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Summary : Despite its theoretical advantages, the Extended Kalman Filter (EKF) al-
gorithm cannot be used as such in data assimilation for operational numerical weather
prediction (NWP). However, practical experience shows that a suitably simplified version
should be useful if it is conveniently interfaced with a more conventional assimilation
scheme such as variational assimilation (3D-Var or 4D-Var). One implementation prob-
lem is the representation of flow-dependent error covariances, and this paper discusses a
solution based on eigenvalue decompositions.

1. KALMAN FILTERING AND NUMERICAL WEATHER PREDICTION

1.1 The Extended Kalman Filter

The Kalman filter equations have already been derived and discussed in several publications

on meteorology and oceanography (e.g. Ghil 1989, Bouttier 1995) as well as in other chap-

ters of this volume, so that they will be only briefly recalled here in their Extended Kalman

Filter (EKF) discrete version. The notations used are those advocated in Ide et al (1995) :
x  true fluid state

x?, x?  analysis and forecast vectors, respectively
P® P/ analysis and forecast error covariances
prediction operator as defined by the forecast model
tangent linear prediction operator
random model error
error covariance matrix of the model error
vector of observed values
random observation error
error covariance matrix of the observation error
observation operator
linearized observation operator
analysis gain matrix
time indexed by 7
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The EKF relies on the Kalman filter hypotheses :
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(i) model error : The relationship between the model forecast and the real flow dynamics
can be written as x*(t;11) = M (tiy1,1:)x*(t;) + n(t:), where the random model errors n
have covariances n(t;)nT (t;) = Q(t;)

(ii) observation error : The relationship between the true fluid state and the observed values
can be written as y? = H;x%(t;) + &(t;), where the so-called observation errors ¢ have
covariances £(t;)eT (¢;) = R(¢;)

(iii) no bias : 7=0,g=0
(iv) no serial error correlation : 7(¢;)nT(¢;) = 0 and e(t;)e™(¢;) =0if i # 5

(v) no cross-correlation between observation and model error : 7e™ =0

The EKF differs from the plain Kalman filter in that the model and the observation operator
are not assumed to be linear, so that the optimality of the filter is obtained only to the extent
that the following linearization hypotheses are fulfilled :

(vi) tangent linear hypothesis on forecast model : if §z(¢;) is an estimation error,

0x(tir1) = M(2 i+1) t:)0x(t;)

(vii) tangent linear hypothesis on observation operator :

Some numerical experiments (e.g. Lacarra and Talagrand 1988) have shown that the tangent
linear hypotheses are good approximations for the synoptic-scale dynamics at ranges up to 48
hours, except in some particular cases (e.g. in convective situations or in the boundary layer) ;

)

for some mesoscale phenomena the approximation is liable to break down after a few hours
(Vukicevic 1991).

The EKF equations are essentially those of the Kalman filter in which the forecast model
and the observation operators are replaced by their tangent linear counterparts wherever errors
are involved, the linearization being carried out in the vicinity of the current estimate of the
model state :

) (tip1) = M(tisr, t:)x(8:)

P7(ti11) = M(tiy1, t)P*(6)MT (b1, 1) + Q)
K; = P/ (t;)H] [H;P/ (t;)H + R, (t:)] ™

x®(t:) = x7 (&) + Kily] — Hx"(t;)]

P(t;) = [1 — K;H; [P/ (t;)

(a
(b
(c
(d
(e

The equations (a) and (d) are the well-known operations of model state forecast and linear
analysis, whereas (b) and (e) are their counterparts for the estimation error covariances. They
are derived by multiplying (a) and (d) by their respective transposes, taking the expectation
and simplifying the results using the hypotheses. The optimal analysis weights K are derived
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Figure 1: 24h-forecast of the 500hPa height standard error field (in m), starting with a zonally
uniform standard errors, an homogeneous and isotropic height correlation model, without model error,
using as dynamics the tangent-linear of a T21 barotropic vorticity equation model in the vicinity of
- an operational forecast. Notice how the forecast standard error increases in some areas along the
extratropical jet.

in (c) according to the classic Best Linear Unbiased Estimate theory. Other forms of these
equations are better suited for some applications ; they are mentioned in other contributions
to this volume.

Numerous implementations of the EKF in simplified oceanic or atmospheric assimilation
systems have been described in the litterature, e.g. : Parrish and Cohn 1985, Miller 1986, Dee
1991, Bouttier 1994 ; the EKF has never been tested with realistic primitive-equation models
of the atmosphere, fortunately it is approximately equivalent to 4D-Var assimilation, so the
published results on the structure functions of 4D-Var apply to the EKF as well, see Thépaut
et al (1993) and Thépaut et al (1994). The most important features of an EKF assimilation are
the sensitivity of standard error fields and correlations structures to the flow dynamics (igure
1) and to the structure of the observing network (figure 2). The complex vertical structure of
the correlations and standard errors in the vicinity of an extratropical cyclone are shown in fig.
3 which was generated using simulated observations at the end of the 24-h period of a 4D-Var
assimilation system.

1.2 Existing applications of the EKF to NWP

The EKF is a general tool in signal processing ; it has already been applied successfully to the
adaptative statistical adaptation of forecast temperatures from numerical weather prediction
models. There are some promising attempts to apply the EKF to data assimilation in reduced
models of the atmosphere or the ocean (e.g. assimilation of wind from tracer information, see
Daley (1995) ). Here we discuss the potential for applying the EKF directly to state-of-the-art
assimilation systems. '
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Figure 2: 500hPa field autocorrelation with a particular point, at an analysis time of an EKF based
on a T21 barotropic vorticity equation model and 500hPa radiosonde observations of U,V and z.
Top panel : background error correlation ; bottom panel : analysis error correlations. Notice how
the background error structures have a flow-dependent tripolar structure along the jet, whereas the
analysis correlations return to a more homogeneous and isotropic structure in the presence of dense,
mutually uncorrelated observations over the continent.

The equations (a) and (d) are already used for operational NWP almost everywhere with
the best available model M, observation operator H and observation error statistics R. The
main degrees of simplification are found in the weight computation (c), whereas the handling
of the error covariances has received little attention so far.

In the optimal interpolation (OI), the weight computation (c) has been simplified by a
kind of banded approximation on P7 which obviates the need for any big matrix inversion ;
only a set of relatively small linear systems has to be solved because, for each model variable,
the OI analysis uses only a limited set of observed variables defined by an ad hoc data selection
algorithm. The PY correlations follow a parametric model which is itself constrained by the
data selection ; usually they are not flow-dependent. The error forecast (b) is approximated
so that only the variances are managed, using a cheap empirical formula to approximate the
error growth during the forecast steps of the assimilation. The error analysis (e) is performed
for the variances only, too, using the approximate OI analysis weights.

In 3D-Var (Courtier 1993), the weights K are not explicitly computed, but the model anal-
ysis problem (c)-(e) is replaced by the determination of the analysis x® as the solution of a
variational problem which is exactly equivalent. Now the fundamental approximation lies in
the accuracy to which the relevant cost-function J(x) is minimized — experience shows that
it is excellent with a limited number of iterations of a suitable minimization algorithm. How-
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Figure 3: Vertical E-W cross-section of the effective background height standard errors (a) and
autocorrelations with a particular surface height observation (b) in a 24-h 4D-Var assimilation of an

extratropical low-pressure system (figures reproduced from Thépaut et al, 1994). The standard errors

are maximum at the minimum of surface pressure, and along the upper-level jet at 350hPa. The
correlations have a baroclinic structure, and tend to follow the shape of the air masses.
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ever, in the existing operational 3D-Var systems, the handling of equations (b) and (e) is as
approximate as in OI, and this implies that the analysis suffers from the approximations made
on P/. Tt is not possible to access the analysis weights for computing (e), but P® can in prin-
ciple be estimated using the inverse of the Hessian (or second derivative) J” of the analysis
cost-function. This method is described later in this paper ; it has been applied successfully to
the ECMWF 3D-Var system (Fisher and Courtier 1995).

In 4D-Var, (Talagrand and Courtier 1987, Thépaut and Courtier 1991) the minimization
time span is limited by the tangent-linear hypothesis (among other problems), so that a 4D-
Var-based NWP assimilation system will consist of a sequence of 4D-Var assimilations. Each
4D-Var solves the EKF equations approximately over its own period, assuming there is no
model error and the initial forecast error covariances P/ are known. 4D-Var is known to
produce analysis increments similar to the EKF for observations situated near the end of the
assimilation interval (typically 12 to 24h, see fig.3), but it behaves basically like 3D-Var near the
beginning. Actually, 4D-Var is algorithmically close to 3D-Var, so that it compares similarly to
the EKF : there are approximations on PY at the beginning of each 4D-Var period, the Hessian
can be used to estimate P? at the same time, but the situation is currently the same as in Ol
for the evaluation of equation (b) across different 4D-Var assimilations.

This explains why, although the move from OI to 3D-Var and then to 4D-Var will bring
considerable improvement to the quality of the assimilation systems, there is a weakness in the
specification of the forecast error covariances that 4D-Var will only solve to a certain extent.
Although the EKF is very compléx both theoretically and technically, it makes sense now to
try to implement at least an approximation of it for operational NWP systems.

1.3 Practical requiremen’bs for an operational EKF

The implementation of the EKF on top of one of the existing operational data assimilation
systems can be divided into 3 main tasks, and each of them relies on the preceding ones :

Estimation of the analysis error covariances. This is equation (e). Even if the remainder
of the EKF is not implemented, a good knowledge of P® is necessary in order to provide sensible
statistics to the next analysis. By itself, a realistic estimate of the analysis error variances would
already be a valuable by-product of the assimilation (it is an indication of the quality of the
analyzed fields). The inverse of the matrix P? is related to the second derivative of the cost-
function in the case of a variational analysis, so that it may be useful for preconditioning the
subsequent analyses if one can assume some degree of stationarity in the characteristics of the
minimization problem. Of course, if P® is to represent the real error statistics of the analysis,
its computation should not only rely on the design of the analysis, it should also account for
the weaknesses in the analysis algorithm itself, including flaws in the estimation of P/ and R.
Such flaws usually imply extra errors in the analysis.
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Figure 4: Organization of a simplified EKF around a preexisting sequential data assimilation system.

Estimation of the forecast error covariances. This is equation (b). The quality of the
result is of course going to depend on the precision of the estimation of P®. The computation of
P/, or even only some of its variances, provides indications about the short-range predictability
of the atmospheric flow. Actually, it can be shown that the eigenvectors of P/ associated to
the largest eigenvalues are exactly the singular vectors (SVs) which are used in the ensemble
prediction at ECMWEF (Buizza et al 1992). Equation (b) contains Q, a representation of the
errors caused by defaults in the model formulation. A realistic estimate of P should also
account for weaknesses in the tangent linear hypothesis and in the estimation of P®.

Feed-back of the forecast error covariances into the analysis. Algebraically this is
trivially the substitution of P computed by equation (b) into (c) and (e) for the next analysis,
the operation is a key feature of a true Kalman filter. Meteorologically speaking, it implies
that the structure functions and weights used in the analysis are going to depend on the past
history of the flow and of the observing network ; in 4D-Var this information is a priori not
taken into account for the observations near the beginning of the minimization time interval.
This is supposed to improve the quality of the analysis, hence it will have an impact on the
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next P°, and then on all the subsequent error covariance estimates. One can expect some
useful information to be accumulated into the covariance matrices in the long run because of
this ’spin-up’ effect ; on the other hand, unless some climatological information about the error
covariances is used, one may experience slowly growing problems in the error covariances as
the assimilation goes on.

In the complete system, one would obtain a coupled system of analyses and forecasts for
the model state and for the error covariance matrices, as shown in the diagram in figure 4.

Any implementation of some or all of these components into a high-resolution assimilation
system will have to be a compromise between these expectations and the technical constraints.
One could argue that a full-fledged EKF will never be implemented operationally despite the
increase in computing power, because the models keep improving whereas the theoretical cost
of the EKF grows much faster than the complexity of the models. What is important in
practice is that we are beginning to have enough computing power to design and implement
some approximations to the EKF which are meteorologically useful.

An inspection of the EKF equation reveals that they imply huge matrix operations (mul-
tiplications and/or inversions), with some matrices containing of the order of 10'? coefficients.
Some matrix evaluations can be avoided by using operators such as M in (b) (the tangent linear
forecast operator), or by seeking a variational formulation of the problem, but then one has to
face the cost of many short-range integrations of the model (typically 10% times) and of even
more evaluations of the cost-function of the variational analysis. Also, because of the recurrent
nature of the EKF, sooner or later one has to store a covariance matrix, and that creates even
worse problems of memory, I/O and data storage requirements.

Because of the lack of experience with the EKF, it-is difficult to assess to what extent
such costs would be justified by a improvement of the background error covariances. However,
common sense suggests that the EKF equations are extremely wasteful because they do not take
advantage of the physical nature of the underlying system. First, the covariance matrices are
very large because the EKF allows any couple of model variables to have correlated errors ; it is
dubious that any meaningful correlation exists between e.g. two synoptic-scale meteorological
phenomena located very far from each other. Second, the analysis equations are complex
because it is assumed that the whole model state is affected by the observations ; we know
from operational experience and low-resolution EKF experiments that there are large data-
sparse areas in which it is almost impossible to infer any sensible correction to the background.
Third, the forecast equation for the covariances (b) is extremely costly, not only because of
the sheer size of the covariance matrices, but also because it is assumed that any error in
the initial state may lead to errors in the whole forecast state ; we know that information
does not propagate instantly in the real atmosphere, and that localized analysis errors usually
remain in a small portion of the model domain during a forecast step (i.e. the group velocity
of errors is not too large), at least in a global model : this means that the propagator M is
a relatively sparse operator. To summarize, the EKF assumes that there can be a'lot more
information in the covariance matrices than we will ever be able to calculate, partly because
of the comparatively simple structure of the forecast model and of the observing network, and
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partly because of the inherent uncertainty in the model design and in the observed data, which
dooms any attempt to build error covariance matrices of more than a limited complexity. This
was pointed out by Dee (1991), among others.

This is good news in some sense : it means we must try and simplify the EKF algorithm
rather than just wait for computers to be powerful enough for a brute-force implementation of a
full EKF. Several simplification techniques have been proposed by various authors, and most of
them are based on a restriction of the space in which the covariances and/or the tangent-linear
model are used :

e The model can be truncated to a low resolution. It implies that the resolved part of the
covariances is truncated accordingly. This is technically straightforward, but it is not
obvious how optimal this strategy is for meteorological applications ;

e The covariances can be constrained to obey a predefined modelization, in order to obviate
the need for handling large explicit matrices. This does not necessarily imply that the
model is simplified. It has been proposed to keep the correlations fixed and equal to a
simple model, and to compute the evolution of the variances only. Some cleverly defined
balance constraints (like geostrophy) between the variables can be used to summarize
the information. Perhaps a completely parametric model of the covariances could be
designed, but so far only fairly restrictive and unrealistic models have been proposed.
If the covariances were expressed as a function of a reduced set of parameters, then it
would be possible to rewrite equation (b) in an efficient form which only computes the
evolution of those parameters, however this problem is algebraically very difficult (see e.g.
Thompson 88), best solved using adjoint techniques.

e It is possible to refine further the definition of the “interesting” subspace of the errors
according to what one believes to be important in the assimilation problem. As we will
see below, the EKF can be restricted to solve only for the eigenspace of P/ related to
the largest or smallest errors (Ehrendorfer and Tribbia 1996), or for the most unstable
(or stable) subspace of the model dynamics : breeding vectors, or singular vectors (Cohn
and Todling 1996). For regional prediction, one could as well solve only for the errors
affecting an area of particular interest.

It is still unclear how these numerous ideas can be blended into a single efficient system. The
scientific issue is not only the nature of the error covariances and of the forecast instabilities
(and model errors), we need to account for the way the analysis and forecast steps fit into each
other from the point of view of the errors : are the short-range forecast errors dominated by
the atmospheric instabilities during the forecast itself (this is what is assumed by the ensemble
prediction system at ECMWF'), or are they dominated by the analysis errors ? The answer ob-
viously depends on the place, the parameter and the meteorological situation ; it will determine
how we should balance the computational effort between the modelization of the analysis error
covariances and the atmospheric dynamics. A more technical question, but equally important,
is how to design a background error covariance operator for the analysis, which is carried out
at the resolution of the operational model, using the information coming from the EKF in some
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subspace. This requires mixing the EKF covariances with a more static error model. Last but
not least, some corrections to the algorithm will have to be implemented in order to account
for important missing features : modelization errors, non-linear effects, suboptimality of the
analysis, in particular. This question is quite open, and it is similar to the problem of designing
physical parameterizations in the early times of NWP.

1.4  Specifications for operational use

From the experience gathered with various meteorological problems indirectly linked to the
EKF, it is possible to predefine some characteristics any implementation should have in order
to be reasonably realistic. The specifications below are for global weather prediction at a few
days’ range, with emphasis on the extratropics.

e In equation (b) we want at least that the synoptic-scale atmospheric instabilities are
represented. This means that we shall use a tangent-linear model of resolution at least
T42, and perhaps even more in dynamically active areas. This is suggested by the spectra
of forecast error sensitivity patterns (Rabier et al 1994).

e The dimension of the unstable'subspace shall be truncated to no less than 50 or so. This
comes from the experience with the ECMWF ensemble prediction system (number of
singular vectors with significant growth rates, Buizza et al (1992) ).

e the trajectory used for linearization must be as realistic as possible : it can be provided
by a high-resolution model with state-of-the art physics, such as those already used for
operational weather prediction.

e the tangent linear model shall have a reasonably good physical package ; it is already
recognized that surface drag, horizontal and vertical diffusion are absolutely necessary
to prevent spurious instabilities from developing (Buizza 1993). In the tropical areas
and in stormy weather systems, a representation of water condensation and convection
is probably necessary too, this is also important if one wants to improve the analysis of
humidity.

e a careful interface must be designed between the EKF model states and error covariances,
and the higher-resolution analysis and forecast system used to make the operational pre-

- dictions. Spectral truncation may not be enough, and it may be necessary to take into
account vertical interpolations as well as changes of orography. Even with an incremental
technique, we know that the computation of the increments needs to be carried out at
truncation T63 at least.

e the current computer technology means that we can aim for an algorithm which involves
running and temporarily storing about 500 low-resolution model runs (tangent linear or
adjoint) per analysis cycle.

- Of course, the final requirement will be that implementing the EKF in the assimilation system
shall have a positive impact on the the forecasts ; an impact is expected on both deterministic
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and stochastic forecasts (i.e. ensemble prediction), since the EKF is supposed to produce not
only analyses, but also estimates of the short-range predictability.

The implementation of the EKF in a different framework may lead to different requirements.
Depending on the application, one may need to consider additional requirements, such as the
simulation of some specific physical phenomena ; on the other hand, the algorithm may be
tailored to put the emphasis on some particular observations or forecast areas and parameters,
leading to more efficient implementations ; this is discussed later in the section on ‘special
applications’. ‘

2. THE REPRESENTATION OF ERROR COVARIANCES

In this section we are going to dwell specifically on the problem of representing the error
covariances in a tractable yet satisfactory way ; it is a central problem in the implementation
of a simplified EKF.

2.1  Design constraints

As covariance matrices, the error covariances must meet some basic mathematical criteria
which are quite fundamental for the numerical computation of the analysis step. Some of their
characteristics are directly related to well-known features of the atmosphere, and it is obviously
important to ensure that they make sense. ' '

e an error covariance matrix (or, more, generally, a covariance tensor) is by definition the
expectation of the squared difference between the model vector state and the analogous
vector representing the “true” atmospheric state : Pf = (xf — xt)2. Thus, it needs to be
defined for every single variable of the model. If some variables are not in P/, it means
that those variables in x/ will not be corrected by the analysis, or, equivalently, that one
assumes that their forecast is perfect (which is usually not true).

e In the actual assimilation algorithm, the simplifications that are made imply that we do
not actually use every single coefficient of the covariance matrices, but rather that we
 need them as an operator x — Px.

e The covariances must be symmetric positive definite. It means that the associated bilin-
ear operator must be a quadratic form. Although this is mathematically obvious, it is
important to check that it is still numerically true in the EKF implementation itself.

e In 3D- or 4D-Var, we need the inverse of P/, rather than P7 itself. This is special to the

variational formulation — other algorithms (like PSAS, or the representer method, see
Bennett and Thornburn 1992) use P directly. |

e In a variational analysis, the preconditioning is usually done using the metric defined by
the background term. Again, this is special to a particular formulation of the analysis, but
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it means that a symmetric square root of P/ (or its inverse) is required, and computing
it may not be trivial. '

e The analysis relies on the P/ covariances themselves, and also on their mapping into
covariances with the observed variables (PYH™), which is how the structure functions of
the analysis are built. Hence it is good practice to ensure that the background error for-
mulation is reasonable in terms of all the variables in the model and in the observations.!

e The diagonal of P/ defines the background standard errors, in other words the weight of
the background field in the analysis. It is a fundamental feature of the analysis which
needs to be realistic in all the relevant spaces (gridpoint and spectral).

e Similarly, the P/ correlations imply the shape of the structure functions, and the filtering
properties of the analysis in data-rich areas. If they are sharp, isolated observations
will generate only a very localized increment, hence the observed difference with the
background will only have a limited impact on the analysis. If they are broad, there will
be a lack of small-scales structures in the increments over data-rich areas, and possibly
spurious increments generated by distant observations over data-poor areas.

e The multivariate cross-correlations can be interpreted as an effective balance constraint
on the increments. The hydrostatic and geostrophic equilibria are well-known, but there
are certainly other complicated relationships in the atmosphere, and it is hoped that the
EKF will allow for a good representation of them, thus providing a powerful reconstruction
of meteorological structures from limited observing systems. The ability to reconstruct
baroclinic waves can been clearly demonstrated using the equivalence with 4D-Var (Rabier
and Courtier 1992).

2.2  Static error covariances

The most basic component of an error covariance modelization is its time- and space-averaged
component, which can be regarded as the ‘climate’ of the errors. This ‘static’ part depends
both on the model and on the observing system used. It provides a reference against which to
check more sophisticated models of covariances.

Static covariances are about all we can calibrate using objective statistics on real data. The
so-called “Hollingsworth/Lénnberg method” (Hollingsworth and Lonnberg 1986, Lonnberg and
Hollingsworth 1986) is a practical calibration algorithm in which there are assumptions of un-
correlated observation errors, no biases, and homogeneity of the errors in space or time. It only
allows one to calculate convincing statistics on rather homogeneous and isotropic components
of the error covariances. Being based on histograms of empirical covariances, it requires a lot of
data, so that it is intrinsically limited by the size of existing datasets of observation departures.

1For instance, the background error variances are artificially reduced when observations are interpolated far
from the model grid, whereas one would expect just the opposite : a larger background variance because of
interpolation errors. This comes on top of the representativeness errors in the observation operator.
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A more flexible (and very popular) method is called the “NMC method” for historical
reasons (Parrish and Derber 1992). It obviates the need for handling observations, and pro-
vides error statistics directly in model space. However, it relies on a fundamental hypothe-
sis (that differences of forecasts valid at the same time have the same correlations as short-
range forecast errors) which has no rigorous justification, and has only been tested against the
Hollingsworth/Lénnberg method in a few cases. This means no-one knows the limits of its
validity, so it can be used safely only to calibrate average characteristics of the covariances, e.g.
global spectra or domain-averaged correlations.

Statistical methods are technically cumbersome and they are always restricted by the
amount of data necessary to reduce the sampling errors to an acceptable level. An alternative
approach is to specify covariance models externally, using theoretical arguments. A variety of
comprehensive covariance models have been derived by several authors (Phillips 1986, Bartello
and Mitchell 1992, Balgovind et al 1983) using hypotheses of equipartition of energy in various
senses. Although they provide a useful reference framework to understand some properties of
the real covariances, they have not had much practical application in NWP so far.

A last method would be to use an EKF in research mode with a convenient configuration,
so that the time-averaged covariances of the EKF could be identified with those of a genuine
assimilation system. Some components of the EKF would necessarily contain some arbitrari-
ness (the model error term and the initial covariances in particular), but one can hope to use
this technique for improving the static covariances beyond the inherent limits of the statistical
methods. The additional information would come from the direct representation of the observ-
ing network and the model dynamics. For instarice, a low-resolution EKF could be useful to
calibrate the very large-scale covariances, for which the sampling is very poor.

The current objective knowledge of the static error covariances reduces to the following :

Maps of forecast standard errors of all fields,

e Error covariance spectra, i.e. the homogeneous isotropic part of the horizontal correla-
tions, '

Vertical error covariance matrices for a given scale (see figure 5) or for a given geographical
domain (see figure 6).

Balance diagnostics (mainly a verification of the geostrophic balance in the extratropics),
with some dependency on the horizontal and vertical scales.

This has actually been the basis of operational NWP for years ; how it can be used to design
a coherent background error covariance model is described in detail in Rabier et al (1996).

The implementation of such ideas in a covariance operator relies on its splitting into a
sequence of simple operators. Variances can be separated from correlations matrices ; the mul-
tiplication by standard errors is a diagonal operator. Large correlation matrices can be built
economically by assuming that they are tensor products of simpler correlation models, e.g. for
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Figure 5: Vertical autocorrelation of temperature forecast errors with the temperature at 500hPa,
diagnosed by the NMC method, as a function of total wavenumber, in the ECMWEF operational model.
Notice how the correlations are sharper for smaller scales.

balanced and unbalanced variables, or for horizontal and vertical separation, or for vertical
correlations on different scales. This usually restricts the number of degrees of freedom in the
correlation model, e.g. balanced and unbalanced errors are usually assumed to be uncorre-
lated to each other. The remaining correlations.are then simple enough to be implemented :
vertical correlations matrices and horizontal correlation spectra can be represented explicitly.
Horizontal correlations can be implemented as cheap numerical filters (Lorenc 1992).

Several covariance models can be mixed into a single one, by a linear combination of projec-
tions of different covariance matrices, the projectors reflecting changes in the behaviour of the
variables. This can be used to manage dynamically balanced versus unbalanced parts of the
errors, correlations changes with geographical area, or, as we will see below, subspaces in which
the covariances are supplied by an external source like the EKF. Mathematically, if we denote
p; the orthogonal projector into a subspace H; in which we assume that the covariance matrix
obeys a model Py, whereas another model Ps applies to the orthogonal space, the combination
of those models has the form

P =pIPipi + (I —p1)TP3(I - p1)
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Figure 6: Vertical autocorrelation of temperature forecast errors with the temperature at 500hPa,
diagnosed by the NMC method, as a function of latitude, in the ECMWF operational model. Notlce
how the correlations are sharper in the tropical regions.

which implies that there is no cross-correlation between spaces H; and (H;)* ; this may have
some non-trivial consequences on the structure functions of the analysis.

As an example we can briefly recall the 3D-Var J, formulation in operational use at ECMWF
since February 1996 (Courtier et al 1991, Rabier et al 1996) : the inverse of the cost-function is
split into three components defined by the Hough mode balance. Each component 4 is defined
by its symmetric square root .S, itself built as the multiplication D by a standard error field, the
tensor product of horizontal Cj and vertical C, correlation operators (as in fig. 5), and a set
of ad hoc weights W to penalize the geostrophically unbalanced components of the increments.
This can be loosely summarized by the following equations :

Pf = (Aba,l + Aunbal + Aumv)
A = S§TS
S = WC,CiD

The implied covariance model is completely static, except for the background standard er-
rors which are calculated from the previous analysis errors using a simple relaxation towards
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climatology.

2.3  Situation-dependent covariances : the remapping technique

The “static” covariances are essentially stationary in time, except perhaps for a slow variation
to account for the seasonal variations. Few attempts have been made so far to include more
flow-dependency into the covariances without going to a sophisticated method such as 4D-
Var or the EKF. The only widely implemented feature is the variation of the standard errors
with the observing network, because this is an unexpensive by-product of OI. Some authors
have advocated the use of air mass-dependent correlation models, because it is obvious that
spatially averaged structures are not well suited to meteorologically important systems like
fronts. Although this sounds like an obvious thing to do, the local modification of a covariance
model is very difficult because of all the constraints to meet simultaneously : smoothness of
the structures, positive definiteness of the resulting covariance matrix and balance constraints.

A possible solution to these problems is a technique we will call ‘remapping’. The idea is that
if we are not able to build a complex covariance model, we can start from a simple covariance
matrix, and distort it conveniently using a geometry transform which defines a remapping
between the model space and the space in which the covariance model is built, This allows
one to translate, stretch and magnify at will the structure functions, provided the remapping
operator is smooth enough. Mathematically this can be written as

C, =UC,U"

where C; is a simple covariance model (e.g. homogeneous and isotropic), and U is a geometry
transform, or “remapping” operator. This implies a distortion of the standard errors which is
linked in a simple way to the local map factor of U. The resulting correlation matrix C, may be
algebraically much more complex than C;. The idea of remapping errors was initially suggested
as a diagnostic tool called the “distortion representation” (Hoffman 1995). It has been tested at
Météo-France using the the Schmidt transform (Moll and Bouttier 1996) and semi-geostrophic
coordinates (Desroziers 1996). At ECMWF, this is being tried for local corrections to the
vertical correlation structures in the tropics, as suggested by figure 6.

3. IMPLEMENTATION OF A SIMPLIFIED EKF

In this section we are discussing a possible algorithm for the implementation of a simplified
Extended Kalman Filter, on top of an assimilation system which uses a variational 3D-Var
analysis. This is the case of the ECMWF operational assimilation system. The algorithm
would be the same with an intermittent 4D-Var assimilation.
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3.1 Analysis error covariances

The estimation of the analysis error covariances with an EKF-style method has been imple-
mented operationally at ECMWF in September 1996 for the estimation of the analysis standard
errors. It uses the algorithm described below, developed by Fisher and Courtier (1995).

The estimation of P in a 3D-Var analysis can be made using the equivalence between the
Hessian of the cost function J (i.e. the matrix of its second derivatives) and (P®)~! (for a
demonstration of the equivalentce see e.g. Barmeijer et al (1996) ). The Hessian operator can
be obtained from finite differences of the gradient V.J, assuming J is quadratic. Thus, we use
a quadratic approximation to the 3D-Var analysis, which is believed to be good enough for this
application : '

e the analysis is incremental, i.e. we are considering a low-resolution EKF (T42L31),
e the observation operators are linearized,
e the variational quality control of the observations is switched off,

e we use a close approximation P¥ to the background term J; of the operational analysis,
so that we can use it in a factorized form : (Pf)~! = LTL.

The incremental 3D-Var relies on the definition of the analysis increments as the solution
of an optimization problem :
x* = x7 + arg min J(6x)

where the cost function is written in terms of the departures dx from the background, and it
includes a background term which is involves the assumed background error covariances P7 :

J(0x) = Jp(6x) + J,(0x)
6x T (PT)~1ox + J, (%)

The cost function may be rewritten as a function of a variable x defined using the operator L
defined above :

x = Lix
Jx) = xx" + (L)

The second derivative of the function J, = Jo L' is connected to the analysis error covariance
matrix in terms of variable y :

-;- Jy = I+LTH'R'HL™
= (P

The proposed simplification of this EKF step is to assume that most of the useful information
in P%x can be summarized the eigenspace {v;} associated to its largest eigenvalues {);}, and
by the identity matrix I :

1
5 J>’cl ~ 1+ Zz:(/\z — 1)vyvi
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Figure 7: Map of the differences between the background and analysis standard errors of temperature
at 500hPa in the ECMWTF analysis of 21 Nov 1996, 12h. The difference has been computed using 30
eigenvectors with a Lancods method on the Hessian of the 3D-Var analysis, as explained in the text.

The term I in x space is equivalent to the background error covariances P/ in physical space
(where the variable is 0x). The other term represents an approximation of the information
brought by the observation term J, : all the eigenvalues A; are strictly positive, which is
consistent with the fact that observations cause the estimation errors to decrease. The largest
eigenvalues are expected to be associated to the error patterns which are best observed, i.e. to
the most important differences between P and P?, in other words, to the places where the
analysis error variances are going to be the smallest.

The approximation in this step of the EKF consists of computing only a small number of
eigenvectors (v;, A;). A Lanczdés-type numerical method is used to compute efficiently a few
eigenvectors associated to the largest eigenvalues. The quality of the convergence towards the
the exact P?® matrix is linked in a non-trivial way to the steepness of its eigenspectrum, but
numerical experimentation at ECMWF has demonstrated that very convincing error patterns
are obtained when one computes about 30 eigenvectors (figure 7). It is yet unclear how many
eigenvectors would be required to obtain a very good approximation of the complete analysis
error matrix. We compute only a fraction of the eigenvalues of J /2, and we approximate the
rest by 1, which is an underestimation of the true values. Therefore, truncating the eigenspec-
trum leads to overestimating the analysis variances?, and to correlation structures which are too
close to those assumed in J,. The variance estimate is nevertheless optimal given the constraint
of solving only for an eigenspace of limited dimension (Ehrendorfer and Tribbia 1996).

2 Actually the change of variable does not have to be the square root of Jp, it could be any preconditioner
that brings the Hessian close to the identity. The use of L in this presentation simplifies the algebra, and
guarantees that the most important eigenvectors in y space are associated to the largest eigenvalues. With a
different preconditioner, the smallest eigenvalues may turn out to be important, and then comes the problem
of distributing the computational effort between the determination of the largest and the smallest eigenvalues.
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In order to obtain an unbiased estimate of the true analysis error variances, it is necessary
to reduce empirically those provided by the method. Other empirical corrections are necessary,
as explained later in this paper.

3.2 Forecast error covariances

The estimation of the forecast error covariances has been examined indirectly in the context
the generation of optimal perturbations for ensemble prediction systems, or EPS (Buizza et
al 1992, Toth and Kalnay 1993) ; EKF experimentation with simplified models (Houtekamer
1993, Cohn and Todling 1996) demonstrates that indeed it seems to be the right framework for
an efficient simplification of the EKF. Like in the analysis step, one needs to pay attention to
the most significant eigenvectors of the error covariance matrices. They are believed to contain
the most important flow-dependent structure functions needed for the analysm this is clearly
supported by 4D-Var experiments (Thépaut et al 1993).

In the forecast equation for covariances, (the time indices have been dropped for the sake
of clarity) '

() PI=MPMT +Q

we need on input P? = %L J"'LT, not its inverse, so there is the problem of inverting the
Hessian J” of the variational analysis. This may be extremely costly. On output, the variational
analysis needs for its J, term the operator (P)~1, not P7, so that there is again a problem of

matrix inversion. The latter problem disappears if an algorithm like PSAS is used, but this is
not currently the case.

In this step of the EKF we make, again, the approximation that the useful information in
P’ can be summarized in a subspace of a small predefined dimension. The rms error of the
approximation is minimized if the subspace is the one associated with the largest eigenvalues
of P/ ; this is a classical algebraic result (Ehrendorfer and Tribbia 1996) which reflects the
1ntu1t1ve fact that only a limited number of weather systems are active at a given time in the
atmosphere, giving rise to a comparable number of notable forecast error patterns, as in figure
1. There is some suspicion that very stable structures (i.e. those associated with the smallest
eigenvalues) may also be worth taking into account, because they point to areas where the
forecast is supposed to be good, but they are probably difficult to handle, for instance because
we know so little about the structure of modelization errors.

In the following discussion we will temporarily drop the model error term Q from eq. (b).
On top of the inversion problems outlined above, there is the issue of the representation of P?.
If there is an approximation in P itself, it should be such that it has a minimum impact on
P/. There are two possible strategies which are outlined below.

Integrated solution. The first option, which can be called the “integrated” approach, is
to get rid of the P® problem and to concentrate on P/ as an single operator encompassing
simultaneously the analysis and the forecast steps. With a little algebra one can rewrite the
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Figure 8: Vertical cross-section of the largest eigenvector found in P/ using a T21L5 approximation
of the ECMWF 3D-Var analysis and a Jacobi-Davidson method (data provided by J. Barkmeijer,
personal communication).

following eigenvalue problem on P/ :
MP*M'z; = Az
as a generalized eigenvalue problem :
MT™My; = \(P%) 'y, with z; = My;

It is interesting to note the similarity of the equation above with the determination of the
singular vectors of a short-range forecast, and there is indeed a large similarity between the
EKF and EPS problems ; more comments on that subject can be found in Bouttier (1996). The
important feature in the above form is that the inverse of P? is now used, so it can be directly
replaced by the Hessian of the analysis cost-function. This obviates the need for approximating
P¢. The determination of a few eigenvectors of this problem can be computed efficiently using
methods like the Jacobi-Davidson algorithm ; the eigenvectors have the expected baroclinic
structure in dynamically unstable regions (see figure 8, and the contribution of T. Palmer in
this volume). This technique is much more expensive than a Lanczds algorithm for the same
number of eigenvectors, because there is an approximate inversion of the (P*)™! operator for
each trial vector (J. Barkmeijer et al 1996). Thus, the cost of this way of looking for eigenvectors
of P/ may well be dominated by that of evaluating gradients of the cost function, especially if
there are a lot of observations going into the analysis. It may sound inefficiént to use a lot of
observations if the EKF computations are done at a relatively low resolution, but unfortunately
we do not know how to suitably approximate the structure of the observing network, although
there is some suspicion that the impact of observations on the error covariances may be quite
simple in data-rich areas (see figure 2).

Two-step approximation. An alternative method consists of separating the analysis and
forecasts steps, so that we never have to solve a generalized eigenvalue problem. The first step is
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simply the EKF approximate analysis described in the previous section ; the eigenvector-based
approximation of P* is well-suited for exact inversion using the SWM (Sherley-Woodbury-
Morrisson) formula, which is very cheap :

1
§J>'<' = I+ Z()\l — Dvvy

1 1
PGl = T+ (5 —Dvavi

1

1
P = LI+ Z(X — Vv LT
i i
As one can see, P® is conveniently expressed as a chain of simple operators, so that the eigen-
problem MP®M7z; = Az; can be solved using a classical Lanczés method, at a price dominated
by the cost of running the adjoint and tangent linear models.

For a given number of eigenvectors of P/, this is much cheaper than the integrated method,
but there is no guarantee that the approximation made on P? will be optimal ; there is no
proof that the short-range forecast instabilities are unaffected by the use of approximations on
P“ in the orthogonal of the {v;} space. There is not even a proof that the result will converge
to the exact eigenvectors as the number of P® eigenvectors is increased, because the set of the
largest eigenvectors is a non-continuous function of the coefficients of the operator.

On the other hand, one may argue that the lower cost of the method will allow for a
much larger set of v; to be determined (assuming vector storage is not a technical issue), and
that may offset the approximate character of the method. Moreover, it may make sense to
compute more eigenvectors of P/ in order to improve the J, structures in the next analysis,
and that in turn may benefit more to the quality of the next P/ than the sophistication of
the integrated method. The fact is, it is almost impossible to answer those questions without
numerical experimentation, because we know so little about the relative structures of analysis
and forecast errors. This can be appreciated only in a framework that includes both a realistic
model and a comprehensive observing network. Determining the number of eigenvectors to
compute and their resolution is another problem to solve. However, an encouraging aspect of
this question is that it brings the hope of merging the EKF with the computation of singular
vectors for the EPS, so that it can rely on more computer resources.

Like in the analysis step, the estimated P/ needs to be corrected. First, we estimate P/
only in a small eigenspace, and it is necessary to provide something in the orthogonal in order
to have a well-defined covariance matrix ; this is discussed in the next section. Then, something
needs to be added to represent the model error term Q, and a correction must be made in order
to account for non-linearities ; this usually leads to reducing the estimated variances to reflect
the non-linear saturation of large-amplitude perturbations (Bouttier 1994). The estimation of
Q is quite difficult, because it is obviously cannot be calibrated (even on the average) using
the model alone ; indirect methods must be used, such as cross-validation with independent
error diagnostics (figure 9), comparison with ensemble predictions using non-linear forecasts
with physics, and possibly model-error estimates given by appropriate assimilation algorithms
such as the representer method (Bennett and Thornburn 1992) or 4D-PSAS (Courtier 1996).
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Figure 9: Average radial structure of the background error autocorrelation of the 500hPa geopotential
in an experimental EKF (dashed line) and as diagnosed using the Hollingsworth/Lonnberg method
(plain line) on the same couples of points. In this case the EKF forecast error covariances are too
broad because the model error has been neglected ; model error is expected to have a maximum on

the scales at which the model is truncated, giving rise to sharper correlations than implied by the
model dynamics alone.

3.3 Background error covariances

In this last step of the EKF we want to take advantage of the approximate yet costly information
gathered on P7 in the analysis. It is clearly not sufficient to feed the analysis with covariances in
a small subspace, because the actual background errors need not be confined to that subspace, it
is necessary to merge that information with a more comprehensive background error covariance
model. For the sake of simplicity, we shall only discuss the mixing of “exact” EKF-generated
covariances in an eigenspace [v;] with a “static” preexisting Pf model. It is also possible to
mix with covariance information which is not in an eigenspace (like singular vectors of the
subsequent forecasts, or covariances with a given model parameter or observation), but this is
technically more complicated.

The crux of the operation is to only mix covariances defined in subspaces which are mutu-
ally uncorrelated ; this guarantees that the merged structure functions will be seamless. For
instance, if one were to mix two covariance models defined on complementary geographical
regions, it would not be acceptable to build a block-matrix covariance model based on a pro-
jection onto each region, because it would imply that neighbouring points separated by the
domain boundary would have zero correlation, hence generating discontinuities in the structure
functions. If both covariance models are defined in a more complicated way (namely, in some
predefined subspaces), similar problems may arise in a more subtle way.

The matrix >; \;v;vi defines covariances in an eigenspace [v;] of the “real” P . by
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construction it is uncorrelated to the orthogonal space (eigenspaces of a diagonal matrix are
orthogonal to each other). However, these spaces are a priori correlated in the Pf model,
so there may be some distortion of the structure functions when the covariance models are
merged ; experimentation is needed to see whether this is really a concern. Since the concept
of orthogonality is just a property of the particular metric used, this little problem can be
evacuated by a suitable change of variable : with the square root L, of the static covariances
Pf , the static background term becomes the identity : '

x = Lgox
(P = LiL,
P, =1

If the eigenvalue problem for the EKF prediction of error covariances has been solved in
X space, rather than in ¢x space, then we have by construction zero correlations between the
space spanned by {v;} and its orthogonal, simultaneously in the EKF forecast error covariance
and in the static covariance model. This is a consequence of the choice of metric, and it allows
a completely seamless integration of the EKFcovariances. Moreover, the resulting covariance
model is readily invertible and factorizable in a form suitable for the next 3D-Var step, as
demonstrated in the derivation below ( p is the projector onto the subspace spanned by the
Vz',S) . ‘

P/ = I-p)"P/I-p) + 3 Ap"LIviviLyp

= L7 [T+>(h— vy LT
(PN = LI+ (5~ DwfIL,

= LTL

with the new preconditioner :

L=[I+ Z(\/lr — 1)vivi|Ls

which is exactly what is needed to run the next analysis step. The change of metric, however,
may cause the calibrated P/ eigenvectors to be less useful as singular vectors for the EPS than
those calibrated directly in physical space : this remains to be seen.

3.4 Covariance parameterization

It has been mentioned several times in this paper that the EKF-based algorithms need some
empirical modifications in order to obtain realistic covariances, because of the intrinsic assump-
tions behind the EKF. In the P* matrix provided by the analysis step, we need to account for
the approximations in the analysis algorithm itself, as well as for weaknesses in the definition
of the background error covariance matrix. In the P/ matrix provided by the forecast step,
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we need to account for modelization and linearization errors. In both steps there is also a
need to correct for biases in the model state or in the observations : biased errors can distort
considerably the computed covariances.

More precisely, in the analysis step we have mentioned that the P® variances need to be
reduced because they are overestimated with the eigenvector approximation, as it has been
pointed out already. On the other hand, the analysis itself is suboptimal : there are approxi-
mations in P7, in R, and we have approximated 3D-Var itself. This induces additional errors
in P, which mean extra analysis error variances, particularly in areas where they were sup-
posed to be very low. As for the correlations, we know that they tend to be too smooth in the
static part of the background error term, and they are likely to be reflected into P*, so they
should be sharpened. This is because the static part of P/ usually stems from globally averaged
statistics, which are not representative of the error structures in dynamically active areas ; the
resulting P® is particularly detrimental to the calibration of singular vectors of the subsequent
forecast, because singular vectors precisely point to unstable areas, as demonstrated in Bark-
meijer et al (1996). On the other hand, there may be correlated biases in the observations or in
the background term (notably in the assumed balance) ; this implies that some analysis error
correlations may be broader than they seem.

In the forecast, the concerns are very similar : in P/, the variances should be reduced in
order to account for non-linear error saturation, while at the same time they should include a
contribution of model error, due to e.g. missing physics or numerical truncation. This could
be checked against a non-linear ensemble forecast (Evenssen and van Leeuwen 1995). The
correlation may need to be sharpened because model design weaknesses suggest that the model
cannot be trusted for predicting error wave propagation over large distances (Bouttier 1994).
At the same time, failure to simulate large-scale circulations, like the Hadley cells, implies
broad model error correlations. In order to increase the realism of PY, one should use the best
possible static covariance model, preferably including some flow-dependency.

Because the EKF steps connect into each other, one expects a long-term behaviour to build
up after a few assimilation cycles (fig. 10), and it is essential to watch out for any slow-growing
undesirable features. This means checking for the boundedness, symmetry and positiveness
of the covariance matrices, taking care of the dependence of the covariances to respect to the
initial condition (as in Bouttier 1994), and examining the “climate” of the EKF covariances :
it should make physical sense, and be consistent with the static model used.

3.5 Special applications

The above description of a simplified EKF is biased towards a particular class of applications :
providing global operational analyses and forecasts. Here we review briefly some other impor-
tant problems which give rise to different EKF implementation issues, and to other interesting
applications as well. '

e In a limited area model, the implementation is more complicated because the boundary
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Figure 10: Evolution of the maximum, averaged and minimum of the global 500hPa height standard
error field in a simplified EKF. After a spin-up period of a few days, a quasi-static state is achieved,
over which the climatology of the standard errors should be consistent with that of the real ones.

forcing contains some errors, and the corresponding error covariances must be accounted
for correctly. However, applying the EKF in this framework could provide some useful
information about the way the predictions inside the domain depend on the boundary
forcing at some earlier time (in the EKF it is straightforward to derive covariances between
features of the analysis and of the forecast, the cross-correlations are given by MP*?). The
resolution and physical package in the tangent linear model must be realistic enough to
provide a good simulation of the mesoscale phenomena which are important in the domain
considered, e.g. orography, breezes or thunderstorms, to name but a few.

e In an observing system simulation experiment (OSSE), the informativity of the observa-
tions is usually evaluated using impact experiments. This tends to be costly and case-
dependent. In the EKF, the knowledge of the analysis error covariances allows one, in
principle, to evaluate directly the change in the analysis quality using the error variances,
and that is supposed to summarize the impact of observation changes with all the possible
error patterns in the model state, so it is presumably more objective and reliable than a
small number of impact experiments. The technique has been applied to new observing
system by Gauthier et al (1992) and Cohn and Parrish (1991).

¢ When making predictions for a particular area, it often happens that the atmospheric
situation is dominated by one important phenomenon. Adjoint techniques allow one to
compute the sensitivity of the prediction of parameters of interest with respect to the
initial state (Hello et al 1996), and provide some guidance to the forecaster. They can be
imbedded within the EKF so that the computational emphasis is put on these parameters
for which the forecast error covariance matrices can be computed exactly (Bouttier 1993) :
hence the assimilation can be made more optimal for the forecast of the phenomenon of
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interest.

e A similar technique can be used in field experiments : if a few observations are believed
to be very important for the quality of the forecast, it is possible to coerce the EKF into
computing exact covariances for these observations so that they will be used optimally.

e The EKF has direct applications to predictability studies, because P® and P7 estimate
the uncertainty of the analyses and short-range predictions. Hence it finds straightforward
applications in fields such as singular vectors, EPS, breeding vectors, or adjoint prediction
of local forecast error variances. The interested reader is referred to Bouttier (1995) for
more details.

4. Conclusion : EKF tuning and adaptative filtering.

The lack of experience with real-size EKF's makes it difficult to draw a general conclusion. One
can already predict that some efficient approximate algorithms are going to be designed, but
a unique difficulty will always remain in the EKF : error covariances are never observed. This
means that for the validation of P%, of P/, and for the specification of R and Q, one must
resort to indirect methods and do some constant adaptative retuning of the algorithm. This is
not trivial because of the huge amount of information contained in the covariance matrices.

A basic sanity check of the assimilation is the quality of the subsequent forecasts, but it
may be difficult to interpret in terms of individual features of the assimilation algorithm. The
basic behaviour of the EKF can be monitored using maps of analysis and forecast standard
errors, and averaged correlation structures like in figure 9. A more sophisticated diagnostic
is provided by the eigenvectors of the forecasts error covariances, i.e. the singular vectors of
the forecasts, which are supposed to explain the largest changes to the static error correlation
structures ; this should also indicate what in the model dynamics is actually used by the EKF.
A very important diagnostic is also provided by the fit of the background and analysis to the
observations : effective values of forecast and analysis errors can be calculated easily. Finally,
some interesting information may be gathered from the projection of forecast error sensitivity
patterns (Rabier and Klinker 94, Errico and Vukicevic 92) onto the analysis error covariance
matrices.

As was pointed out by Dee (1991), the calibration of the modelization error covariances is
difficult, if not impossible ; however it is an important component of the EKF, and in itself it
should be a useful summary of the weaknesses of the model. Hence it makes sense to invest into
sophisticated methods in order to improve some components of matrix Q. It has been proposed
to diagnose model errors in the fit to the data of a 4D-Var assimilation (Dee 95) ; despite their
large cost, other assimilation methods using the model equations as a weak constraint may
provide directly this information. |

Ideally, there should be a real-time algorithm which analyzes the performance of the EKF
and automatically retunes its arbitrary components. This is the problem of adaptative filtering,
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for which a sound methodology remains to be developed. Daley (1992) has advocated the
calibration of model error Q as the difference between the perceived forecast error covariances
(provided by the differences between the background and the observations) and the covariance
matrix generated by the EKF. Perhaps some efficient solutions can also be developed from other
methods which are used in other fields, such as generalized cross-validation ; there are still many
open problems which could lead to a better use of the observations in data assimilation.
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