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Summary: In this lecture we use the approach of state augmentation to derive a
fixed—lag smoothing algorithm for nonlinear dynamics and observation processes.
This extended fixed—lag Kalman smoother involves the commonly-known extended
Kalman filter and a corresponding nonlinear extension of the smoother counterpart.
For many reasons, this algorithm is impractical for applications to atmospheric data
assimilation, which motivates the investigation of approximate schemes. In this
regard, we evaluate the performance of appfoximations to the Kalman filter and the
fixed-lag Kalman smoother applied to a linear shallow—water model, for which there
is an exact performance evaluation procedure. '

1. INTRODUCTION

The fixed-lag Kalman smoother (FLKS) has been proposed by Cohn et al. (1994; CST94
hereafter) as an approach to perform retrospective data assimilation. In that work, the optimal
linear FLKS was derived and studied in the context of a stable linear shallow—water model. We
use this lecture as an opportunity to derive an extension to the FLKS for nonlinear dynamics
and observing processes. The resulting algorithm is referred to as the ertended FLKS since
its derivation is based on that of the extended Kalman filter (EKF; e.g., Jazwinski 1970, p.
278). As a consequence, the filter portion of the extended FLKS is just the EKF. Brute—force
implementation of the extended FLKS to create an operational retrospective data assimilation
system (RDAS) is not possible for the same reasons that a brute-force EKF-based data assim-
ilation system would be impractical: computational requirements are excessive, and knowledge
of the requisite error statistics is lacking. Therefore, approximations not only must be employed
but cannot be escaped from. Thus, in this lecture, we also develop and evaluate the perfor-
mance of potentially useful approximate schemes. To provide an exact evaluation we choose a
linear shallow-water model as a test—bed for this investigation. All of the approximate schemes
evaluated here have relatively simple nonlinear equivalents.

In the derivation of the extended FLKS in this lecture, we use the approach of “state enlarge-
ment”, or “state augmentation” as it is more commonly known, first suggested in the engineering
literature by Willman (1969), to reduce the smoothing problem to a filtering problem. This ap-
proach could have been adopted to derive the linear FLKS of CST94, as pointed out in that work
and also in Anderson and Moore (1979). In the state augmentation approach, the state vector
at each time is appended with the state vector at previous times when the desired smoother
estimates are to be calculated. A filter problem can then be solved for the augmented system.

The first derivation of a smoother algorithm via state augmentation was that of Biswas and
Mahalanabis (1972) for the linear fixed—point smoothing problem. Subsequently, Moore (1973)
derived the linear fixed—lag smoother via the same approach. Extension of the FLKS formula-
tion to nonlinear systems can be achieved using the same technique of state augmentation, as
indicated by Biswas and Mahalanabis (1973), for both the fixed—point and fixed—lag smoothing
problems. The utility of state augmentation is that the resulting smoothers are often compu-

91



R. ToprLINnG & S.E. CoHN: SOME STRATEGIES FOR ...

tationally less demanding than those arising from some other approaches (e.g., Sage and Melsa
1970, Section 9.5). For instance, smoothers based on state augmentation avoid inversion of the
filter error covariance matrices and of the tangent linear propagator (e.g., Ménard and Daley
1996). These inversions are also avoided by an earlier smoother algorithm due to Bryson and
Frazier (1963), which can be shown to reduce to the FLKS of CST94, at least for the case of
linear systems. Correspondence between smoothers obtained by state augmentation and meth-
ods such as maximum likelihood (Sage and Ewing 1970; Sage 1970) or conditional expectation
(Leondes et al. 1970) exists in most cases. The interested reader is referred to Meditch (1973)
and Kailath (1975) for detailed reviews of the literature on linear and nonlinear smoothing.

In the sequel, we first derive the extended FLKS from the EKF in Section 2. Following that,
in Section 3 we briefly outline the performance evaluation technique employed to study the
behavior of linear suboptimal filter and smoother algorithms. Section 4 gives a summary of the
suboptimal filters and smoothers evaluated in Section 5, in the context of a linear shallow—water
model. We draw conclusions in Section 6.

2. THE EXTENDED FIXED-LAG KALMAN SMOOTHER

2.1 The extended Kalman filter

Let us assume that the n—dimensional true state wi of the atmosphere evolves according to
the discrete stochastic equation
wi = f(wi_,) + b}, (1)

where, for the sake of notational simplicity, we omit possible explicit time dependence of the
dynamical operator f; also, for simplicity, we consider only an additive state-independent n—
vector model error b%. We assume b}, to be white in time, with mean zero and n X n covariance
matrix Qg:

S{bi} = 0, (23‘)

E{bi(di)T} = Qubw, (2b)

where £{} denotes the expectation operator, superscript T indicates the transpose operation,
and 6y is the Kronecker delta.

We also assume the availability of p observations at each time tj, which relate to the true
state nonlinearly according to

wi = h(w}) +bf, (3)

where again we omit possible explicit time dependence of the observation operator h. We will
assume the p—vector observational error b§ to be white in time, with mean zero and p X p
covariance matrix Ry:

g{bz} = 0') (4&)
E{b3(b%)T} = Ribpw. (4b)

Moreover, we assume the observation and model errors are uncorrelated at all times:

£{bi(b%)7} = 0. (5)
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The extended Kalman filter for the system (1)—(5) is:

wI{[k—l = f(Wi_yjp-1) (6a)
P£|k—1 = Frap-1Pi 1 Fipos + Qi (6b)
Kip = Pl Bl (HuprPl HR  +Re)™ (6¢)
Pip = (I“‘Kkalk—l) P;’:,k_l (6d)
Wik = Wl + Kee (wg—h(wl,_,)) (6e)

where the Jacobians, or tangent linear operators Fj_1jk—1 and Hy;_,, are defined by

of (w)

Fk—llk—l = F(wz_llk._l) = —671-;— ws (73:)
WEW1k—1
_ oh(w)
Hypy = H(W£|k_1) = SwT ; (7b)
WEWLL

In case the operators f and h are linear, and the noise processes b and b¢ are Gaussian—
distributed, the EKF reduces to the standard Kalman filter. Under these circumstances, the
forecast and analysis vectors Wil x—; and W%lk, respectively, are precisely the conditional means

lecclk—1 = &{wiWii}, (8a)
wi = E(wiW), (8b)
where W§ = {w?,w}_;,...,w$} denotes the set of all observations up to and including time

tx. That is, the forecast at time t; is the mean of wi conditioned on observations up to time
tk—1, whereas the analysis is conditioned on observations up to time ;. Similarly, under these
circumstances, the forecast and analysis error covariance matrices P/ klk—1 and P§ K[k respectlvely,
are the conditional error covariances

Ploy = E{(wl_, - whwl_, - whTIWe_,}, (9a)
Pie = E{(wiy — wh) (Wi — whTIW2}, (9b)

Relations (8) and (9) provide the rationale for the subscript notation adopted here for the
forecast and analysis vectors and their corresponding error covariance matrices, employed also
in CST94.

Filter schemes which calculate the conditional means (8) are usually called optimal because
of their numerous special properties (e.g., Jazwinski 1970, Chapter 5; Cohn 1996). For nonlinear
operators f and h, filters that are optimal in this sense generally require an infinite amount of
computation: in general, the EKF calculates the conditional means (8) and covariances (9) in
only an approximate sense. In fact, the EKF has many well-known drawbacks, and remedies
for some of these have been suggested (e.g., Jazwinski 1970, Chapter 9; Cohn 1993; Miller et
al. 1994). In this lecture we use the EKF algorithm only as a tool for deriving the extended
fixed-lag Kalman smoother. Since the derivation proceeds directly from the EKF algorithm
itself, optimality of the smoother algorithm in the linear, Gaussian case follows. Furthermore,
since we show that the extended FLKS can be viewed as a disguised EKF, remedies suggested
for the various drawbacks of the EKF may apply fairly readily to the extended FLKS.
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We remark that suboptimal filter schemes are often obtained by discarding (6b—d) and re-
placing the Kalman gain matrix Kz with some other gain matrix f(kl % in (6e). While (8) cannot
hold for such suboptimal filters, in the linear, Gaussian case the conditional error covariances
(9) are given by (6b) and

Pie = (I~ KkaHklk—l)P£|k_1(I — KppHye—1)T + KklkRkRZ]k . (10)

Equations (6b) and (10) therefore provide a means to evaluate the performance of suboptimal
filter schemes in this case, when the size n of the state space is sufficiently small to render these
computations feasible.

2.2 The augmented state system

To derive the extended FLKS algorithm using the augmented state approach we introduce
an augmented n(L + 1)-dimensional state vector wi:

wi = [wil wil, - wil )T, (11)

where slant characters denote augmented vectors and matrices. That is, we append the state
vector at time £, with its.values at times tx_1,...,tx—z When fixed—lag smoother estimates are
sought. Furthermore, we append the equalities wi_, = wi_,, for £ =1,2,..., L to the state
evolution equation (1), so that we can define the evolution of the augmented state (11) according
to

f(“?c—l) -bi
Wi _ 0
wfc = k ! +
wi_p 0
= f(wfc—l) + bi, ’ (12)

where the n(L + 1)-vector b} = [bif 0T ... 077 represents the augmented—state model error,
which is white in time with mean zero, since b, has mean zero, and with covariance matrix

Q. 0 --- 0

_ : T 0 0 e 0
Qr=E{b(bp) = | . . - (13)

0 0 --- 0

Also, the observation process (3)—(4) can be rewritten as
w§ = wi = h(w)) + b7, (14)
where h(w!) = h(wt) is a p—vector function, and consequently this process remains unchanged.
It follows from (5) that the augmented model error b}, and the observation error bg are uncor-
related: :
E{L(b2)T} = 0. (15)
The conditional mean “forecast” for the (augmented) state system (12)—(15) at time ¢, given
observations up to and including time ¢;_;, may be written componentwise as
E{wi| W1}

g{wz—llwk—l}

E{wi|W,_,} = ; » (16)

E{w}i_r|Wi_1}
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* whereas the conditional mean “analysis” at time tk, given observations up to and including time

Lk, reads
E{wiIWy}

S{ch_lka}

E{wi Wi} = (17)

E{wi_ Wi}
In the linear, Gaussian case, the standard Kalman filter for the augmented system would calcu-
late these conditional mean forecasts and analyses. Relations (16) and (17) motivate us, in the

generally nonlinear case, to introduce the following notation for the components of the a priori
~augmented state estimate w,{l p—p at time #j:

f
Wilk—1
Wa
P k—1]k-1
Wiik—1 = : ) (18)
a
Wi—Llk—1

as well as the following notation for the components of the a posteriori augmented state estimate
wZ]k at time tg:

Wik
Wi—1)k
Wi = . (19)
Wz—mk
We refer to the analyses w§_ ok for £=1,2,..., L, as retrospective analyses.

By analogy to (6), the EKF algorithm for the augmented system (12)—(15) can be written
as

f —

Wiy = Flwi i) (20a)
P£|k—1 = Fk—llk—IPZ—1|k—1F£—1[k—1 + Q; (20b)
Ky = Pl HE, | (Hklk—1P£|k_1HiF|k_1+Rk)‘1 (20c)
Me = (I - Kkalk—l) P,{Ik_l (20d)
Wiy = w,flk_l + Ky, (w,‘; - h(w,{lk_l)) , (20e)

in which all the vectors and matrices are merely changed to slant characters, save the observation
error covariance matrix Ry in (20c). The n(L + 1) x n(L + 1) Jacobian matrix Fi_1jk-1 of the
augmented dynamics operator is now defined as

Of(w)

owT

Fk—llk-—l E y (21)

— a
W=Wy 11y

and similarly, the p x n(L + 1) Jacobian matrix H k|k-1 of the augmented observation operator
is defined as

Hklk—l = (22)
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2.3 Matrix—partition unfolding

We now unfold the augmented vector-matrix formulation given above. From (20e) it follows
that

a f
Wik Wiik—1 Kk
wi wo K
k—1|k k—1|k-1 k-1]k 0 f
) = ] + . (Wk - h(Wk|k_1)) ' (23)
a
Wi Lk Wi Lik-1 KLk

where we noticed that w$ = w{ and that h(wil k1) = h(w,{lk_l), and we have also partitioned
the n(L 4 1) x p gain matrix Ky of the augmented filter as

K = [Kip Kooy - Kiopl”- (24)

It follows immediately from (23) that the analysis at times ¢ is

Wi = Wiy + Kue (wg — h(wl, 1)), (25)

and the retrospective analyses at times t5_, are

WE gk = Weegk-1 T Ki-gik (Wz - h(“’}:w—l)) d (26)

for £=1,2,...,L, where the equation for the forecast w,{l 4 follows from (20a) and the defini-
tion of f:

WI{]k—l = f(Wi_1jk-1) - (27)

Equations (25) and (27) are identical to equations (6e) and (6a), respectively, as expected.

To unfold the remaining equations of the augmented filter we look next at the expression
for the augmented gain (20c). It is appropriate to introduce the following partitioning of the
forecast error covariance matrix for the augmented system:

[ pf fa fa fa T
Pklk-—l k,k—1]k—1 Pk,k——2|k—1 T Pk,k—L|k—1
af Pe Pae aa
k—1,k|k-1 k—1]k-1 k-1,k=2]k—-1 " k—1,k—L|k-1
f . a aa a aa
Py = | Propper PRlopoip-r Phogpor oo Pilojpopp |0 (28)
af Pae pPac Pe
L~ k—L,klk—1 k—L,k—1]k-1 k—L,k—-2]k—-1 **° k—L|k—1
af _ pfaT '
where Pi,j|k = Pj,ilk'

To unfold (20c) following the partitioning of the augmented gain matrix Ky in (24), we
need to calculate a more explicit expression for the Jacobian (22) of the observation operator h.
Hence, we write

W W, ¢9wL+1 Ly
_ [8hw1 Oh(w, ... 9h(wy ]l
- ow; ow, BwL+1 w=wl{]k—1
- [Hk,k_l 00 ... 0], (29)
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where we partitioned an arbitrary augmented vector w

component n—vectors.

= [wiw}

T
e W%+1] into (L + 1)

An explicit expression for the gains can be obtained by noticing first that

- f i T -
ljkuc_lHkuc-l
a T
P kk—1HEk—1
a T
! I{|k—-1H ko1 = | PrlogpaaHipor | (30)
-
RSN : i
and second that
T T
Hy (Pl HY, , =Hy Pl HE, . (31)
Consequently, from (20c) we have
f
Kk|k I;Iclk—l
Ky 1)k Pyl kk-1
-1, —_ T —_ .
: H 5 PR iy A (32)
f
Ke-Lik Py L k-1
where we define the p X p matrix Iy_; as
Tije-1 = Hgea PL_ Hi,, + Ry, (33)
for convenience.
Thus, we see that the filter gain is given by
— pf T -1
Kip = Pklk—lHklk—l klk—1" (34)

which is identical to (6c), and the expressions for the smoother gains can be written compactly

as

Ki_gr =P

faT
k,k—£|k—1

T 1
2 PAPRIPE AT

(35)

for £=1,2,---, L, which are identical to those for the linear case (cf. CST94), except that the
observation matrix is now replaced by the Jacobian of the observation operator h evaluated at

the current forecast.

By appropriately partitioning the augmented analysis error covariance matrix (20d), it fol-

lows that
[ a aa
Pie  Piicap
aa a
Puliee  Phop
aa aa
K = Pilose Prlop-ipk

aa aa
| Pk-—L,k|k Pk—L,k—l]k

[ [1- KypHpes| ©
K appHgp-r 1

= Ky opHypp—1 0
| —KerppHgp—1 0

aa
Ek—2lk
Pyt k—apk
Py ok
aa
k—L k—2|k
0 0
0 0
I 0
0 - I
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- pl ja Ja a :
k1 ko k—1]k—1 kk—2k—1 '+ Fhkk_Llk-1
a a aa aa
Pk;l,klk—l Pl k-1 Pilip—op—r -+ Prlip-rip—
a aa a aa
X | Piloppe-1 Priak-1pp—1  Phozp—1 - Pilogrp— |- (36)
af aa aa a
| Pylrap-1 Pripp-te-1 Phirg—ze-1 -+ Prorp—r

From the main diagonal of the expression above we get

Py, = (I - Kk,ka|k_1) Pl (37)

which is the analysis error covariance expression (6d) of the usual extended Kalman filter, and

Z—uk = 2_1|k_1 - Kk_1|ka|k_1P£f;c_1|k_1 (38a)
Pi ok = Piop—1— Kk—2|ka|k—1P;{:1k_2|k_1 (38b)
Piox = Priorjg—1— Kk—Lngk|k—1P£:1k_L[k_1 ) - (38c)

which are the retrospective analysis error covariances of the eztended fixed-lag Kalman smoother.
Expressions (38a)—(38c) can be written more compactly as

a — Pa fa
Pk = Pigr1 = Kr—epHre—1Pi g1 » (39)

for£=1,2,...,L.
From the first row of the upper triangle of (36) we get

k-1l = (I - Kklkalk——l) Pi?k—l“c—l (40a)
Py = (I - KklkaUc—l) Pfk_glk_l (40b)
kk—Llk = (I - Kklkalk—l) Pif}c_ Ljk—1" (40c)

which can be written compactly as

Z‘,Ik—llk = (I - KklkaIk—l) Pi,ak—élk—l ) (41)

for£=1,2,...,L.
From the first column of the lower triangle of (36) we get

zil,kﬂc = Z{I,klk——l - Kk—1|ka|k—1P£|k_1 (42&)
ke2kk = Z'.f_g,k|k..1 - Kk—2|ka|k—1P£|k_1 (42b)
Plrwe = Pi-f—L,Hk—l - Kk—LIkalk—lP]{lk_l ; (42c)

which can be written compactly as

Pitouk = Prlopees — KioaeHip1 Pl (43)
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for £=1,2,...,L. At first glance this expression does not seem to be the transpose of (41) as
it should be since the augmented matrix Py, is symmetric. To show that (43) is indeed the
transpose of (41) let us replace the smoother gain in (43) by its explicit expression (35), that is,

_ f 1 T -1 f
Pza—t’,klk - PZ—e,klk—l - PZ-—[,ka—lHklk—lrk|k_1Hk|k-—1Pk|k_1
_ f i T T
= Pz—e,k|k—1— Z—f,k|k—1Hk|k-—1Kk|k ‘
T
= {(I - KkaHklk—l) Pii_qk_l} : (44)

which is just the transpose of (41). All other off-diagonal elements of (36) reduce to a time—shift
of expression (41) for P k-

All we have left to unfold now is (20b), the equation for the error covariance propagation of
the augmented system. To do so, we first calculate a more explicit expression for the Jacobian

(21) of f:

[ of(wi1) ]
i
qw’
ow
F k—-1lk—-1 = ow
Bw
L. dw . w:w:~1|k_l
r aftwlb of Wi of w1 of Wi h
: ow; ow, owy ¢9wL+1
Bwi Bw] aw] w;
‘33‘”1 g‘”z ng a;'Lﬂ
= ow; ow, awy 6wL_H
ow ow aw a‘;[
| aw1 sz awL BwL"_1 ] w=w:—1|k—1
[ Fr_ijp—1 O 0 0]
I 0 ... 00
— 0 I ... 0 0] (45)
| 0 o0 ... I 0]
Using this Jacobian matrix in expression (20b), it follows that.
f _ T
Pik-1 = FroaprPryjp 1 Feoyjpor + Qk, (46)
and
fa _
Ptk = Frop—1 PRy gpemr s (47)
for £=1,2,..., L, which give the forecast error covariance propagation for the extended Kalman

filter, and the propagation of the fixed-lag smoother forecast—analysis error cross—covariance,
under the tangent linear approximation, respectively. The expressions in framed boxes above
are the formulas for the extended FLKS.
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3. PERFORMANCE ANALYSIS FOR LINEAR SYSTEMS

In this section we summarize the suboptimal schemes to be evaluated in the context of the
linear shallow—water model of the following section. These schemes approximate only the filter
and smoother gains (34) and (35), along with the innovation covariance (33) on which they
depend, by replacing them with gains Kk]k and K_ 4,: identical in form to (34) and (35) but
involving approximate expressions for P£|k—1 and Pk k—tlk—1" Thus we will be concerned with
approximate expressions for the propagated (predlctablhty) error covariance matrix

PZ[k—l = Ak»k—1PZ—llk—1A£,k—l ’ (48)

and approximate expressions for the forecast—analysis error cross—covariance matrix

Pijlk—qk—l = Akk-1PiL) kgk-1- (49)

where for the linear case the tangent linear propagator is a state—independent operator, indicated
by Fi_1jk-1 = Akk-1. These expressions correspond to the most computationally demanding
part of the filter and smoother algorithms (cf. Todling 1995). To focus on the issue of perfor-
mance due to approximating the filter and smoother, we make the perfect model assumption,
Qi = 0, in which case the terms predictability error covariance matrix and forecast error co-
variance matrix are interchangeable.

For linear systems, performance evaluation can be accomplished following the procedure of
Todling and Cohn (1994), but now extended to incorporate the smoother performance analysis
equations as well. These equations can be obtained from an augmented—-state version of the
performance analysis expression (10), valid for general (filter and smoother) gain matrices:

P = (1-KepHo)PL, (1- KeH)" + KR (50a)
Pi g = Pi_gpor + KeeopTkpa1 Ki_gp
_Kk—llkaPI{:lk—wc_l - (HkPI{:Ik—ZIk—l)Tf{I];—lIk (50b)
Pihor = Pl meos + Kuplep-1Ki_gp
| _f{klkaPIi:Ik—e[k—l - Pi]k—lekz—elkv (50c)

where for the linear case we write Hy;_; = Hy, since the Jacobian of the observation operator
is then independent of the state estimate. Together with (48) and (49), these equations give the
update and evolution of the actual filter and smoother error covariances. Expression (50a) [same
as (10)] is the well-known Joseph equation, and gives the performance of the filter analysis for a
general gain matrix Rk|k, while (50b) and (50c) give the performance of the smoother analyses
for general gains Kjr and Ky_gi. These performance analysis equations also appear in the
derivation of the FLKS of CST94 [cf. eqs. (2.33), (2.39) and (2.45) in CST94], in a slightly
different form.

4. SUMMARY OF SUBOPTIMAL FILTERS AND SMOOTHERS

The following are the suboptimal filter schemes considered in this lecture (see Cohn and
Todling 1996, CT96 hereafter, and also Todling et al. 1996):
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(1.a) Constant Error Covariance (CEC):
Here the predictability error covariance PZI x—1 is replaced in the gain expression (34) by

Sy = S, (51)

where the parameter ay is adaptively tuned following the algorithm of Dee (1995), and S is
a time-independent prescribed error covariance matrix. This scheme resembles. current opera-
tional global analysis schemes. In the experiments of the following section the structure of S
corresponds to a weighted outer product of slow eigenmodes of the governing dynamics over one
time step.

(1.b) Partial Singular—Value Decomposition Filter (PSF):

In the PSF, the dynamical operator A x_; is replaced by the leading part of its singular value
decomposition, here abbreviated by Ak,k—l, and the predictability error covariance is simplified
to:

Shk-1 = Akyk—lsz—llk—lA{,k—l + Til-1, (52)

where the matrix Tyz_; is an estimate of the trailing error covariance matrix due to the re-
placement of the dynamics by its leading part.
(1.c) Partial Eigendecomposition Filter (PEF):

In the PEF, the entire predictability error covariance is replaced by the leading part of its
eigendecomposition, which ideally explains most of the variance, that is,

Shik—1 = (WNSNWR) k-1 + Thppos s (53)

where Wy, ;1 is the matrix of the N dominant eigenvectors, with the corresponding N largest
eigenvalues arranged along the diagonal of the diagonal matrix Sy, and T;cl k—; 18 an estimate
representing the trailing error covariance matrix of this approximation, not necessarily equal to
Tijk—1- This approach resembles the reduced-rank square-root filter of Verlaan and Heemink
(1995).
(1.d) Reduced Resolution Filter (RRF):

This approximation follows the approach of Fukumori and Malanotte-Rizzoli (1995; see also
Todling and Cohn 1996) and involves carrying the error covariances at lower resolution than
that of the state estimates. In this case, the predictability error covariance is written as

gZIk-—l = (B+Ak,k-—1B)gi—1lk—1(B+Ak,k—1B)T + TZ|k—1v (54)

where TZl x—1 stands for an estimate of the trailing error covariance matrix accounting for ne-
glected structures due to the approximation; B is an n X m matrix representing an interpolation
operator that takes vectors from the m-dimensional reduced space where the error covariance
matrices §i_1lk_1 and SZI w—y are represented to the n—-dimensional space of the state estimates;
the matrix B represents an inverse of the interpolation operator B, which in our experiments
is taken to be the Moore-Penrose pseudo-inverse (e.g., Campbell and Meyer 1991).

The following are the suboptimal smoothers considered here:
(2.a) Partial Singular-Value Decomposition Smoother (PSS):

The PSS approximation simplifies the evolving of the n columns of Ptk flk—1 by replacing
the propagator by a reduced-rank propagator similar to that used in the PSF:

S/{:lk—flk—l = Ak,k—lszil,k—llk—l + X k—glk-1> ‘ (55)
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where X ;_sx—1 is a trailing error cross-covariance matrix. Notice that, in principle, the
reduced-rank dynamics here does not have to be the same as that in the PSF. However, in
the experiments discussed below they are chosen to be equal, whenever the PSF and PSS are
employed simultaneously. Also, in the experiments reported here we take Xy x_gx—1 = 0, at all
times tg.
(2.b) Reduced Resolution Smoother (RRS):

In the RRS, by analogy with the RRF approximation, we compute the smoother forecast-
analysis error cross—covariance at reduced resolution:

Sii_e|k_1 = (B+Ak,k-1B)gzi1,k—e|k—1 + X;c,k—elk—lv (56)

where the matrices B and B* are interpolation matrices as introduced before, the matrices
gZ‘il,k_ll ey and S}::’k_qk_l are m X m cross—covariances in the reduced space, and the matrix
X;c,k—fl 41 stands for a trailing cross—covariance. The matrices B and BT here do not have to
be exactly the same as those used in the RRF, however, in the experiments discussed below they
are chosen to be the same whenever the RRF and RRS are used simultaneously. Also, in the
experiments reported here, we take X?c,k:— k-1 = 0, at all times t.

Many other suboptimal schemes have been proposed for filtering, particularly in the atmo-
spheric data assimilation literature (see Todling and Cohn 1994, and references therein). Since
fixed—lag smoothing can always be regarded as filtering for an augmented-state system, as we
have seen, in principle all of these suboptimal strategies carry over to the fixed—lag smoothing
problem. In this lecture we choose to concentrate only on the approximations presented above.

We can construct approximate RDASs by combining different strategies for approximating
the filter and the smoother. For instance, one could choose to approximate the filter and the
smoother equally, i.e., with two similar schemes like the RRF and RRS at the same resolution;
or one could choose to approximate the filter and calculate the smoother equations exactly,
that is, to approximate (48) and use (49); one could also build hybrid approximations in which
the filter and the smoother employ different strategies. In any case, since our formulation of
the smoother is based on the filter, whenever the filter is approximated the smoother becomes
suboptimal. Notice that the converse is not true, that is, if the filter is kept exact and the
smoother is approximated — if we use (48) and approximate (49) — only the smoother becomes
suboptimal, but not the filter. This may not be a very useful approach, since major computa-
tional requirements are associated with the filter equation (48). Moreover, as discussed before,
in the general nonlinear case the EKF does not always represent a good solution to the filtering
problem, thus the smoother inherits the EKF’s weaknesses.

5. RESULTS FOR A SHALLOW-WATER MODEL

To evaluate the performance of the suboptimal schemes described above, we use the barotrop-
ically unstable model of CT96, a shallow—water model linearized about a meridionally-dependent
squared—-hyperbolic-secant jet (Bickley jet; Haltiner and Williams 1980, p. 175). We refer the
reader to Fig. 1 of CT96 for the shape, extent and strength of the jet. The model domain is
shown in Fig. 1 here. The assimilation experiments employ the observing network of CT96:
33 radiosonde stations observing winds and heights every 12 hours and distributed outside the
strongest part of the jet. The tick marks in the figure indicate the 25 X 16 model grid. In the
experiments referring to a trailing error covariance matrix we construct it, as in CT96, using
the slow eigenmodes of the autonomous unstable dynamics of our shallow—water model.
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Figure 1: Radiosonde network composed of 33 stations observing winds and heights every 12
hours (same as Fig. 2 of CT96).

Before evaluating the performance of a few suboptimal RDASs, we discuss the results ob-
tained by the optimal FLKS. The performance of the optimal filter and fixed-lag smoother can
be seen in Fig. 2, which shows the domain—-averaged expected root—-mean—square (ERMS) error
in the total energy as a function of time. The top curve corresponds to the filter result while
successive retrospective analysis results are given by successively lower curves, which refer to
analyses including data 12, 24, 36 and 48 hours ahead in time, that is, lags £ = 1,2,3, and 4.
The filter curve is the same as that seen in Fig. 2 of CT96 (shown, here, only up to 5 days).
The most relevant results are those for the transient part of the assimilation period, before the
filter and smoother begin to approach steady state. Incorporating new data into past analyses
reduces the corresponding past analysis errors considerably. The largest impact is on the initial
analysis.

ENERGY (RELATIVE UNITS)

2 3
TIME (DAYS]

Figure 2: ERMS analysis error in total energy for the Kalman filter (upper curve) and fixed-lag
Kalman smoother (lower curves).

Further illustration of the behavior of the optimal FLKS is given in Fig. 3, where we display
maps of the analysis error standard deviation in the height field at ¢ = 0.5 days. The panels
are for the filter analysis errors [panel (a)], and for the smoother analysis errors. for lags £ =1
[panel (b)] and £ =4 [panel (c)]. Thus, in panels (b) and (c) the analysis errors are reduced by
incorporating data 12 and 48 hours ahead of the current analysis time, respectively. We see not
only the overall decrease in error levels from panel (a) to panel (c), as expected from Fig. 2, but
also that within each panel errors are highest in the central band of the domain, where there are
no observations and where the jet is strongest. Furthermore, we notice that the error maximum
in the center of the domain moves westward and diminishes as more data are incorporated into
the analysis through the smoothing procedure [from panels (a) to (c)]. This property of the
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Figure 3: Analysis error standard deviation in the height field at time ¢ = 0.5 days. Panel (a)
is for the filter analysis; panels (b) and (c) are for the smoother analyses with lags £ =1 and 4,
respectively.

FLKS of propagating and reducing errors in the direction opposite of the flow has already been
observed in the experiments of CST94 and Ménard and Daley (1996).

We now study the behavior of suboptimal RDASs. We start with schemes that approximate
both the filter and the smoother similarly. In this category, we investigate the behavior of the
RRF-and-RRS corresponding to expressions (54)—and—(56), respectively, as well as the behavior
of the PSF-and—-PSS corresponding to expressions (52)—and—(55), respectively.

The results of Todling and Cohn (1996) show that the RRF described above, with resolutions
13 x 16 and 13 x 12, provides good filter performance in our shallow-water model context. This
is mainly attributed to the fact that at these resolutions the barotropically unstable jet is fairly
well resolved. As a matter of fact, the meridional jet is fully resolved at resolution 13 x 16. In
these experiments, each column of the interpolation matrix B in (54) and (56) corresponds to
a spline interpolant with period boundary conditions in the east—west direction and an Akima
spline in the north-south direction. Hence, in Fig. 4 we show results of the performance analysis
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Figure 4: RRF/RRS for resolutions: (a) 13 x 16, (b) 13 x 12.

for the RRF and RRS algorithms at these resolutions [panel (a) for 13 x 16; panel (b) for 13 x12].
As in Fig. 2, the upper curve in each panel is for the performance of the filter while the lower
curves in each panel are for the performance of the corresponding RDAS. A comparison of panel
(a) with the optimal FLKS Tresults of Fig. 2 shows remarkable agreement when the jet is fully
resolved. The agreement for the coarse resolution result in panel (b) is still quite good, especially
during the transient part of the assimilation. Asymptotically, the error levels for the case with
13 X 12 resolution are somewhat high, with the smoother having less of an impact than at 13x 16
resolution. '

Along similar lines, we investigate the performance of an RDAS using the PSF as the algo-
rithm to compute the predictability error covariance for the filter part, and the PSS algorithm
as the procedure to compute the forecast—analysis error cross—covariance for the smoother part.
From the experiments of CT96, we know that using the first 54 singular modes of the 12-hour
propagator of our linear shallow—-water model is enough to produce a stable suboptimal filter
in this context. Moreover, we learned in CT96 that adaptively tuning a modeled trailing error
covariance matrix Tz, improves the filter results; we use the same procedure here. However,
we do not model the trailing error cross—covariance, that is, we take Xk k—gk—1 = 0 at all times.

Fig. 5 shows performance results for the PSF-PSS suboptimal RDAS when 54 modes are used
for both approximations (out of a total of 325 slow modes). The filter results, when compared to
the optimal results of Fig. 2, are once again quite good — the reader is encouraged to compare
the top curve of Fig. 5 with the curve labeled S54 in Fig. 11 of CT96; results now are better due
to the adaptively tuned trailing error covariance. The PSS smoother, on the other hand, does
not perform nearly as well as the optimal smoother (Fig. 2), with little difference among results
for lag £ = 1 and those for higher lags £ = 2,3, and 4. This poor smoother performance may be
attributed in part to the neglected trailing forecast—analysis error cross—covariance Xk k—gk—1-
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Figure 5: As in Fig. 2, but for an approximate RDAS using the PSF and PSS simultaneously,
both with 54 modes.
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Figure 6: As in Fig. 2, but for the adaptive CEC filter and exact smoother.

We evaluate next the performance of schemes that approximate only the filter but leave the
smoother calculations unchanged. That is, the approximations now take one of the suboptimal
filters (51)—(54), and the exact smoother expression (49). We start with an approximate RDAS
in which the CEC scheme is utilized for the filter part. Fig. 6 shows the evolution of the actual
ERMS errors up to day 5 (same as Fig. 3 of Todling et al. 1996). While the performance
of the CEC filter (top curve) is worse than that seen in Fig. 2 for the optimal KF, it is not
dramatically worse. As a consequence of suboptimality of the CEC filter, the performance of the
CEC-based retrospective analyses shown in Fig. 6 is also suboptimal. However, a comparison
between Figs. 2 and 6 indicates that retrospective analysis based on a suboptimal filter can be
viewed as a way of improving suboptimal filter performance toward optimal filter performance.
For instance, notice that by day 2.5, the lag-1 suboptimal retrospective analysis of Fig. 6 has
about the same error level as that of the optimal filter analysis of Fig. 2.

When comparing the RDAS using the CEC filter (Fig. 6) with the suboptimal RDASs
using the RRF-RRS of Fig. 4 and the PSF-PSS of Fig. 5, we see that the performance of the
CEC filter itself is not much different than that of the RRF with 13 x 12 resolution and that
of the PSF with 54 modes. The performance of the CEC-based smoother, however, exceeds
that of the 13 x 12 RRF-RRS and the 54-mode PSF-PSS, for every lag, beyond the initial
transient assimilation period. During the transient assimilation period, the RRS shows better
performance, for high lags, than either the CEC~based RDAS or the PSS.

Analogously to Fig. 3, we show in Fig. 7 maps of the actual analysis error standard deviation
for the height field at day 0.5, for the RDAS experiments of Fig. 6. The panels are arranged as
before: (a) filter analysis; (b) lag £ = 1 smoother analysis; and (c) lag £ = 4 smoother analysis.
Comparing panels (a) and (b) with the corresponding panels in Fig. 3, we see that the CEC
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Figure 7: As in Fig. 3, but using the CEC-based RDAS of Fig. 6.

filter and the lag £ = 1 smoother perform relatively well. However, the retrospective analysis for
lag £ = 4 (Fig. 7c) is not significantly better than for lag £ = 1 (Fig. 7b), as one might expect
from Fig. 6 at day 0.5, and in fact compares poorly with the optimal case (Fig. 3c), particularly
over the data—void central band. '

Next we examine the performance of the more sophisticated PSF and PEF suboptimal filters
and the corresponding suboptimal RDASs, using (49) for the smoother portion. In both cases
we retain only 54 leading modes and we adaptively tune a trailing error covariance matrix as in
CT96. In Fig. 8, the top curve in panel (a) refers to the performance of the PSF, while that in
panel (b) refers to the performance of the PEF. The PSF result is identical to that displayed in
Fig. 5 since the filter here retains the same number of modes as before. A comparison of the
PSF-based retrospective analyses of Fig. 8a, which use the exact smoother formulation (49),
and Fig. 5, where the smoother was approximated by the PSS, shows the superior performance
of the exact smoother formulation. This result comes as no surprise, and the PSF-based RDAS
incurs higher computational cost. The PSF-based RDAS performance (Fig. 8a) is similar to,
and the PEF-based RDAS performance (Fig. 8b) is superior to, that of the CEC-based RDAS
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Figure 8: Asin Fig. 2, but using the PSF [panel (a)] and the PEF [panel (b)], both with 54
modes.

of Fig. 6. The RDAS using the PEF (Fig. 8b) presents very good long—term performance, with
its results being very close to those of the optimal FLKS in Fig. 2, and only slightly inferior to
those of the 13 x 16 RRF-RRS of Fig. 4a.

Finally, in Fig. 9 we show the maps of actual height analysis error standard deviations for
the experiment using the PSF of Fig. 8a. Compared to the maps of Fig. 7, there is improvement
in the analyses over specific regions of the domain. In particular, the lag £ = 4 analysis in panel
(c) shows a considerable error reduction over the central part of the domain and the Atlantic
Ocean.

6. CONCLUSIONS

In this lecture we derived an algorithm for performing retrospective analysis for nonlinear
systems. The extended fixed—lag Kalman smoother (FLKS) was obtained from the extended
Kalman filter (EKF) via the approach of state augmentation. The properties of the extended
FLKS follow directly from those of the EKF. In particular, remedies proposed elsewhere to
cure EKF weaknesses should apply to the extended FLKS. Feasibility of this algorithm to
construct an operational retrospective data assimilation system (RDAS) is constrained by its
large computational requirements and presumed knowledge of the required statistics, in much
the same way as the EKF is constrained for practical implementation. This motivates the search
for feasible and reliable approximate RDAS schemes based on the extended FLKS.

For linear dynamics and observing systems, performance analysis equations for approximate
RDASs based on the FLKS follow directly from the approach of state augmentation and the usual
performance analysis equation for linear filters utilizing general gain matrices. In this context,
we examined the performance of a variety of possible suboptimal RDASs for a barotropically
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Figure 9: As in Fig. 3, but using the PSF-based RDAS of Fig. 8a.

unstable shallow—water model. We concentrated on evaluating the performance of alternative
expressions for the error covariance propagation in the filtering part of the RDAS, as well as for
the error cross-covariance propagation in the smoothing part of the RDAS. Our experiments
indicate that successful retrospective analysis schemes can be designed by approximating either
the filter alone or by approximating both the filter and smoother simultaneously. An important
conclusion from these experiments is that a few lags of suboptimal retrospective analysis may
accomplish the performance of an optimal filter analysis. Sophisticated approximate filters
that take dynamics of error covariances into account present the best suboptimal retrospective
analysis performance.
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