
User's Guide to Blacklisting

Heikki J�arvinen, Sami Saarinen, Per Und�en

ECMWF

October 9, 1996

Contents

1 Introduction 3

2 The Blacklist language 4

2.1 Variables : 5

2.1.1 Report characteristics : : : : : : : : : : : : : : : : : : 5

2.1.2 Model/�rst guess characteristics : : : : : : : : : : : : 6

2.1.3 Observation characteristics : : : : : : : : : : : : : : : 6

2.2 Keywords : 6

2.3 Statements and operators : 8

2.3.1 IF-statement syntax : : : : : : : : : : : : : : : : : : : 8

2.3.2 List of the simple operators : : : : : : : : : : : : : : : 9

2.3.3 List of more complex operators : : : : : : : : : : : : : 9

2.4 Built-in functions : 10

2.5 Actions : 12

2.6 Variable declaration : 14

3 Operational and experimental use of blacklist 16

3.1 Location of blacklist �les : 16

1

3.2 An emergency rebuild : 16

3.3 Remaking the blacklist compiler : : : : : : : : : : : : : : : : 17

3.4 Some guidelines : 17

4 Creating new blacklist �le 18

4.1 Usage of the blcomp : 18

4.2 Conversion from old to new blacklist : : : : : : : : : : : : : : 20

4.3 C-code generation : 21

4.4 Linking with an application : : : : : : : : : : : : : : : : : : : 21

4.5 Combining conversion and object generation : : : : : : : : : : 22

4.6 User interface : 22

5 Examples 23

5.1 A simple example : 23

5.2 A more complex example : 28

5.3 Adding completely new variable to the system : : : : : : : : : 30

A README-�le from ClearCase 31

2

Chapter 1

Introduction

In the operational suite on Cray computer, the blacklist was basically a list

of undesired stations to be excluded from the analysis in operations, and

usually in prepan experiments, too, based on monthly monitoring by the

Operations Department. The technique for blacklisting has been streamlined

as a part of the migration of operational codes from Cray to Fujitsu.

A new blacklist format has been introduced that allows a great deal more

exibility in decision making on the use of observations. The blacklist now

consists of two parts: data selection part and monthly monitoring part. Data

selection part contains information about which variables will be used in the

assimilation, and it should be amended only rarely, except in experimenta-

tion. The monthly monitoring part, on the other hand, will be updated

fairly frequently as a result of data monitoring. The former automatic ship

blacklist is not supported any more.

This guide comprehensively describes the format of the blacklist language

developed at ECMWF during the migration project in 1995-96 based on

initial idea by Mats Hamrud.

3

Chapter 2

The Blacklist language

The way the blacklisting now works in the IFS context is as follows. One

edits a blacklist �le which is written in a speci�c format. That �le is then

converted into a subroutine (C language) using the blacklist compiler. The

subroutine is then compiled and linked into the executable. This external

routine is called from the IFS with a list of arguments in the observation

screening run. IFS then receives a few ags telling whether to reject or

accept this station or variable for assimilation. The following example will

clarify the consepts used in blacklisting.

if (OBSTYP = synop) then

if VARIAB in (u10m, v10m)

and LSMASK = land

and abs(LAT) < 25 then

fail(constant);

endif

endif;

There are several patterns in this single blacklisting rule and in the following

they will be called:

� variables, like OBSTYP, VARIAB, LSMASK, LAT (see 2.1)

� keywords, like synop, u10m, v10m, land, constant (see 2.2)

4

� statements, like if-then-endif-block (see 2.3.1)

� operators, like and, in, =, < (see 2.3.2)

� built-in functions, like abs (see 2.4)

� actions, like fail (see 2.5)

Variables get their values from IFS. These are compared against the key-

words or values given in the blacklist. If the blacklist rule is true, fail-

function takes action activating blacklisting ags and returning back to the

calling routine in IFS. Note that the blacklist language is case insensitive

and no column orientation is required.

2.1 Variables

A list of variables that are currently de�ned in IFS is given below. Adding

new variables, see for 5.3.

2.1.1 Report characteristics

Variable Meaning Possible value

OBSTYP Observation type Keyword (as listed below)

STATID Station id Right justi�ed 8 character string

CODTYP Code type Integer value as de�ned in IFS

INSTRM Instrument type Integer value as de�ned in IFS

DATE Date Packed integer YYMMDD

TIME Exact time Packed integer HHMMSS

LAT Latitude Real value in degrees (�90 <= LAT <= 90)

LON Longitude Real value in degrees (�180 < LON <= 180)

STALT Station altitude Real value in metres

5

2.1.2 Model/�rst guess characteristics

Variable Meaning Possible value

MODORO Model orography Real value in metres

LSMASK Land/sea -mask Keyword (as listed below)

MODPS Model surface pressure Real value in hectopascals (hPa)

MODTS Model surface temperature Real value in Kelvins

MODT2M Model 2 metre temperature Real value in Kelvins

2.1.3 Observation characteristics

Variable Meaning Possible value

VARIAB Variable name Keyword (as listed below)

VERT CO Type of vertical coordinate Keyword (as listed below)

PRESS Value of vertical coordinate Pressure in hectopascals (hPa)

or height in metres

or satellite channel (integer)

PRESS RL Reference level pressure as in PRESS

PPCODE Synop pressure code Keyword (as listed below)

OBS VALUE Observed value Real value

FG DEPARTURE First guess departure Real value

OBS ERROR Observation error Real value

FG ERROR First guess error Real value

2.2 Keywords

Keywords are �xed values against which certain variables are compared.

They should be consistent with the IFS de�nitions. A list of keywords that

are currently de�ned in the blacklist. Adding new keywords is straightfor-

ward.

6

Variable Keyword

OBSTYP synop, airep, satob, dribu, temp,

pilot, satem, paob, scatt

(or integer values from 1 to 9)

CODTYP (an integer value as de�ned in IFS)

INSTRM (an integer value as de�ned in IFS)

LSMASK land

sea

Variable Keyword De�nition

VARIAB u Upper air wind u-component

v Upper air wind v-component

z Geopotential

dz Thickness

pp Upper air pressure

t Upper air temperature

td Upper air dew point

rh Upper air relative humidity

q Speci�c humidity

pwc Precipitable water content

t2m 2 metre temperature

td2m 2 metre dew point

rh2m 2 metre relative humidity

ps Surface pressure

ts Surface temperature

rawrad Raw radiance

ccrad Cloud cleared radiance

scattu Scatterometer wind u-component

scattv Scatterometer wind v-component

... and many others (see 5.1)

7

Variable Keyword De�nition

VERT CO pressure Pressure of observation level

height Height of observation level

tovs cha TOVS channel

scat cha SCATT channel

PPCODE sealev Sea level

stalev Pressure of station level

p500gpm Pressure of 500gpm

p1000gpm Pressure of 1000gpm

p2000gpm Pressure of 2000gpm

p3000gpm Pressure of 3000gpm

p4000gpm Pressure of 4000gpm

g1000hpa Geopotential of 1000hPa

g900hpa Geopotential of 900hPa

g850hpa Geopotential of 850hPa

g700hpa Geopotential of 700hPa

g500hpa Geopotential of 500hPa

2.3 Statements and operators

2.3.1 IF-statement syntax

The IF-statement syntax (note the semicolon (;) after each statement):

Syntax Meaning

if (condition) then IF-test with an optional ELSE-block.

statement 1; Nested IF-tests are valid in every statement.

statement 2; Every IF-THEN or IF-THEN-ELSE must

etc. match an ENDIF

else Condition can be any logical or

statement 1; arithmetic operation

statement 2;

etc.

endif;

8

2.3.2 List of the simple operators

A list of operators that are currently de�ned in the Blacklist-language:

Operator Meaning

and Logical AND to be used in the IF-condition

&

or Logical OR

j

not Logical NOT

== Logical EQUAL-sign in the IF-condition only

= Logical EQUAL-sign in the IF-condition when

the types on both side have to match.

Alternatively an assignment operator

in other statements

> Greater than

< Smaller than

>= Greater than or equal to

<= Smaller than or equal to

<> Not equal to

/=

+ Addition

- Subtraction

* Multiplication

/ Division

^ Power

**

% Modulo (a modulo b = a%b. Same as mod(a,b))

2.3.3 List of more complex operators

Somewhat more complex operators can also be used to simplify coding. For

example the compound AND-operators below:

9

Complex operator Equivalent meaning

a < x < b a < x AND x < b

a <= x <= b a <= x AND x <= b

a <= x < b a <= x AND x < b

a < x <= b a < x AND x <= b

a > x > b a > x AND x > b

a >= x >= b a >= x AND x >= b

a >= x > b a >= x AND x > b

a > x >= b a > x AND x >= b

in (list) Checks whether an item appears in a list,

where the elements are separated with a comma (,).

A list may contain either numbers or strings.

notin (list) Checks whether item is NOT in the list

2.4 Built-in functions

The Blacklist-language also contains some built-in functions. They are listed

below:

Function Meaning

exp(x) Exponent (e

x

)

ln(x) Natural logarithm; x > 0

log10(x) Base-10 logarithm; x > 0

lg(x)

sqrt(x) Square root (

p

x); x � 0

mod(a,b) a modulo b; same as a%b

max(x

1

, x

2

, : : :, x

n

) Maximum of the elements x

i

min(x

1

, x

2

, : : :, x

n

) Minimum of the elements x

i

sum(x

1

, x

2

, : : :, x

n

) Sum of the elements x

i

prod(x

1

, x

2

, : : :, x

n

) Product of the elements x

i

10

Function Meaning

abs(x) Absolute value

sin(x) Sine; x in degrees

cos(x) Cosine; x in degrees

tan(x) Tangent; x in degrees

asin(x) Arcussine; returns degrees

acos(x) Arcuscosine; returns degrees

atan(x) Arcustangent; returns degrees

atan(x,y) Arcustangent (two param. version); returns degrees

sinh(x) Hyberbolic sine; x is a scalar

cosh(x) Hyberbolic cosine; x is a scalar

tanh(x) Hyberbolic tangent; x is a scalar

int(x) Integer part (truncated) of a value

round(x) Round to the nearest integer

ceil(x) Ceiling int. value i.e. x � ceil(x)

oor(x) Floor int. value i.e. x � floor(x)

rand() Return a random number

srand(x) Supply random seed in x

cputime() Return CPU-time used

In addition, there is one special function to study whether a point is within

a circular area on the Earth (e.g. to blacklist Meteosat SATOBs if they are

too far away):

if (not (rad (0, 0, 45, LAT, LON))) then fail(monthly); endif;

The function is called rad() and requires �ve (5) arguments. It returns one

(1) if the observation is within the circle, otherwise zero (0). The usage is

rad(reflat, reflon, refdeg, LAT, LON)

where the refdeg is radius of the circle on the Earth with the (reflat,

reflon) as a center point of the circle. The (LAT, LON) is the position of

the observation to be checked, i.e. LAT and LON of the report. All values are

given in degrees. See also picture 2.1.

The following arithmetic is performed in the function rad():

11

Satellite

(reflat,reflon)

refdeg −angle

X

Observation’ s
 (LAT,LON)

Figure 2.1: Schematic view of the rad()-function parameters.

1. Convert all degrees to radians

2. Calculate angle distance (in radians) relative to the center point

obsdeg = acos(cos(reflat) cos(LAT) cos(LON-reflon) +

sin(reflat) sin(LAT))

3. Return one from rad, if obsdeg � refdeg, otherwise zero.

2.5 Actions

Finally, perhaps the most important function fail(). It returns information

back to the application.

The fail()-function is a variable number argument function. If no argu-

ments are given, the �rst argument is assumed to contain keyword monthly,

i.e. rejection occurs in the monthly monitoring part of the blacklist-�le.

If the second argument { seriousness of the blacklisting { is omitted, then

seriousness is assumed to be equal to one.

Arguments in the fail(arg1, arg2)-function are:

12

Argument#1 (arg1) Meaning

monthly monthly monitoring (default)

constant constant blacklisting

experimental experimental blacklisting

whitelist whitelisting, i.e. enforcing

to use this report or variable

Argument#2 (arg2) Meaning

level level of seriousness of blacklisting

Range is between [0 : : :1]. Default=1

When a call to the fail()-function occurs, the control is returned immeadi-

ately to the calling application. Normally the application is the IFS, which

will get the following (Fortran) variables updated:

Variable Type Meaning

NCMBLI Integer Blacklisting indicator

0 = not blacklisted (default)

1 = monthly monitoring

2 = constant blacklisting

3 = experimental

4 = whitelist

ZCMCCC Real Seriousness of the blacklisting

0 = Default if not blacklisted

1 = Default if blacklisted (i.e. NCMBLI > 0)

[0:01 : : :0:99] for non-complete blacklisting (optional)

FEEDBACK Integer Feedback vector telling which variable(s) caused

the blacklisting to occur

0 = Blacklist line number where the fail()-function

took action

1-N = Pointers to the variable indices to help to locate the

the responsible variables

There is a range of values for ZCMCCC, and together with other information

in the quality control, and a value less than one may still lead to the use of

this variable in the assimilation. The inclusion of this option of non-strict

blacklisting increases exibility of the use of observations.

13

If one wants to use whitelisting, these rules have to be placed right to the

beginning of the blacklist �le.

Examples of non-standard cases:

1. whilelist: place these rules right to the beginning of the blacklist. The

search will be terminated at the �rst ful�lled whitelist rule.

2. blacklist seriousness is between 0:01 : : :0:99, the search continues and

returns with the highest seriousness found.

2.6 Variable declaration

Variable declaration has to be performed, if data will be passed from an

application (like IFS) into the blacklist. This is normally done through

external-declaration (see for 4.2 or 5.1). Also, selected variables can be

protected by de�ning them as constants.

Additional or local variables can be de�ned everywhere in the code, even

within the IF-THEN-ELSE-ENDIF -block (except in IF-condition). How-

ever, any attempt to use undeclared or uninitialized variables will cause the

Blacklist-compilation to fail.

The simplest variable declaration is an assignment operation.

14

Variable declation Meaning

a = 10; Variable a was made local and modi�able with value 10

b = a ** 2; Variable b was made local and modi�able

const c = b; Variable c was made constant with the current value of b.

Only this particular assignment is possible.

external d; Variable d gets its value from outside (from application).

The value cannot be changed without causing

compilation to fail.

external s is special; The attribute special guarantees that variable s is external

and belongs to the observation report body entry part.

Unmodi�able as well.

a = "12345678"; Variable a was made local and modi�able with

a character value of "12345678".

Unless otherwise stated a character string MUST have

exactly 8 chars.

If a dot (.) is found from a string during the character string

comparison, it is treated as a wildcard i.e. any character.

const char c = a; Variable c was made constant with the current value of a.

external char d; Character variable d gets its value from outside.

external char s is special; The attribute special guarantees that variable s is

external char and belongs to the observation

report body entry part.

15

Chapter 3

Operational and

experimental use of blacklist

3.1 Location of blacklist �les

3.2 An emergency rebuild

There is a copy of all building blocks needed to convert from old blacklist(s)

to the new format, and compile them into a linkable object with the IFS. All

needed �les are currently found on FUJITSU directory ~daj/bin. To bypass

default compilation sequence. To use that sequence, run the following script

(Korn-shell /bin/ksh):

Define user

USER=daj

Define new path for old-to-new conversion routine

export BL_OLD2NEW=~${USER}/bin/bl_old2new.x

Run the conversion using blcomp

~${USER}/bin/blcomp -o old_list new_list.B

Re-create "new_list.B" to contain the data selection part

cat > new_list.B << EOF

#include "external_new_list.b"

#include "data_sel_part"

16

#include "monthly_new_list.b"

EOF

Create C_code.o from the modified new_list.B

Don't forget to use the new compiler

from directory (the -x option)

~${USER}/bin/blcomp -x ~${USER}/bin/bl95.x -c new_list.B

3.3 Remaking the blacklist compiler

See for documentation under ClearCase. Run the following commands on a

workstation:

% selview -p bl -s CY

After that pick the latest release and look for README-�le (see also for

appendix A).

3.4 Some guidelines

Please do not place any station identi�ers into the data selection part of the

blacklist. Instead, have them in the monthlt monitoring part. By this way

we can have as few changes as possible in the data selection part and make

e.g. re-analysis much easier.

After any modi�cations to the blacklist, please remember to recompile (prefer-

ably on a workstation) to check for syntax errors.

17

Chapter 4

Creating new blacklist �le

Blacklist compilation is fully controlled by the script called blcomp. It has

the following capabilities:

� Optionally convert from an old ASCII blacklist format to a new format

� Check the syntax of a given blacklist

� Create C-language �le (C code.c) catered for observation processing

� C-compile the C-�le to create linkable object

4.1 Usage of the blcomp

The blcomp-script has the following usage:

blcomp [-aAcCdDefiILmMnoOpSx8] blacklist_file.b (or blacklist_file.B)

where the ags are as follows:

18

Flag Meaning

-c Generate C-code �le C code.c from BLACKLIST

-o old blacklist Converts old BLACKLIST to new before compilation

-x /path/bl95 BL-compiler executable name (overrides BL95 de�nition)

-i Ignore "the user interface" in case of errors

-a "arguments" Arguments to be passed to the BL-compiler

-A Compile whole BLACKLIST despite exit/return stmts

-C "compiler name" C-compiler to be used (if other than cc or BL CC)

-d Turn debugging on while compiling the BLACKLIST

-D "display:0.0" (Re-)de�ne DISPLAY environment variable

-e editor-name Preferred EDITOR ("the user interface", if errors found)

-f "C-ags" Additional C-compiler ags

-I "pathname" Search path(s) for #include-�les

-L Display the default library (libbl95.a) name only and exit

-m error count Maximum error count before aborting the BL-compiler

-M Generates pseudo MAIN-program

-n times Number of times to loop over the BL-compiled instructions

-O Optimize BLACKLIST-code

-p Further debugging: print table(s) of used symbols

-S computer arch Computer system architecture (overrides ARCH def.)

-8 Ignore the 8 character limit in strings

The new BLACKLIST-�le must have either su�x ".b" or ".B". In the latter

case the C-preprocessor /lib/cpp will be run in the front of BL-compiler

mainly to resolve any possible #include-statements.

For pure syntax checking of the new BLACKLIST-�le, give:

blcomp blacklist_file.b

or

blcomp blacklist_file.B

By giving blcomp without arguments you will get the usage. If you fail to

do this, check for your setting of the PATH-environment variable.

19

4.2 Conversion from old to new blacklist

Conversion from old to new and syntax checking of the new BLACKLIST-�le

can be accomplish in the following way:

blcomp -o old_text_blacklist_file newfile.b

or

blcomp -o old_text_blacklist_file newfile.B

Here, the input �le is old text blacklist file, and output �le is newfile.b

(or newfile.B) in the new blacklist format.

While converting from old to new format, the used su�x .b or .B of the new

blacklist �le plays an important role. First of all, there MUST always be one

su�x. When the su�x is .b, then a single blacklist �le (here: newfile.b)

will be created with all external (e.g. variable declarations) and monthly

monitoring rules (a portion of blacklist that normally does not change during

one month period) inlined.

If the su�x .B was used, then the following three (3) �les are generated:

� master �le (newfile.B)

� include-�le no. 1 for externals (external newfile.b)

� include-�le no. 2 for monthly part (monthly newfile.b)

The contents of the master �le is simply the following two lines:

#include "external_newfile.b"

#include "monthly_newfile.b"

One way to bring in your own modi�cations, is to create a new master-�le,

for example:

#include "external_newfile.b"

#include "my_own_file"

#include "monthly_newfile.b"

20

This is exactly how the data selection part comes in in the production run,

where instead of my own file is data selection part.

4.3 C-code generation

Enabling fast blacklist handling the blacklist �le is always converted into an

object �le (.o) meant to be linked with the (Fortran-)application (like IFS)

in conjunction with the blacklist object library (normally libbl95.a).

Once a blacklist �le (either with .b or .B su�x) is available, it can be con-

verted to C-language �le C code.c and compiled to an object for maximum

performance. This can be done as follows:

blcomp -c blacklist_file.b

or

blcomp -c blacklist_file.B

4.4 Linking with an application

A Fortran-application (IFS) interfaces the blacklist via two subroutines:

� BLACKBOX INIT

� BLACKBOX

The former one is responsible for initiating the variable list active by the

application. And the latter one handles all burden of interfacing the blacklist

�le.

To link application with the blacklist software, one needs not only the

C code.o-object �le, but also the blacklist library libbl95.a. Linking com-

mand is normally:

linker application.o C_code.o /bl95path/libbl95.a other_libs

The exact location of the blacklist library can be found via command:

21

blcomp -L

4.5 Combining conversion and object generation

If no data selection part is needed, one can combine conversion from old to

new blacklist and object code generation described above:

blcomp -c -o old_text_blacklist_file newfile.b

or

blcomp -c -o old_text_blacklist_file newfile.B

4.6 User interface

It is always recommended to (cold-)compile a modi�ed blacklist on a work-

station to check for syntax errors. If any errors are detected, the blcomp-

command attempts to open an editor session and jump directly to the line

where the (�rst) error occurred.

Sometimes this facility is not desirable and can be disabled by using -i ag

in the blcomp-command.

22

Chapter 5

Examples

The blacklist �le is normally about 1000 lines long. In order not to confuse

readers, we will explain here with very short examples what can be done

with the blacklist

5.1 A simple example

A fraction of an old blacklist (old) looks like as follows:

3ELC 1 3

ELBX3 1 333

N503US 2 00030

UAL... 2 00030

024 3 33000000 033333

0// 3 33000000 033333

46527 4 33300

ERES 5 000003

08221 6 0330

201 7 33300000 00333

When compiled with blcomp -o old new.b, we get a new �le new.b. The

local constant variable declaration section looks as follows:

23

!

! Written by an automatic conversion program, version 3

!

!

! File converted from the file "old"

!

! FAILCODE :

const monthly = 1;

const constant = 2;

const experimental = 3;

const whitelist = 4;

! OBSTYP :

const synop = 1;

const airep = 2;

const satob = 3;

const dribu = 4;

const temp = 5;

const pilot = 6;

const satem = 7;

const paob = 8;

const scatt = 9;

! CODTYP : none

! INSTRM : none

! VARIAB :

const u = 3;

const v = 4;

const z = 1;

const dz = 57;

const rh = 29;

const q = 7;

const pwc = 9;

const rh2m = 58;

const t = 2;

const td = 59;

const t2m = 39;

const td2m = 40;

const ts = 11;

const ptend = 30;

const w = 60;

24

const ww = 61;

const vv = 62;

const ch = 63;

const cm = 64;

const cl = 65;

const nh = 66;

const nn = 67;

const hshs = 68;

const c = 69;

const ns = 70;

const s = 71;

const e = 72;

const tgtg = 73;

const spsp1 = 74;

const spsp2 = 75;

const rs = 76;

const eses = 77;

const is = 78;

const trtr = 79;

const rr = 80;

const jj = 81;

const vs = 82;

const ds = 83;

const hwhw = 84;

const pwpw = 85;

const dwdw = 86;

const gclg = 87;

const rhlc = 88;

const rhmc = 89;

const rhhc = 90;

const n = 91;

const snra = 92;

const ps = 110;

const dd = 111;

const ff = 112;

const rawbt = 119;

const rawra = 120;

const satcl = 121;

const scatss = 122;

const du = 5;

const dv = 6;

const u10m = 41;

const v10m = 42;

const rhlay = 19;

25

const auxil = 200;

const cllqw = 123;

const scatdd = 124;

const scatff = 125;

! LSMASK :

const sea = 0;

const land = 1;

! PPCODE :

const psealev = 0;

const pstalev = 1;

const g850hpa = 2;

const g700hpa = 3;

const p500gpm = 4;

const p1000gpm = 5;

const p2000gpm = 6;

const p3000gpm = 7;

const p4000gpm = 8;

const g900hpa = 9;

const g1000hpa = 10;

const g500hpa = 11;

! VERT_CO:

const pressure = 1;

const height = 2;

const tovs_cha = 3;

const scat_cha = 4;

The external variable de�nition section looks as follows:

! External variables (non-special):

external obstyp;

external_CHAR statid;

external codtyp;

external instrm;

external date;

external time;

external lat;

external lon;

external stalt;

26

external modoro;

external lsmask;

external rad;

! External variables (SPECIAL):

external variab is SPECIAL;

external vert_co is SPECIAL;

external press is SPECIAL;

external press_rl is SPECIAL;

external ppcode is SPECIAL;

external obs_value is SPECIAL;

external obs_departure is SPECIAL;

external modps is SPECIAL;

And �nally the actual monthly monitoring rules in a new blacklist format:

if (OBSTYP = synop) then

if VARIAB in (z, ps)

and STATID = " 3ELC"

then fail(); endif;

if VARIAB in (z, ps, u10m, v10m)

and STATID = " ELBX3"

then fail(); endif;

return; endif;

if (OBSTYP = airep) then

if (VARIAB = t)

and STATID in (" N503US", " UAL...")

then fail(); endif;

return; endif;

if (OBSTYP = satob) then

if STATID in (" 0//", " 024")

then fail(); endif;

return; endif;

if (OBSTYP = dribu) then

27

if VARIAB in (z, ps, u, v)

and STATID = " 46527"

then fail(); endif;

return; endif;

if (OBSTYP = temp) then

if (VARIAB = z)

and STATID = " ERES"

then fail(); endif;

return; endif;

if (OBSTYP = pilot) then

if VARIAB in (u, v)

and STATID = " 08221"

then fail(); endif;

return; endif;

if (OBSTYP = satem) then

if STATID = " 201"

then fail(); endif;

return; endif;

5.2 A more complex example

The Blacklist compiler will generate quite a compact and readable code from

the following excerpt:

ATQM 1 3

ATRK 1 3

ATSR 1 3

C6BB 1 3

C6QK 1 3

AN... 2 33333 50 10

NWA74 2 33333 -90 90 -40 -80

035 3 33000000 033333 -50 50 -50 50 1000 401

104 3 33000000 033333 -50 50 90 -170

28

20674 5 000003 100 10 11 13

40179 5 033000 05 07

40179 6 0330 05 07

The constant de�nition is not di�erent from the previous example. For the

monthly monitoring rules in a new blacklist format becomes:

if (OBSTYP = synop) then

if VARIAB in (z, ps)

and STATID in (" ATQM", " ATRK", " ATSR", " C6BB", " C6QK")

then fail(); endif;

return; endif;

if (OBSTYP = airep) then

if (50 >= PRESS >= 10)

and STATID = " AN..."

then fail(); endif;

if ((LAT < -90 or LAT > 90) or (-80 < LON < -40))

and STATID = " NWA74"

then fail(); endif;

return; endif;

if (OBSTYP = satob) then

if ((LAT < -50 or LAT > 50) or (-170 < LON < 90))

and STATID = " 104"

then fail(); endif;

if ((LAT < -50 or LAT > 50) or (LON < -50 or LON > 50))

and (1000 >= PRESS >= 401)

and STATID = " 035"

then fail(); endif;

return; endif;

if (OBSTYP = temp) then

if (VARIAB = z)

and (100 >= PRESS >= 10)

and (110000 <= TIME <= 130000)

and STATID = " 20674"

29

then fail(); endif;

if VARIAB in (u, v)

and (50000 <= TIME <= 70000)

and STATID = " 40179"

then fail(); endif;

return; endif;

if (OBSTYP = pilot) then

if VARIAB in (u, v)

and (50000 <= TIME <= 70000)

and STATID = " 40179"

then fail(); endif;

return; endif;

5.3 Adding completely new variable to the sys-

tem

The current de�nition of variables can be checked from IFS source code in

obs preproc/blinit.F. Adding new variables requires:

1. Never remove or redi�ne existing variables. That will make re-running

earlier cases virtually impossible.

2. Add a variable to the IFS source code in obs preproc/blinit.F.

3. Increase the number of de�ned variables in obs preproc/blinit.F.

4. External declaration must be done into the external-�le.

5. Before starting to use the new variable, initialize it properly in obs preproc/black.F.

6. Make sure that the blacklist event ags are fed correctly back to CMA-

�le in routines obs preproc/feblre.F and obs preproc/feblda.F.

7. The new variable can new be added into the blacklist. If keywords are

associated with, declare them in the external-�le as well.

30

Appendix A

README-�le from

ClearCase

Instructions for building the new BLACKLIST compiler

==

(2-SEP-1996 by Sami Saarinen)

(1) Selview to the proper "bl"-project CC-branch, e.g.:

selview -p bl -s CY15R4

(2) Copy files under view /cc/rd/bl into your local destination:

[-d $TMPDIR/bl] && rm -rf $TMPDIR/bl

cp -pr /cc/rd/bl $TMPDIR

(3) Go to your local bl-directory and enter make:

cd $TMPDIR/bl

make

Default settings should be ok for FUJITSU.

(If necessary, then edit the file "Makefile").

31

(3a) Use following options when compiling for SGI (in C-shell):

use epcf90

make ARCH=SGI CC=cc FC=epcf90 FCOPTS="-q -r8" LD=cc LIBS=

(3b) Use following options when compiling for CRAY C90:

make ARCH=CRAY CPPFLAGS="-N -DCRAY" CC=cc FC=f90 FCOPTS="-dp" \

AR="bld q" RANLIB="bld tv" LD=cc LIBS=

(3c) Use following options when compiling for CRAY T3D:

make ARCH=T3D \

CPPFLAGS="-N -DCRAY -DT3D" \

CC="env TARGET=cray-T3D /bin/cc" \

CCOPTS="-DT3D -DCRAY" \

FC="env TARGET=cray-T3D /mpp/bin/f90" \

FCOPTS="-dp" \

LD="env TARGET=cray-T3D /bin/cc" \

LDFLAGS="-X 1" \

LIBS=

(4) To clean-up from old rubbish, enter: make clean

(5) Master copy of the blcomp-script is kept under

the scripts-directory.

32

