assimilation is obvious. Radar precipi-
tation with a horizontal resolution of a few kilometers should be useful for e.g. diabatic initialization
purposes and the radial wind vector information from doppler radars should be useful for recovering
the wind field. The success in utilization of weather radar data for mesoscale data assimilation has
been rather limited. This is so because of the very complicated error structures in radar information.
To convert radar information to precipitation, for example, one needs to convert radar reflectivity to
precipitation intensity, and this is not easy due to the dependence on size of the rain droplets which
is unknown. Omne need also to eliminate enhanced reflectivity from melting ice and snow particles as

well as reflectivity from the surface due to anomalous radar beam propagation.

Figure 5: Precipitation data from the NORDRAD network, 24 August 1995 00.00 UTC. Without (left) and with

(right) filtering of ground echoes due to anomalous radar beam propagation.

The SMHI has embarked on a mesoscale analysis project. The objective of the project is primarily
to produce standalone objective analysis fields to be used for nowcasting and severe weather monitoring
purposes. Precipitation is one of the most important parameters for this mesoscale analysis project
and radar precipitation data is one of the most important input data sources, in particular over the
data sparse water surfaces of the Baltic Sea. The use of radar data has caused serious problems with
regard to quality control. Figure 5 illustrates some of these problems. In the original radar data, there
is an intensive "real” precipitation area in the southwestern part of Sweden caught by the Copenhagen

radar. In addition to this, there are false equally intensive radar precipitation areas indicated by
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the radars in the south-eastern corner of Sweden and on the island of Gotland. Notice also the false
intense precipitation area along the coast of the Baltic states. The false precipitation patterns are,
in fact, reflections from the ground, caused by anomalous radar beam propagation. In this particular
case, it was possible to eliminate most of the false precipitation patterns by utilizing the doppler radar
signals, indicating that the radar beams were reflected by the non-moving land and sea surfaces. In
other cases, such an elimination algorithm is not sufficient, however, a particulai problem is reflections
from sea surface waves with non-zero doppler velocities.

The Doppler weather radars also produce radi‘al wind vectors. Within the framework of variational
assimilation, the radial wind vectors can be used directly together with dynamical and filtering con-
straints. Another possibility is to derive a single wind profile from each Doppler radar (VAD, Velocity
Azimuth Display), by assuming horizontally homogeneous wind conditions at each vertical level in the
vicinity of the radar. Such VAD-profiles can be obtained, e.g. every 15 minute, from each doppler
radar site. Figure 6 (Tage Andersson, personal communication) illustrates the good agreement be-

tween VAD wind profiles and radiosonde wind profiles from observation sites close to Gothenburg in

Sweden.
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Figure 6: Comparison between VAD wind profiles from the Jonsered doppler radar and radiosonde winds from

Landvetter. Correlation coefficients, mean absolute deviation and r.m.s. deviation are given for the scalar wind

velocity. The data periods include 6 December 1994 - 14 February 1995 and 28 June - 30 November 1995.
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3.2 GPS measurements of water vapor

Radio occultation of the terrestial atmosphere is now possible through the use of signals transmitted
by the satellites of the Global Positioning System (GPS). By receiving the signals on satellites in
low orbit, it is possible to derive accurate, high-resolution profiles of refractivity. Vertical profiles of
temperature and water vapor can then be retrieved from these refractivity measurements. The radio
wave propagation delay of the GPS signals received at GPS stations on the earth may also be used
to determine very accurate vertically integrated water vapor measurements with high time resolution.
This idea is being tested within the BALTEX experiment. Approximately 5 Finnish and 20 Swedish
GPS stations were operated for this purpose during August - November 1995. Very accurate vertically
integrated water vapor amounts, according to comparison with radiosonde and water vapor radiometer
measurements, were retrieved. Figure 7 (Gunnar Elgered, personal communication) shows the time
evolution of the integrated water vapor given by the GPS retrieval and by the microwave radiometer
at the Onsala Observatory in western Sweden.
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Figure 7: Integrated water vapor (IWV) given by a microwave radiometer (upper curve;offset 20kgm=2) and
GPS retrieval (lower curve) at the Onsala observatory during August 1995.

Kuo et al. (1996) have investigated the possibilities of assimilating vertically integrated water
vapor measurements into a mesoscale non- hydrostatic model by means of 4-dimensional variational
data assimilation (4DVAR). The experiment was carried out as an observing system experiment.
The special soundings collected during in SESAME (Severe Environmental Storms and Mesoscale
Experiment) 1979 were used to construct a high quality upper-air analysis data set, from which
”simulated” integrated water vapor measurements were generated. In addition, the vertical water
vapor profiles were used for verification purposes. Although the experiment was carried out without

any background error constraint in the assimilation, that indeed should help to distribute the integrated
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water vapor amounts in the vertical, and although the assimilation window in the 4DVAR experiment

was as short as 1 hour, it was possible to demonstrate that a significant portion of the vertical variation

of the water vapor profiles was retrieved by the 4DVAR procedure. In addition, it was shown that

ground measurements of water vapor could also contribute to improve the retrieval of the water vapor

profiles in the lower part of the troposphere.

4 MESOSCALE DATA ASSIMILATION METHODS

An overview of data assimilation techniques utilized for operational mesoscale numerical weather

prediction is given in Table 3 below. It may be noticed that forward intermittent data assimilation

based on optimum interpolation and non-linear normal mode initialization is most commonly applied

operationally at the present time. The application of continuous data assimilation with observation

nudging based on analysis corrections at the UK Met Office is the main excéption.

Model group/ | Objective analysis Initialization Assimilation Development
Weather Service method method scheme effort
HIRLAM 3D Optimum Nonp-linear normal Forward 3DVAR, 4DVAR
Interpolation mode | Intermittent
France 3D Optimum Digital Forward 3DVAR, 4DVAR
Interpolation filter Intermittent
Germany 3D Optimum Non-linear normal Forward Nudging
Interpolation mode intermittent
United Kingdom Analysis Divergence Nudging, Forward | 3DVAR, 4DVAR
corrections damping continuous
USA, NCEP 3D Optimum Digital Forward 3DVAR, 4DVAR
| Interpolation filter intermittent
Canada 3D Optimum Digital Forward 3DVAR, 4DVAR
interpolation filter intermittent
Japan 3D Optimum Non-linear normal Forward
interpolation mode intermittent
Australia 3D Optimum Digital Forward
Interpolation filter intermittent
"Table 3: Overview of operational mesoscale data assimilation techniques applied for short range

numerical weather prediction.

With regard to future developments, there is dominance for variational techniques. The German
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Weather Service is an exception with nudging for their future mesoscale data assimilation. The
mesoscale forecasting may be considered as a dynamical adaptation of a global forecast over a rather
small area. For this purpose nudging, and in particular nudging of moisture parameters, may be an

appropriate approach (Verner Wergen, personal communication).

4.1 Experiences from the HIRLAM data assimilation based on OI

The core of the present operational HIRLAM data assimilation system is the limited area version
of the ECMWEF Optimum Interpolation (OI) scheme for 3-dimensional multivariate analysis of the
wind- and mass-fields and for univariate analysis of the humidity field (Lorenc, 1981, Lonnberg and
Shaw, 1987). The adaptation of the global ECMWF OI analysis scheme for HIRLAM purposes was
essentially of a technical nature - the analysis calculations needed to be modified from those of global
latitude/longitude geometry to limited areas with rotated latitude/longitude geometry. Some initial
sensitivity experiments indicated that the quality control algorithms, the analysis structure functions
and the data selection algorithms of the global scheme performed reasonably well also for the HIRLAM
purposes, at least for applications with horizontal grid resolutions of the order of 50 km. Without
any further tuning of the analysis structure functions, the HIRLLAM data assimilation system has also
been applied operationaﬂy at grid resolutions of the order of 20 km and 5 km. Several attempts have

been carried out to improve the present HIRLAM data assimilation scheme:

e Lonnberg and Eerola (1996) have collected information on the quality of radiosonde data in the
European area by means of observation minus first guess statistics. It turns out that a significant
number of European radiosonde stations are associated with un-acceptable systematic as well as
random observational errors. A "gray” list of radiosonde stations has been constructed. These

stations are subject to a more stringent background error quality control.

e The HIRLAM OI implementation assumes stationary statistics apart from a simple dependence
of the forecast error variance on the analysis error variance of the previous cycle. This scheme is
flow independent as it depends only on the data densify of earlier analyses. In areas of moderately
dense network of independent observations it would be possible to estimate some parameters of
the background error covariances (assuming that the observation error statistics are stationary).
The updated statistics would then influence the analysis as well as quality control decisions. Dee
and Cats (1995) have investigated the use of a one-parameter covariance model in which the
magnitudes of the observation and forecast error variances were adjusted by the same factor.
The adjustment value was calculated separately for each analysis box. In this technique the

ratio between observation and forecast error is kept constant; only the variances are adjusted by
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the same amount. Thus, the adjustment does not affect the weights given to observations, only
the quality control decisions. This parameter estimation was tested for a few cases only, with a

rather modest resulting impact.

e Within the framework of a new surface parameterization scheme for HIRLAM, a soil param-
eter data assimilation scheme is being developed based on ideas of Mahfouf (1991). This soil
assimilation scheme requires input of 2 meter temperature and humidity analyses. An analysis
scheme for these parameters, utilizing an-isotropic analysis structure functions taking land-sea
and orogr@phy differences into account, has been developed (Beatriz Navascues, personal com-
munication). One example of such analysis structure functions, with reference to a horizontal

position situated in the River Ebro valley, is given in Figure 8.

0.1 INTERVAL
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X

Figure 8: Anisotropic analysis structure functions for analysis of 2 meter temperature. .The reference station for

the correlation functions in the figure is situated in the River Ebro valley.

e An attempt to introduce flow-dependent analysis structure functions by carrying out the analy-
sis in a geostrophic coordinate system has been tried at the Norwegian Meteorological Institute
(T.-E. Nordeng, personal communication). The analysis first guess field was interpolated to a
regular grid in geostrophic coordinates and the coordinates of the observations were transformed
accordingly. The analysis was then carried out using the normal horizontally isotropic and ver-
tically /horizontally separable analysis structure functions. After the analysis, the analysis- fields
were interpolated back to the normal coordinate system. Through the geostrophic coordinate
transformation, a baroclinic vertical tilt was introduced in addition to a horizontal stretching,

resulting in horizontally anisotropic structure functions along fronts etc. The first trial to utilize
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this analysis technique resulted in slightly improved baroclinic developments (T.-E. Nordeng,

personal communication).

4.2 Mesoscale data assimilation in isentropic coordinates

Benjamin (1989) and his colleagues at the NOAA Forecast System Laboratory in Boulder have devel-
oped a Mesoscale Analysis and Prediction System (MAPS), specifically desigﬁed to handle 3 hourly
surface and aircraft observations. The model as well as the analysis scheme of MAPS are formulated in
a hybrid isentropic/sigma vertical coordinate. Isentropic vertical coordinates are of particular interest
for analysis purposes, since the high vertical resolution of radiosonde observations may be used for a
proper analysis of e.g. frontal structures and inversions also in between the positions of the radiosonde
stations. A similar effect may be achieved by formulating the analysis structure functions in isentropic
coordinates also within the framework of an analysis with the model va.;iables in a pressure-based

vertical coordinate.

4.3 Mesoscale assimilation based on nudging

In its simplest version the nudging technique only needs a forecast model and a mechanism to insert
observed information at the nearest model point in space and time. Crude forcing of the informa-
tion, i.e. replacement of the model value with the observed value, leads to rejection of the inserted
information. The most important aspect of the nudging technique is the control of the projection into
the model space. Most assimilation schemes based on nudging include a spreading of the observation
in space by means of simplified objective analysis techniques. An assimilation scheme based on the
nudging technique must also have an observation processing package and quality control modules. The
level of sophistication of these modules needs to be similar to those used by any other technique. Any
nudging which is applied to the model equations should be small and applied several times during a
forecast for a time span of several hours. Specification of the weighting to be assigned at each time
step requires major tuning. The local analysis in the vicinity of an observation should be balanced
geostrophically and should filter the noise in the observations.

The U.K. Meteorological Office utilizes a data assimilation system based on nudging with the anal-
ysis correction method (Lorenc et al., 1991). The analysis correction method is a successive correction
analysis scheme, designed to converge towards Statistical interpolation results after several iterations.
The iterations are carried out over several timesteps during the nudging process. The U.K. Meteoro-
logical Office has also developed a Moisture Observation Pre-processing System (MOPS) with the aim
to improve moisture parameter initial conditions for the unified mesoscale model (Macpherson et al.,

1995). Radiosonde relative humidity reports and SYNOP relative humidity reports are assimilated
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directly by the analysis correction method, the SYNOP relative humidity observations have proved to
be beneficial in visibility forecasting. Other data sources, specifically cloud imagery, radar precipita-
tion, cloud and precipitation observations from SYNOPs, are pre-processed to provide a 3-dimensional
cloud field that is converted to a relative humidity field using the same algorithms as used by the model
physics. The MOPS cloud data has been shown to provide better results in the earlier part of the

forecast (<12 hour) of precipitation, cloud cover, cloud base and fog.

4.4 Mesoscale data assimilation based on variational techniques

Variational techniques for meteorological data assimilation were introduced by Sasaki (1958). In the
early applications, variational techniques were mainly used for filtering of fields, that had already been
put on a grid by objective analysis techniques. The filtering generally included various dynamical
constraints, e.g. geostrophy or mass-conservation. With regard to mesoscale applications, variational
techniques have been of particular importance for filtering and interpretation of radar wind information
and other remote sensing data.

Since meteorological forecast models are able to accurately simﬁla,te many meteorological phenom-
ena, it is a natural step to try to utilize the forecast model equations as constraints in data assimilation.
This was made possible Awith the introduction of the concept of adjoint models in variational data as-
similation by Le Dimet and Talagrand (1986) and by Lewis and Derber (1985). They showed that
the data assimilation problem in NWP can be solved through the adjoint technique in a way which is
much cleaner than current operational techniques. Then, since the mid 80s, an important effort has
been put on variational techniques in research on data assimilation. A global 3D variational algorithm
has been run operationally in Washington since 1991 (Parrish et al. 1992) and ECMWF runs a global
3D version of the variational assimilation of the IFS/ARPEGE (Courtier et al.,1993) operationally.

Errico and Vukicevic (1992) have developed the adjoint of the PSU-NCAR mesoscale model and
they used this adjoint model successfully for studying the sensitivity of forecast errors to initial condi-
tions. Zupanski (1993) developed the adjoint of the NMC eta level regional forecast model and used
this adjoint for experiments with regional four-dimensional data assimilation. Zupanski added a term
penalizing high frequency divergence oscillations in the cost function, and the control variable of the
minimization included a model bias term in addition to the initial conditions. Zupanski and Zupanski
(1995) have shown in some recent experiments that precipitation data may be used to improve short
range precipitation forecasts. Within the framework of variational data assimilation, there is also a
possibility to control the lateral boundary conditions. It is not clear, however, whether this is an
advantage for operational short-range numerical weather prediction, since during the forecast step it

is necessary anyhow to rely on lateral boundary conditions provided by e.g. a global forecast model.
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4.5 Mesoscale initialization techniques

The non-linear normal mode initialization (Machenhauer, 1977) has been established as a robust and
efficient initialization technique for global synoptic scale numerical weather prediction. This technique
can also be applied with the diabatic processes included. Diabatic non-linear normal mode initialization
has been applied successfully to mesoscale limited area models (Huang et al., 1994). In its diabatic
form, non-linear normal mode initialization may also be forced by ”observed” diabatic heating rates,
derived from e.g. satellite image data and it has been shown that such forced diabatic normal mode
initialization may improve e.g. precipitation forecasts during the first 12 hours of the forecast range.
It is not clear, however, whether such diabatic normal mode initialization will improve precipitation
forecasts beyond the first few hours of the forecast model integration. r‘I‘he normal mode initialization
modifies only the gravity wave part of the initial data, and the Rossby wave part of the initial data

may dominate the forecast after an initial adjustment period.
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Figure 9: Vertically integrated cloud water averaged over the model domain C (gm™2) as a function of time.
The results for the adiabatic normal mode initialization are shown by full lines and the results for the diabatic digital
filter initialization by dashed lines. The first 36 h forecast is given together with 6 h data assimilation results.

Digital filters (Lynch and Huang, 1992) offer another, more flexible, solution to the initialization
of mesoscale limited area models. Since the normal modes of the forecast model need not to be known
for digital filter initialization, digital filters are ideal for e.g. initialization of non-hydrostatic mesoscale
models. Digital filters can be applied for diabatic initialization (Huang et al. 1994). Diabatic digital
filter initialization has also been applied successfully to a model including cloud water as a explicit
forecast model variable. Figure 9 is taken from the study by Huang (1996) and it shows that the
spatially averaged cloud water amount during the 6 hour data assimilation cycles reaches a level
similar to those during longer forecast model integrations, when the diabatic digital filter initialization

is utilized. This is not the case when diabatic digital filter initialization is not applied.
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5 VARIATIONAL DATA ASSIMILATION FOR HIRLAM

The design a new data assimilation system for HIRLAM was recently studied by Gustafsson et al.
(1996). It was suggested that a new data assimilation for HIRLAM should be based on variational
data assimilation techniques. Main arguments in favor of the variational techniques are (1) the pos-
sibilities to improve on initial baroclinic structures and (2) the possibilities for a mofe rational use
of observations that are non-linearly coupled to the forecast model variables. The research and de-
velopment work for a HIRLAM variational data assimilation started in February 1995. The target is
4DVAR, 4-dimensional \;ariational data assimilation. The natural step towards 4DVAR is 3DVAR,
3-dimensional variational data assimilation. The following research and development tasks have been

identified as necessary for the HIRLAM variational data assimilation:

e The tangent-linear and the adjoint of the adiabatic spectral HIRLAM model, including non-linear

normal mode initialization, have been coded and tested successfully.

e The tangent-linear and adjoint of a few physical parameterization schemes have been coded. A

general strategy for formulation of ”adjoint” physics needs to be established.

e A software system for pre-processing of observational data and fetrieval of observational data
within the variational data assimilation has been be developed and will be maintained in collab-

oration between ECMWF, Meteo-France and HIRLAM.
e A first version of a background error constraint has been coded and tested.

e A basic software framework for HIRLAM 3DVAR and 4DVAR, including minimization with the
INRIA package M1QN3, has been coded and tested.

e A weak digital filter constraint has been coded and preliminary tested.

e Observation operators are presently being tested. These include spatial interpolations, post-

processing of various observed quantities, variationally basé(i quality control etc.
e Extended tests of 3DVAR are expected to be carried out during 1997.
e A formulation of incremental 4DVAR needs to be developed.

e Extended tests of 4DVAR are expected to be carried out during 1998.

5.1 Tangent-linear and adjoint of the spectral HIRLAM

For the development of the first version of the adjoint HIRLAM, it was decided to use the spectral

formulation of the model, see Gustafsson (1991). There are two reasons:for starting with the spectral
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version: (1) The spectral version of HIRLAM is a more “modern” code based on Fortran 90 and
utilization of automatic arrays, (2) In general, it is easier to develop adjoints of spectral models since
Fourier transforms are self-adjoint and since no efforts are needed to develop adjoints of complicated
finite difference operators. A manual coding technique was used to develop the first version of the
adjoint of the adiabatic part of the spectral HIRLAM including horizontal diffusion. The tangent-
linear and the adjoint of the non-linear normal mode iﬂtiaﬁzﬁtion were de{reloped as well. For each
subroutine containing any non-linear expressions, the corresponding tangent-linear subroutine was
first coded. Then the adjoints of each tangent-linear (and originally linear) subroutine were coded
in a statement-by-statement fashion. By considering each statement of the tangent-linear and linear
subroutines as a complex matrix operator, the corresponding adjoint statement(s) were derived by
taking the complex conjugate and transpose of this matrix operator. An important and very time-
consuming phase in the development of the adjoint code by this manual technique was of course the

testing and verification of the correctness of each subroutine.

5.2 The background error constraint

For the background error constraint in the first version of HIRLAM 3DVAR, the control variable
vector is transformed in such a way that the background error covariance matrix of the transformed
control vector becomes diagonal. The transforms are similar to the transforms applied in the ECMWF
3DVAR (Courtier et al., 1993). Fourier transforms as applied in the spectral HIRLAM are used in the
horizontal. Eigen-vectors of vertical forecast error correlation matrices are used for the transformations
in the vertical. In order to obtain initial data for HIRLAM that are well balanced, a constraint on
the balance between the wind field and the mass field analysis increments is needed. For the ECMWF
3DVAR, this is done by projection on the normal modes of the forecast model, followed by stronger
penalty on the fast gravity modes than on the Rossby modes. This technique is not easily applicable
to the HIRLAM model, since the HIRLAM Rossby modes used for the normal mode initialization
are based a constant Coriolis parameter and this would result in a poor balance constraint. One
alternative would have been to apply the NMC approach (Parrish et al., 1992) based on increments
of vorticity, divergence and the un-balanced part of the mass field as control variables. Again, this
is not so easily applicable for the HIRLAM problem, since the transformations between wind field
components and vorticity /divergence are not ‘unique for a limited area. Therefore, as a first trial for
the HIRLAM 3DVAR, we are using ageostrophic wind component increments and the full mass field
increments in the control vector. This approach has the further advantage of avoiding the non-unique
transformations between temperature/surface pressure and linearized geopotential.

In order to obtain the model variable vector X from the control variable vector x the following
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series of inverse transforms are applied

X=X+T'x=X,+ A '§Flyvlply (1)
where the forward transforms are defined by
e Subtraction of the background field X} to calculate the increment field §X = X - Xp

e A: Calculation of ageostrophic wind component increments by subtraction of geostrophic wind

component increments, as determined from the tangent-linear massfield increment gradients

e S71: Normalization with forecast error standard-deviations

F: Fourier transform to spectral space

V: Vertical transform, i.e. projection on the eigen-vectors of the vertical forecast error correlation

matrices

P: Pre-conditioning by normalization with a horizontal spectral density function and the vertical

eigen-values

From the definition of the covariance matrix B for the background error and the transformation

T we may derive

B=E<(X-Xp))(X=Xp)*>=T'E<xx*> T Y =T"YT"")* (2)

where the operator E <> stands for mathematical expectation. Multiplication of the covariance
matrix B with a model state step function vector &, with zeroes in all elements besides in the position of
one particular model variable iﬁ one particular spatial position, will result in a vector COV containing
the covariances between that particular variable and spatial position and all the variables in the model
vector. The transformation form 7—(T1)* of the covariance matrix B provides a practical way to

carry out this calculation. The implied covariances are given by

COV =T Y(T71)*5 (3)

" In Figure 10 we have plotted a selection of implied background error covariances with reference
'to the u-component of the wind at level 8 in one horizontal position. From the (auto-)covariances
with respect to the u-component in other horizontal positions but at the same level, we can notice
the elliptic-shaped covariance structure, typical of non-divergent wind component covariances utilized

for traditional OI analysis schemes. In the vertical cross-section for the u-component we can notice
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the decrease of the covariances in the vertical. Plotted are also the (cross-)covariances between the
u-component and the temperature. Here we can notice a consistent geostrophically induced structure
in the temperature field, as derived from a single u-component observation. Also the effects of the

tropopause can be noticed. These implied structures give us some confidence in the correctness of the

utilized transformations.

@y
.
T T G- e

Figure 10: Selection of implied background error covariances with reference to the u-component in gridpoint
(20,18) at level 8. The (auto-)covariances for the u-component are given in the figures to the left and the (cross-
)covariances for the temperature are given to the right. The lower figures show the horizontal covariances at level

8 and the upper figures vertical cross-sections of covariances through the horizontal lines marked CS in the figures

below.

5.3 A weak digital filter constraint

Digital filters have successfully been applied for initialization of numerical weather prediction models
(Lynch and Huang, 1992). Digital filters may also be included as weak constraints in 4DVAR (Gustafs-
son, 1992). A weak digital filter constraint formulation has been coded and tested for the HIRLAM
4DVAR. Consider a digital filter applied over the time step number interval (-n,n):
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=-zn:tht S : : (4)

t=—n

where X; denotes the un-filtered model solutidn, XPF the filtered model state at the mid-point
of the time interval and g; the digital ﬁltef weights. For the 4DVAR we would like the solution to be
obtained by the minimization process to vary slowly in time. This means that we wbuld like the filter
to have a very small effect, if applied on the final solution. This can be formulated as the following

constraint J,. to be minimized:

Je =

MIQ

(Xo - Z 9 X)? = Z 31 X1)° | ()

t=—n t=—n

where the second expression has been obtained by a slight re-definition of the digital filter weights.

The gradient of this quadratic constraint with respect to the model state variables follows easily

0J.

r=—m

A problem with this weak digital filter constraint is the selection of the arbitrary relative weight
v given to the digital filter constraint. The sen51t1v1ty of the filtering effects with respect to the value
of this weight needs to be tested.

5.4 Sensitivity experiments and ”Poorman’s 4DVAR”

One successful application area for adjoint models is sensitivity studies (Rabier et. al. 1995). The
adjoints of numerical weather prediction models are used to relate the forecast error, measured by the
d1fference between a forecast and its verifying analysis, to a small perturbation (sensitivity field) in the
1n1tlal state Adding the sensxtlwty field to the initial state, a new forecast (sensitivity forecast) is then
run. Using both analyses and observations for verification, Gustafsson and Huang (1996) demonstrated
the consistent improvement in the sensitivity forecasts. The improvement made by sensitivity forecast
can not be considered as an improvement in a real forecast sense due to the use of the “future” analysis.
However, it is evident that the quality of the sensitivity forecast up to the analysis time is improved.
In other words, even in a real forecast sense, the sensitivity forecast can provide an intermittent
data assimilation system with better first-guess fields, which may lead to improved analyses. Based
upon these arguments the following Poorman’s 4DVAR has been tested: (1) Startmg from t=-6h,
the nonlinear forecast model is integrated forward to produce the prehmmary first-guess field at t=0.
(2) Wlth the observations collected around t=0 and the preliminary first-guess field, the 01 analy51s
is performed to produce the preliminary analysis. (3) Using the difference between the preliminary

first-guess and the preliminary analysis as input, the adjoint model is integrated backward in time
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to produce the sensitivity field at t=-6h. (4) Adding the sensitivity field to the analysis at t=-6h,
the nonlinear forecast model is integrated forward in time (sensitivity forecast) to produce a new
first-guess. (5) The final OI analysis is performed based on the new first-guess and observations.
The major motivation for the poorman’s 4DVAR is the ability of the backward adjoint and forward
non-linear integration cycle to act as a dynamical filter on the preliminary OI analysis increments.
The analysis increments of the final OT analysis application are smaller and, cdnsequently, the ensuing
forecast would be associated with a less serious spin-up of e.g. baroclinic structures as well as diabatic

processes.
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Figure 11: Observation verification of mean sea level pressure as a function of forecast length for standard (OlA)
and Poorman’s 4DVAR (PVM) initial data for the 36 h forecasts starting from 1200 UTC 14 September 1994. The
fower two curves are for the bias. The upper two curves are for the rms.

The idea described above for utilization of the adjoint model was tested for a 5 day period, 13 - 18
September 1994, and the results were compared with those from the standard OlI-based intermittent
data assimilation (Huang et al. 1996). In general, it was proven that the analysis increments were
smaller during the final analysis cycle, after the increments from the backward adjoint and forward
non-linear sensitivity forecast runs were added to the analysis first guess fields. It also turned out the
fofecasts from the analyses based on these improved first guess fields gave slightly better verification
scores, the improvement in predictability at the 36 hour forecast range was of the order 3-6 hours. In
particular, the forecast of one fast low pressure development over the European area was significantly

improved with regard to the position of the low pressure system. A closer inspection of the differences
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between the two forecast runs, revealed that the backward adjoint and forwafd non-linear sensitivity
forecast runs added an increment to the first guess field with a vertically tilting baroclinic structure.
Mean sea level pressure forecast scores for this particular forecast evenf are included in Figure 11.
We may conclude that application of an adjoint model may be used to improve real time operational

forecasts also within kthe framework of OI-based intermittent data assimilation.

6 CONCLUDING REMARKS

Particular problems related to data assimilation for mesoscale limited area models were reviewed, some
aspects of observing systems of potential importance for such data assimilation were discussed and an
overview of available data assimilation techniques with emphasis on mesoscale assimilation was also

given. From this review of problems, observations and assimilation techniques we may conclude:

e High quality lateral boundary conditions are highly needed for mesoscale data assimilation and

forecasting.

e We need to get access to improved observing systems for moisture parameters and we need to

improve moisture assimilation (and initialization) techniques.

¢ 3-dimensional and 4-dimensional variational assimilation techniques provide good technical frame-

works for utilization of remote sensing data.

The status of development of the HIRLAM variational data assimilation was reviewed. Results
with sensitivity experiments with the a,djoinf of ’tllle spectral HIRLAM, as well as experiments with the
use of th‘e ddjoint HIRLAM model Within the framework of an OL-based intermittent data assimilation
system; indicate poténtial abilities of 4-dimensional va)ﬁational data assimilation to improve forecasts

‘of baroclinic developments also on shorter time scales.
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