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Summary: We use the regional NCEP’s ETA/4ADVAR data assimilation system to
assess the effects of assimilation of accumulated hourly raingage precipitation ob-
servations. A special attention is paid to the time scale of the impact of the assimilated
precipitation data on the future precipitation forecast. Experimental results demon-
strate a potential of the 4ADVAR method to outperform the optimal interpolation meth-
od.

1. INTRODUCTION

Assimilation of precipitation datg is a challenging task for any data assimilation technique. Inthe case
of optimal interpolation (OI) and nudging techniques a major difficulty is in defining a correct rela-
tionship between the observed quantity (e. g., precipitation) and the analyzed variables (e. g., surface
pressure, temperature, wind, humidity). In Kalman filtering and four-dimensional variational
(4DVAR) data assimilation methods this relationship is naturally given by the forecast model (used
either as a strong, or as a weak constraint, e. g., Sasaki, 1970) and poses no problem in theory. In
practice however, a big obstacle for both methods is in dealing with nonlinear and discontinuous
physical processes (e. g., cumulus convection). These problems need to be solved when developing
the necessary tools for the 4DVAR and Kalman filtering techniques: ﬁnearized (tangent linear and

adjoint) models.

Recently, it was demonstrated that it is possible to overcome the difficulties caused by the discontinu-
ous physical processes and successfully assimilate precipitation data by the 4ADVAR data assimilation
technique (Zupanski and Mesinger, 1995; Zou and Kuo, 1996; Tsuyuki, 1996). Here, for the first
time, we use a complex state—of-the—art 4DVAR data assimilation system to assess the effects of as-

similation of hourly raingage precipitation observations.
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2. DATA ASSIMILATION SYSTEM

We use the National Centers for Environmental Prediction’s NCEP/ETA 4DVAR regional data assim-
ilation system, described in Zupanski and Zupanski (1996). It includes the following important fea-
tures:

- weak constraint formulation of the forecast model (D Zupanski, 1997);

- non-diagonal, non-separable in space, background and model error covariances (Zupanski and
Zupanski 1995);

- full-physics NCEP/ETA forecast model (Mesinger et al., 1988; Janjic, 1990, 1994; Janjic et al.,
1995; Black, 1994) with tangent hyperbolic smoothing of discontinuities in the cumulus convection
parameterization (Zupanski and Mesinger, 1995);

- corresponding diabatic adjoint model (excluding radiation processes);

-~ digital filter gravity wave penalty term (Zupanski and Zupanski, 1995);

— limited memory quasi-Newton minimization algorithm (Shanno, 1978; 1985) with an on-line,
adaptive preconditioning (M Zupanski, 1993, 1996).

In this study we use the forecast model of a coarser resolution (80 km / 17 layers) than the present
operational NCEP/ETA model (48km /38 layers). Because of some recent enhancement of the opera-
tional model (e. g., OSU soil model, explicit cloud water scheme), the two models are somewhat dif-
ferent. The 4DVAR system has capability to assimilate all observations presently used in the opera-
tional, OI based regional data assimilation system (e. g., radiosonde, dropsonde, pibal wind profiles,
SATEM, AIREP, ASDAR, ACARS, synop, ship, buoy data). We use the term “conventional” for
these observations. In addition, we developed an algorithm to assimilate hourly raingage precipita-
tion data, available at observational locations over the continental U. S . So far, the system has under-
gone extensive testing in different synoptic situations using conventional data. The results were very
promisiné, clearly indicating an improvement as compared to the OI data assimilation results (e. g.,
Zupanski and Zupanski, 1995, 1996). Also, the ADVAR experiments with assimilating 24-hourly
accumulated raingage precipitation observations showed an improved precipitation forecast, as

compared to the standard OI results (Zupanski and Mesinger, 1995).
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3. THE MINIMIZATION PROBLEM

As in the case of the assimilation of conventional observations, we pose the problem as to find the

minimum of the following functional:
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where the weak constraint is defined by the forecast model G including the model error correction
term @,, and a postprocessing operator H which transforms a state vector x from the model space to

a vector y in the observational space, that is:

xm = Gx,) + Pnm (2)
yn' = Huy(xm) . (3)

In the equations ( 1)-(3) the superscript T'stands for a transpose, obs denotes observations, b a back-
ground value, the index n defines observational times and indexes m and k model time steps. Matrices
R, B and Q are the observational, background and model error covariances, respectively. The matrix
W defines the weight given to the digital filter gravity wave penalty term, where the digital filter oper-
ator is defined by F. As in the previous experiments (e. g., D Zupanski, 1997) the model error term
includes both the systematic and the random error parts. Also, we use a definition for the modél error
covariance derived from the background error covariance matrix, as before. The control variable (z)

includes the initial conditions X, and model random error ry, that is:
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z=(x0, ry ) . (4)

In the case of assimilating hourly precipitation data the observational part of the functional (first term

in ( 1)) includes the following term:

N

i (C(P,,) - Pn"“) T Ry (C(Pn) - P,,obs) , (5)
n=1

where Prand P nos are the forecasted and the observed hourly precipitation amounts, respectively.
Cis the observational operator (a simple collocation is used in our experiments) and R, is the observa-
tional error (co)variance for precipitation data. The following observed variables are included in the
definition of the functional: surface height (derived from the surface pressure observations), tempera-
ture, humidity, wind, and accumulated hourly precipitation. We use a diagonal matrix to define ob-
servational error covariances. The observational errors depend on the observational type and the pres-
sure level. They vary in the range of 1-2.5 K for temperature, 10-20 m for surface height, 1-10m/s
for wind observations. The hourly precipitation observations error is defined to be approximately 1
mm. With the particular Weights; chosen, the observational part of the functional is typically of the
order of 105, while the model error and the background terms (secorid and third term in ( 1)) are an
order of magnitude smaller. The gravity wave penalty term (fourth term in ( 1)) is approximately two

orders of magnitude smaller than the observational term.

4. EXPERIMENTAL DESIGN

We assimilate the conventional observations every three hours and the precipitation observations ev-
ery hour over the 12-h data assimilation period. The time resolution of the random error term is 3
hours (i. e., four random error terms during the data assimilation period). The minimization process
is terminated after 10 iterations, which is approﬁmately within the distance of 1-5% to the exact
minimum of the functional (for more explanation, see M Zupanski, 1996). The reason for terminating
the minimization process before the exact minimum was reached was primarily due to economy. In
addition to this, the effect of further decrease of the functional on the forecast results was marginal,

so the need for more iterations was not obvious.
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We perform both data assimilation and forecast (up to 48-h) experiments in two different synoptic
situations: 00 UTC 08 May 1995 - 12 UTC 10 May 1995 (CASE 1) and 00 UTC 5 Aug 1995 - 12
UTC7 Aug 1995 (CASE2). In both situations, considerable amounts of precipitation (up 20-30 mm/
hour) were observed in the pre-forecast period over large areas in the continental U. S. (where the
precipitation observations are available). Therefore, we expect that assimilating this precipitation

data should have a noticeable effect on the 4DVAR data assimilation results. The results of the follow-

ing three experiments are compared:

(1) 4DVAR_NOPREC, where the initial conditions for the forecast model are defined by applying
the 4ADVAR method, but using only the conventional observations.

(2) 4DVAR_PREC, where the 4ADVAR method was applied to assimilate both the conventional

- and the precipitation data.

3) OI_NOPREC experiment, where the OI analyses are created as m the operational Eta Data
Assimilation System (EDAS, Rogers et al,, 1995), except for a different space resolution. As in the
operational system, the precipitation data are not used. This experiment is used as a control, in order
to evaluate the potential of the 4DVAR method to outperform the operational data assimilation meth-
od.

5. RESULTS AND DISCUSSION

5.1  Data assimilation experiments

As mentioned in the introduction, a serious problem related to the inclusion of physical parameteriza-
tions into the forecast and adjoint models is the presence of nonlinearities and discontinuities. This
may have a consequence in slowing down the convergence of the functional, or, in some cases, even
in the divergence of the functional (e. g., Verlinde and Cotton, 1993). These problems may become
even more pronounced when assimilating the prebipitation observations, due to small scale nonlinear-
ities present in the data. Therefore, it is important to pay attention to the convergence of the minimiza-
tion. In Fig. 1 we present the value of the total functional ( eq. ( 1)) as a function of the iteration
number obtained in the experiments 4ADVAR_NOPREC and 4DVAR_PREC. The initial analysis is
defined as in our earlier experiments (Zupanski and Zupanski, 1996) using previous 4DVAR data as-
similation results. (This, so called cycled application of 4DVAR, provides considerably better initial
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guess analysis than the non-cycled 4DVAR and reduces the number of necessary iferations.) As we
can see in Fig. 1, the convergence is relatively fast in both experiments, indicating no serious nonlin-
eaﬁty/discontinuity problems. The functional value gets more reduced in the experiment
4DVAR_PREC due to a better fit to the precipitaﬁon data. Other terms of the functional are approxi-
mately of the same magnitude.

TOTAL FUNCTIONAL DECREASE (CASE 2)

0.4

_ — 4DVAR_PREC

------ 4DVAR_NOPREC

J (E+05)

0-1 T 1 T 1 T 1 T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10

ITERATION No.

Fig. 1 Total functional decrease (including fitting to precipitation observations) as a function of
iteration number calculated in the experiments 4DVAR_PREC and 4DVAR_NOPREC.
The assimilation from 00 UTC 05 Aug 1995 to 12 UTC 05 Aug 1995 (CASE 2) is

presented.

Another important issue related to the assimilation of precipitation data is the effect of the assimilated
precipitation observations on the precipitétion forecast fields. To examine this effect we present the
observed hourly precipitation at the end of 12-h data assimilation period for CASE 2 in Fig. 2. The
corresponding precipitation forecast fields obtained in the experiments 4DVAR_PREC and

4ADVAR_NOPREC are given in Figs. 3 and 4, respectively.
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OBSERVED DATA VALID 12Z 5 AUG 85

1-H AC PRECIP_(MM) 80 KM, F—GRID
i ‘ %
[ f

Fig. 2 Observed hourly accumulated precipitation, available over continental U. S., valid 12 UTC
05 Aug 1995. Contouring interval is 2 mm. ‘
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12-H ETA FORECAST
VALID 12Z 5 AUG 85
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Fig. 3 A 12-h forecast of the accumulated hourly precipitation, valid 12 UTC 05 Aug 1995. Itis
obtained at the end of data assimilation period in the experiment 4DVAR_PREC after 10

iterations of the minimization. Contouring interval is 2 mm. :
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4DVAR (NOPREC) ASSIMILATION, ITER=10 12—-H ETA FORECAST
VALID 127 5 AUG 85
1—H ACCUM PRECIP (MM) 80 KM, E—GRID
4 ) g
)
' )

Fig. 4 Asin Fig. 3, but for the experiment 4DVAR_NOPREC.
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By comparing Figs. 2, 3 and 4 we can immediately see that the assimilation of the precipitation ob-
servations results in a considerable improvement of the precipitation forecast. For example, the cen-
ters of high precipitation amounts over Tennessee and Mississippi are in much better agreement with
the observations in the experiment 4DVAR_PREC then in the experiment 4ADVAR_NOPREC. Simi-
lar improvements are obtained in CASE 1, as well. It is important to note that the forecast model is
capable to realistically produce some very localized maximums of high precipitations (itiseven more
pronounced in CASE 1, figure not presented). Therefore, we conclude that the fine scale precipitation
data can be correctly assimilated even with the coarse resolution 4DVAR data assimilation system.
Another important issue is the capability of the free forecast (i. e., forecast after data assimilation),
to maintain these structures throughout the forecast period. In other words, we would like to address

the question of how long these improvements will last in the future.

5.2  Forecast experiments

The answer to the question of the time scale of the impact of the precipitation data is not an easy task.
Some previous experiments (e. g., Zou and Kuo, 1996) suggest that the effect of the precipitation data
might be short lasting (3—6 hours) into the future. Similar results are also obtained in the experiments
with nudging precipitation data. The forecast results we present here suggest that in some cases, such
.as CASE 1, the positive effect of precipitation assimilation is very quickly lost after the data assimila-
tion period. In some other cases, such as CASE 2 presented here, the positive effect of assimilating
precipitation data may be long lasting into the future.

In the next two figures we present the RMS errors of the accumulated hourly precipitation forecast
as functions of the forecast time, calculated against the hourly precipitation observations. In Fig. 5
the results of the experiments 4DVAR_PREC and 4DVAR_NOPREC, CASE 1, are presented. Fig.
6 we shows the results of the same two experiments, but in CASE 2. As we can see, the forecast was
considerably improved in both synoptic cases by assimilating the precipitation data during the data
assimilation period (from —12h to Oh). In CASE 1 this improvement has quickly diminished in the
free forecast period. In CASE 2 however, a small p‘ositive effect of the precipitation data remains

throughout the 48-h forecast period.
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HOURLY PRECIP RMS ERROR, 0—48h FCST (CASE 1)

l ——— 4DVAR_PREC
------ 4DVAR_NOPREC

RMS ERROR (mm)

0!5 T | T ¢ T ¥
-12 0 12 24
FCST TIME (h)

Fig.5 Hourly précipitation RMS error, calculated against observations in the ekperiments
4DVAR_PREC (solid line) and 4DVAR_NOPREC (dashed line) for the forecast period
from —12h to 48h (CASE 2).

Even though the effect of assimilation of the precipitation data may seem small in the presented fig-
ures, it may not be insignificant. A reason for small differences between the two experiments may be
in the measure chosen. It seems that the RMS measure is not as sensitive to the small changes in the
precipitation fields as some other normalized measures (e. g., equitable threat score). This may have
a consequence that in the future we need to consider some alternative definitions of the precipitation
part of the functional J using some more sensitive measure for the precipitation forecast error.

Looking at the precipitatibn forecast fields, one can see that the improved precipitation fields in the
pre—forecast period may have an impact on the improved precipitation forecast 48-h later. In Fig.

7 we present the observed hourly precipitation field valid 12 UTC 7 Aug 1995, used as verification.
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Figs. 8 and 9 show the 48-h forecasts of hourly precipitation, valid at the same time, obtained by the
experiments 4DVAR_PREC and 4DVAR_NOPREC, respectively. As indicated in the data assimila-
tion results (Figs. 2,3 and 4) the precipitation patterns over Mississippi and Tennessee were consider-
ably more realistic‘in the 4DVAR_PREC experiment then the 4dDVAR_NOPREC experiment. Here
we notice a more realistic precipitation patterns over Tennessee and Louisiana in the experiment
4DVAR_PREC, which may be due to a successful assimilation of precipitation data in these areas.
Also, the precipitation in Pennsylvania is better predicted in the 4ADVAR_PREC experiment (a maxi-

mum of over 2 mm in the 4DVAR_NOPREC experiment was not observed).

HOURLY PRECIP RMS ERROR, 0-48h FCST (CASE 2)
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Co=12 0 12 24 36 . 48

FCST TIME (h)

Fig. 6 Asin Fig$§, but for CASE 2.
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VALID 12Z 7 AUG 85
80 KM, E—GRID

7

Fig. 7 Observed accumulated hourly precipitation, valid 12 UTC 07 Aug 1995 (CASE 2).
Contouring interval is 1 mm.
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4DVAR (PREC) ASSIMILATION + FORECAST 48—-H ETA FORECAST
VALID {2Z 7 AUG 85

i-H AC PRECIP (MM) 80 KM: E~-GRID

Fig. 8 A 48-h forecast of the accumulated hourly precipitation, obtained in the experiment
4DVAR_PREC, valid 12 UTC 07 Aug 1995. Contouring interval is 1 mm.
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4DVAR (NOPREC) ASSIMILATION + FORECAST 48—H ETA FORECAST
: " YALID 12Z 7 AUG 95
1-H AC PRECIP (MM) 80 KM, E-GRID .

a>°

Fig.9 As in Fig. 8, but for fhe experiment 4DVAR_NOPREC.
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We also compare the results of the 4DVAR method with the Ol method. The RMS errors of the hourly
precipitation forecasts (up to 48h) obtained by the experiments 4DVAR_PREC and OI_NOPRECare
plotted as functions of the forecast time in Figs. 10 (CASE 1) and 11 (CASE 2). As the figures show,
the 4DVAR method can outperform the Ol method by assimilating the precipitation data and consider-
ably improving the precipitation forecast. The improved forecast is obtained throughout the 48h fore-

cast period.

HOURLY PRECIP RMS ERROR, 0-48h FCST (CASE 1)

2.0

RMS ERROR (mm)

—— 4DVAR_PREC

------ OI_NOPREC
0-5 T | T L] T | - T
S0 12 24 36 48
FCST TIME (h)

Fig.10 Hourly precipitation RMS error, calculated against observations in the experiments
ADVAR_PREC (solid line) and OI_NOPREC (dashed line) for the forecast period
from Oh to 48h (CASE 1).
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HOURLY PRECIP RMS ERROR, 0-48h FCST (CASE 2)
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Fig.11 Asin Fig. 10, but for CASE 2.

7. CONCLUSIONS

We used a complex state—of-the—art 4DVAR data assimilation system to assess the effects of assimila-
tion of precipitation data. The experimental results showed that the precipitation data can be successe-
fully assimilated by the 4DVAR method. The small scale features in the observed hourly accumulated
precipiation data can be realistically retrieved, significantly improving the precipitation forecast dur-

ing the data assimilation period.
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The positive effect of assimilating the precipitation data may sometime last long into the future, im-
proving the precipitation forecast up to 48 hours, as in our example in CASE 2. In some other cases,

such as CASE 1 of this paper, the effect of precipitation data diminishes quickly after the data assimila-

tion period. This variable time scale of the impact of precipitation data may be related to the type of
the physical processes that played a major role in a specific synoptic situation. This phenomena needs
to be examined further. In the future, we also need to consider some altenative definitions of the preci-
pitation part of the functional J using some more sensitive measure for the precipitation forecast errior
then the RMS error (e. g., the equitable threat score).

By comparing the results of the 4DVAR method and OI method we demonstrated that the capability
of the 4DVAR metod to assimilate precipitation data can contribute to further improve the NCEP’s
operational forecasts, providing the same model resolution is used in the 4DVAR method. This may

be a limiting factor at present, due to a limited computer power, but achievable in the near future.
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