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Summary : In this paper, some results of 4D-Var assimilations in cycling mode, over a few
two-week assimilation periods are presented. 4D-Var is implemented in its incremental
formulation, with a high resolution model with the full physical parametrization package
to compare the atmospheric states with the observations, and a low resolution model with
simplified physics to minimize the cost-function. The comparison of 4D-Var on several
assimilation windows (6, 12 and 24 hours) and of 3D-Var (the equivalent of 4D-Var with
no time-dimension) over a two-week period shows a clear benefit of using 4D-Var over a 6
or 12-hour window compared to the static 3D-Var scheme. It also exhibits some problems
for the forecasts started from the 4D-Var on a 24-hour window. The poorer performance
of 4D-Var on a relatively long assimilation window can be partly explained by the fact
that, in these experiments, the tangent-linear and adjoint models used in the minimization
are only approximations of the assimilating model (lower resolution, crude physics). The
error these approximations introduce in the time evolution of a perturbation affects the
convergence of the incremental 4D-Var, with larger discontinuities in the values of the
cost-function when going from low to high resolution for longer assimilation windows.
Additional experiments are performed comparing 4D-Var on a 6-hour window with the
3D-Var system. Two additional two-week periods show a consistent improvement in
extratropical forecast scores with the 4D-Var system. The main 4D-Var improvements
occur in areas where the 3D-Var errors were the largest. Local improvement can be as
large as 35% for the root-mean square of the 5-day forecast error, averaged over a two-
week period. A comparison of key analysis errors shows that, indeed, 4D-Var on a 6-hour
window is able to reduce substantially the amplitude of its fast-growing error components.
The overall fit to observations of analyses and short-range forecasts from 3D-Var and 4D-
Var is comparable. In active baroclinic areas, the fit of the background to the data is
considerably better for the 4D-Var system, resulting in smaller increments. It appears
that in these areas (and in particular over West-Atlantic), 4D-Var is able to use better
the information contained in the observations. The ability of 4D-Var to extrapolate some
aircraft data in the vertical with a baroclinic tilt is illustrated. Some problems exist in the
'Iropics and mountainous areas due mainly to a lack of physics in the tangent-linear model.
Possible improvements to the system (introduction of more physics, better behaviour of
the incremental approach thanks to a line search at high resolution) are also discussed.

1. INTRODUCTION

Four-dimensional variational assimilation (4D-Var) is an advanced algorithm to solve the prob-
lem of estimating the atmospheric flow. Given the available information (observations, back-
ground, atmospheric model,..) the method consists in minimizing the distance between this

213



RABIER, F. ET AL: FOUR DIMENSIONAL VARIATIONAL ASSIMILATION...

information and the atmospheric states over a period of time (the assimilation window). Most
of the applications of 4D-Var up to now have made the underlying assumption of a perfect
model, thus looking for a model trajectory which best fits the background and the observations
over the assimilation window. The 4D-Var algorithm uses the adjoint equations for the com-
putation of the gradient of the objective function measuring the distance between the model
states and the information. 4D-Var was first applied to simple models (Le Dimet and Tala-
grand, 1986, Lewis and Derber, 1985, Talagrand and Courtier, 1987, Courtier and Talagrand,
1987, Courtier and Talagrand, 1990), before being tested in the context of primitive equations
models ( Thépaut and Courtier, 1991, Navon et al, 1992 and Zupanski, 1993). Lorenc (1986)
and Ghil and Malanotte-Rizzoli (1991) have shown that under the perfect model assumption
and when the dynamics are linear, 4D-Var produces the same result at the end of the assimila-
tion period as a Kalman filter (and over the whole assimilation interval as a Kalman smoother).
The advantage of 4D-Var over the full Kalman filter is its lower computational cost (one should
note, however, that some promising possibilities exist to approximate the Kalman filter, eg
Todling and Cohn, 1996). The link between 4D-Var and the Kalman filter implies that 4D-
Var, although not computing them explicitly, implicitly uses flow-dependent structure functions
within the assimilation window. These structure functions were illustrated by Bouttier (1993)
and by Gauthier et al. (1993) for example in the Kalman filter context and by Thépaut et al
(1993, 1996) in the 4D-Var context. Just as the Kalman filter can track atmospheric instabili-
ties (eg Ghil and Todling, 1996), 4D-Var performs well in the presence of baroclinic instability
(Rabier and Courtier, 1992). Its ability to "fill in” small scales from the observations of larger
scales has been investigated in a baroclinic instability context (Rabier and Courtier, 1992) and
in a case of fully-developed turbulent dynamics (Tanguay et al, 1996).

These promising results obtained in the framework of single analyses together with the
incremental formulation of 4D-Var which makes its implementation computationally feasible
on today’s computers (Courtier et al, 1994), encouraged us to test the method in an assimilation
cycling mode closer to that of numerical weather prediction centres.

In section 2, the 4D-Var set-up in its incremental formulation is presented. Some results on
the comparison between three-dimensional variational analysis (3D-Var) and 4D-Var on differ-
ent assimilation windows are described in section 3. Section 4 concentrates on the comparison
between 3D-Var and 4D-Var on a 6-hour window. Developments on the convergence of the in-
cremental 4D-Var method and the inclusion of more physics in the minimization are described
in section 5. Finally, concluding remarks are given in section 6. The notations used in the
paper follow Ide et al (1997).

2. INCREMENTAL FORMULATION OF 4D-VAR

In its incremental formulation (Courtier et al, 1994), 4D-Var attempts to minimize the objective
function J
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J(6x) = 5xTB_15x + = Z (Hidx(t;) — di) "R (Hiox(t;) — d;) (1)

z 0

with 7 the time index, éx the increment to be added to the background x® at the starting point
i=0, 0x(t;) = M(t;, tp)0x the increment evolved according to the tangent linear model, R; and
B the covariance matrices of observation and background errors respectively, and H; being a
suitable linear approximation at time ¢; of the observation operator H;. In eq. 1, the innovation
vector is given at each time step ¢; by d; = y? — H;x’(%;), x°(t;) being computed integrating
the nonlinear model M from time ¢y to time ¢; starting from x°.

The minimization algorithm used is provided by the Institut de Recherche en Informatique
et Automatique (INRIA, France). It is a variable-storage quasi-Newton algorithm described
in Gilbert and Lemaréchal (1989). The method uses the available in-core memory to update
an approximation of the Hessian of the cost function. In practice, ten updates of this Hessian
matrix are used.

The optimum éx* is added to the background x” in order to provide the analysis x°.

x® = x? + 6x® (2)

The nonlinear model M used to compute the innovation vector is the ECMWF operational
model with the full set of physical parametrizations and run at relatively high resolution (tri-
angular truncation T106 in the experiments described in this paper). The tangent linear model
M used to propagate in time the increments is run at a lower resolution (T63) and with a
very limited set of physical parametrizations (horizontal and vertical diffusion with a simple

surface friction, as in Buizza, 1994). As explained in Courtier et al (1994), the physics is far
" more nonlinear than the dynamics, and the tangent linear approximation might not be valid for
the full model for relatively large perturbations. A simple way to account in the final analysis
for some non-linearities arising from the physical parametrizations is to define a sequence of
minimization problems:

J(0x™) = 1(5}{” +x" - x)TB(0x™ + x" 7 — xP)
Z H 6){ d?“l)TRi_l(Hi(Sx"(ti) — d?_l) (3)

=0

+

Mll—l

with 6x" the increment to be added to the previous estimate x*! at the starting point i=0,
6x"(t;) = M(t;,5)0x™ the increment evolved according to the tangent linear model.

The innovation vector is given at each time step ¢; by d ™' = y? — H;x""1(¢;), x”"1(t;) being
computed by integrating the nonlinear model M from time ¢, to time #; starting from x™~1,
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The optimum ¢x" is added to the previous estimate x™ ! in order to provide the new estimate

X’I'L

x" =x""! 4+ 6x™ (4)

This algorithm thus consists of a pair of nested loops. The outer loop uses the complete
model to compute the sequence of innovation vectors at high resolution. The inner loop uses the
tangent linear and adjoint of a simpler and lower resolution model to minimize the cost function
for the increments calculated with respect to this current estimate of analysis. (Remark: the
actual trajectory needed for the inner loop is computed at low resolution with all the physical

paprametrizations). For more details on these aspects, the reader is referred to Courtier et al
(1994). ' '

In the experiments described in this paper, 3 or 4 outer loops have been used, and for each
minimization 15 to 25 iterations of the quasi-Newton algorithm, totalling 60 to 100 iterations
in all. With the particular set-up of 4 outer loops with 15 iterations for each minimization,
the CPU cost of a 4D-Var on a 6-hour window was found to be about 4 times the cost of a
3D-Var. The formulation of the different terms in the cost function, the structure functions
used in B and the observations used are the same as in the operational 3D-Var system. For the
description of the 3D-Var system, see Courtier et al (1997), Rabier et al (1997) and Andersson
et al (1997). ’

The assimilation windows considered in the experiments are the following. For both 3D-Var
and 4D-Var on a 6 hour period, observations are used with +/- 3 hours around the synoptic
times. For 4D-Var on a 12 hour period, the assimilation is performed from 15 to 03Z and
from 03 to 15Z. For 4D-Var on a 24 hour period, the assimilation is performed from 15 to 15Z.
Every day a 10-day model run is started at 12Z from the analyses using observations up to
15Z. All the experimentation described in this paper was obtained with a proper cycling of
the atmospheric analyses in which the result of the assimilation for one cycle is used as initial
point for the next. However, as far as the analysis and background error variances for each
cycle are concerned, their computation relies on the Optimal Interpolation scheme operational
at ECMWF at the time these experiments were performed. Within one 4D-Var assimilation
window, the Ol is performed as many times as there are 6-hour periods in the assimilation
window to perform the computation of analysis and background error variances at each cycle
prior to the main 4D-Var analysis within this window. Compared to an optimal Kalman filter,
the background error statistics are then not properly cycled taking into account the tangent
linear model. They are taken equal to the statistics produced by the OI for a typical 6-hour
forecast, whatever the assimilation window on which the cycle is performed. One should note
that the Ol is also used for the quality control of the observations in this set-up.
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3. COMPARISON BETWEEN 3D-VAR AND 4D-VAR ON DIFFERENT ASSIMILATION
WINDOWS: OCTOBER 1993 PERIOD

A first set of experiments was conducted to investigate the performance of 4D-Var compared
to its sequential counterpart 3D-Var, when cycled over a two-week period. Four assimilation
cycles were run in parallel: 3D-Var, 4D-Var on a 6-hour window, 4D-Var on a 12-hour window
and 4D-Var on a 24-hour window. The configuration chosen for the 3D-Var analysis is the so-
called First-Guess at the Appropriate Time (FGAT), which means that the innovation vector
is computed by a model integration over the 6-hour assimilation window (exactly as in 4D-Var
on a 6-hour period). Then, the analysis increments are evaluated at the central synoptic time
and added to the background at this central time. The assimilation period extends from the 1st
October 1993 to the 13th October 1993. The horizontal resolution of the model is T106/T63
as explained previously. The vertical resolution is 19 levels. The set-up of the incremental
4D-Var is the following: 25 iterations are performed for each minimization stage, and 3 outer
loops (4 in the case of the 4D-Var on a 24-hour window) giving a total of 75 iterations (100 for
4D-Var on a 24-hour window). The 3D-Var is run with 70 iterations. The code version (cycle
12r1) used for the model and the analysis was operational in 1994. The formulation of the
background term in the cost function is known to be defective in the Tropics (this was before
the introduction of a univariate tropical formulation, as explained in Andersson et al, 1997).

The extratropical scores averaged over thirteen forecasts are given in Figure 1. All 4D-Var
configurations are seen to perform reasonably. 4D-Var on a 6-hour and 12-hour windows are seen
to perform the best, with a better performance than 3D-Var at all ranges in both hemispheres.
In contrast, 4D-Var on a 24-hour window does not perform quite as well as any of the other
assimilations, being in particular worse than the forecasts from the 3D-Var scheme up to day
4. On the one hand, the good performance of 4D-Var on 6-hour and 12-hour windows is
encouraging; on the other hand, the poor performance of 4D-Var on a 24-hour window is
disappointing as earlier idealized studies on single cases had shown that with the 24-hour
window the dynamics had more effect than with a 6-hour window (see for instance Bouttier,
1993, Thépaut et al, 1996). Moreover, in Rabier and Courtier (1992) and Tanguay et al (1996),
it was shown that it was beneficial to have a reasonably long window in order to reconstruct
the small scales from the observations of the large scales. In cycling mode, it is also known
that a full Kalman filter, performs better than a 3D-Var cycling (eg Todling and Cohn, 1994).

However, the way 4D-Var is implemented in these experiments involves three major ap-
proximations to an optimal implementation following the full Kalman filter. Firstly, the model
error is not taken into account: the assimilating model is assumed to be perfect. Secondly,
the tangent linear and adjoint models used in the minimization are only approximations of the
assimilating model (lower resolution, very simplified physics). Thirdly, the statistics are not cy-
cled according to the Kalman filter, from one assimilation period to the next. The background
error covariance matrix at the starting time of the assimilation window is thus static.

The impact of this third approximation has not been investigated. A simplified Kalman
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Figure 1: Anomaly correlation for the Geopotential height at 500 hPa, computed over 13
consecutive forecasts from 931001 for the Northern Hemisphere (top panel), and the Southern
Hemisphere (bottom panel). 3D-Var is represented by a solid line, 4D-Var on a 6-hour window
by a dashed line, 4D-Var on a 12-hour window by a dotted line and 4D-Var on a 24-hour window
by a dash-dotted line 218
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filter would be needed to perform more elaborate experiments. The second approximation is
easier to document. In order to illustrate the impact of using a simplified model for the evolution
of perturbations, an experiment was performed on a more recent case (25th August 1995). A
perturbation typical of a key part of the analysis error was calculated by performing three
iterations of the minimization of the short-range forecast error as in the sensitivity experiments
by Klinker et al (1997). This perturbation is known to be smaller than the full analysis error,
while able to explain a significant part of the two-day forecast error. The evolution of this
perturbation in time was investigated for three different models: the T106L31 model with
full physical parametrizations, the T63L31 model with full physical parametrizations,and the
T63L31 model with simplified physics (as described in the previous section). The tangent-linear
evolution has been approximated by finite-differences in all cases, substracting the result from a
control forecast to the one obtained from a perturbed forecast. Figure 2 shows the evolution of
this perturbation after 6 hours (top panels) and 24 hours (bottom panels), for. T106L31 model
with full physical parametrizations and the T63L31 model with simplified physics.

For both ranges, one can notice a great similarity between the perturbations evolved with the
high-resolution model (left panels) and the simplified one (right panels). However, after 24
hours, the differences start to be visible. In particular, a pattern over Asia (45N, 90E) is too
intense in the perturbation evolved with the simplified model (right-hand side panel). This
particular deficiency of the T63L31 simplified model comes from a lack of physics and not
from a lack of resolution (the T63L31 model with full physics ,not shown, did not display this
deficiency to such an extent). The results might be slightly different if the T63L31 simplified
model had used a trajectory computed with full physics, as is actually done in the 4D-Var
set-up. In terms of global root-mean-squares (RMS) in the Northern hemisphere North of 30N,
Figure 3 illustrates the RMS of the evolved perturbations for the three different models and the
RMS of the error for the two low resolution models as a function of time. The error is defined
as the difference between the perturbation evolved with the low resolution model (with full
physics or simplified physics) and the perturbation evolved with the reference model (T106L31,
full physics). The reference model exhibits a substantial growth of the perturbation, from an
RMS value of 20m at a 6-hour range to a 50m value at a 24-hour range. The T63L31 model with
full physics tends to under-estimate the perturbation growth, whereas the T63L31 model with
simplified physics overdoes it. The RMS error for the T63L31 model with simplified physics
is increasing from 5m (20%) at the 6-hour range to 15m (30%) at the 24-hour range. Thus,
although the correlation between the fields is still high at the 24-hour range (more than 0.95),
the relative error has increased compared with the 6-hour range. The values are shghtly lower
for the T63L31 model with full physics.

On this example, the approximated evolution of a typical fast-growing perturbation of the
analysis has been illustrated and quantified, showing how this approximation is less accurate for
longer time ranges. The question now is how this can affect the convergence of the incremental
4D-Var. In the incremental set-up, the discrepancy between the high-resolution model used for
the computation of the innovation vectors in the outer loops and the low-resolution model used
for the minimizations (inner loops) implies that there is a jump in the value of the cost-function
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Figure 2: Evolution of a perturbation consisting of key analysis errors for the 25th August 1995,
for the geopotential height at 500 hPa. The evolution after 6 hours is shown in the top panels,
with a contour interval of 20m. The evolution after 24 hours is shown in the bottom panels,
with a contour interval of 50m. The left-hand side panels are from the T106L31 model with
full physics and the right-hand side panels are from the T63L31 model with simplified physics.
Negative contours are shaded.
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Figure 3: Time evolution of the sensitivity perturbation obtained by the minimization of the
short-range forecast error for the 25th August 1995. The perturbation is evolved with three
different models: the T106L31 model with full physics (shown as circles), the T63L31 model
with simplified physics (shown as squares) and the T63L31 model with full physics (shown as
diamonds). The RMS of the perturbations are shown as solid lines for the three models, and
the RMS of the errors are shown as dashed lines (these are defined as the difference between
the perturbation evolved with the low resolution models and the perturbation evolved with
the reference model T106L31with full physics). The RMS are computed over the Northern
hemisphere, defined as latitudes higher than 30N. The values are in geopotential meters for the
500hPa geopotential height field.
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when going from low to high resolution due to the change of resolution and the mismatch in
physical parametrizations. For each outer loop, the value of the cost-function at low resolution
is given by eq. 3 which we repeat here

Ji(6x™) = %(6}(” +x"7! = x")TBH(6x" +x" 7 — xP)
S (Hox™ () — d2DTR; (Hiox™(4) — dY) | (5)

=0

+

l\DI)—-‘

whereas its value at high resolution after minimization is

1
Jp(6x™) = 5((5}(" +x"7 T — xOTBH(6x™ 4+ x" 7L — xf)
5 >R () 6)

=0

with d? ™" = y? — H;(x""1(¢;)), and d? = y? — H;(x""*(t;) 4+ 6x"(t;)). The first part of these
equations (fit to the background) is actually computed only at low resolution and the same
value is used at high resolution.

If similar models and similar resolutions were used in inner and outer loops these cost-
functions would be identical (in the limit of validity of the tangent-linear hypothesis for the
observation operator). But, with different models, there is a mismatch which is illustrated in
Figure 4. The ratio 1117‘[—‘]1 is shown as a function of minimization number (or equivalently outer
loop index) for the four assimilation systems, averaged over the 13 days of assimilation.

In the three-dimensional case, when the change of resolution affects the computation of the
observation departures with no model integration, there is 16% jump after the whole minimiza-
tion (70 iterations). In the 4D-Var cases, the jumps are computed after partial minimizations
(25 iterations each). These ratios are a decreasing function of the minimization number, which
illustrates the convergence of the incremental approach. One can also notice that, the shorter
the 4D-Var window, the smaller the jumps. This can be seen as a consequence of a better
approximation for shorter time ranges. In particular, 4D-Var on a 24-hour window is clearly
performing worse than the other systems. Even after an additional outer loop (minimization
number 4), the jump is still around 5%, whereas it is already less than 4% for 4D-Var on a 6
and a 12 hour windows after the third minimization. This worse convergence of 4D-Var on a
longer period of 24 hours, due to approximations in the tangent-linear model is certainly an
indication that these approximations are reaching their limit of validity in this set-up. It is
not believed that performing another minimization would have helped in this case, as other
indicators showed that the cost-function was not decreasing anymore, although is is likely that
more iterations would be needed for a relatively long assimilation window. In order to get the
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Figure 4: Ratio lﬁi‘—h as a function of the number of minimization steps for the four assimilation
systems, averaged over the 13 days of assimilation. 3D-Fgat is shown in circles, 4D-Var on a
6-hour period in squares, 4D-Var on a 12-hour period in diamonds and 4D-Var on a 24-hour
period in triangles.

223



RABIER, F. ET AL: FOUR DIMENSIONAL VARIATIONAL ASSIMILATION...

benefit of performing more iterations, the current set-up should be changed to perform more
iterations within each minimization for instance. This has not been investigated.

Finally, an approximation more difficult to illustrate is the perfect model assumption. It is
known that the model is inaccurate, some of its deficiencies are documented but the model error
is far from being known precisely. Some figures on the systematic part of the error indicate that
this part grows in time by a factor of around two between a 6-hour and a 24-hour range (Ernst
Klinker, pers comm), but this is only a fraction of the total error computed by taking the long-
term average of forecast errors. The impact of model error on advanced assimilation schemes
has been studied by a number of authors (Wergen, 1992, Miller et al, 1994, Cohn et al, 1994).
In practice, results on 4D-Var on a period of 12 hours have benefitted from the introduction
of a model error term (Zupanski, 1993, Zupanski, 1996), while 4D-Var on short periods (2 to
3 hours) with the perfect model assumption has been quite successful (Zou et al, 1995, Kuo
et al, 1995). In the present experiments, there is an indication that 4D-Var on a 24-hour
period does not fit the data within the observational error, which shows that the assimilation
is defective. Furthermore, the fit to the data within an assimilation window tends to be worse
at the beginning and at the end of the period. For instance, over the last 24-hour assimilation
including the synoptic times: 931012, 187; 931013, 00Z; 931013, 06Z and 931013, 127, the ratio
of the RMS fit to synop surface pressure data between the 4D-Var on a 24-hour analysis and
the corresponding 4D-Var on a 6-hour period analyses are 1.32, 1.23, 1.36 and 1.45. The same
type of behaviour had already been observed in previous 4D-Var experiments (Courtier and
Talagrand, 1990). In theory, in a dynamical system with both stable and unstable modes, the
error in a perfect model 4D-Var analysis should be minimum around the middle of the period,
where there is more information, as explained in Pires et al (1996). Thus, the fit to the data,
which is basically the observational error minus the analysis error should be worse around the
middle of the period in this perfect model context, exhibiting a concave shape. In the case with
model error, a recent paper by Ménard and Daley (1996) also illustrates such a concave shape
in the cost-function in the case of an optimal analysis taking into account the model error,
whereas the 4D-Var making the perfect model assumption exhibits a convex cost-function. It
then seems that an optimal system should present a concave shape in the cost function, which
is not the case in our 4D-Var in a 24-hour period. More investigations should be performed to
confirm the link between the curvature of the cost-function and the non-validity of the perfect
model assumption.

Two of the approximations made in this set of experiments will be addressed in the near-
future. The proper cycling of the background error statistics will be tackled in a simplified
Kalman filter context (Fisher and Courtier, 1995). The approximations made in the tangent-
linear and adjoint models will be partly solved by introducing more physics (Mahfouf et al,
1996) , as explained in section 5. It will then be appropriate to test again the quality of 4D-
Var on a relatively long period (24 hours), and see if the model error approximation is still
sufficiently detrimental to outweigh the benefits of a longer assimilation window. Possibilities
to introduce model error in 4D-Var exist and will be investigated (Courtier,. 1996). In the
shorter term, the scientific question which will be investigated is the better performance of the

224



RABIER, F. ET AL: FOUR DIMENSIONAL VARIATIONAL ASSIMILATION...

4D-Var on a 6 hour window over a 3D-Var scheme.

4. COMPARISON BETWEEN 3D-VAR AND 4D-VAR ON A 6-HOUR WINDOW OVER
TWO TWO-WEEK PERIODS

41 Extratropical scores

Two extended experiments were performed comparing 4D-Var on a 6 hour window and 3D-Var:
two weeks in August 1995 (24th August to 7th September) and two weeks in January 1996 (16th
to 29th). In these experiments, the vertical resolution is 31 levels, the number of outer loops
is 4 and the number of iterations for each minimization is 15 leading to a total of 60 iterations
for each cycle of the 4D-Var algorithm. (This particular minimization set-up was found to give
good convergence in these cases). The 3D-Var minimization still uses 70 iterations as in the
previous experiments. The version of the code used for the model and the analysis is different

from the previous set of experiments (it is now cycle 14r3, which was used operationally in
1996). '

The extratropical forecasts scores averaged over the two periods are presented in Figure 5.
The forecasts started from 4D-Var on a 6-hour window are always performing better than the
forecasts from the 3D-Var analyses. In the Northern hemisphere, both periods are positive (the
January period being the better of the two, not shown), giving an overall advantage to 4D-Var.
In the Southern hemisphere, the August period is positive for 4D-Var, whereas the January
period is more neutral, combining into a small positive impact of 4D-Var. It thus seems that in
the winter hemisphere 4D-Var performs much better than 3D-Var, with a more neutral impact
in the summer hemisphere. However, it should be noted that 4D-Var did not produce worse
scores than 3D-Var (when averaged over two weeks) for either hemisphere and either of the
periods investigated. In general, the scatter between the two experiments is reasonably small,
showing mostly better forecasts for 4D-Var and very few slightly negative. The day-to-day
consistency between forecasts produced by the 4D-Var analyses is also improved compared to
that of the 3D-Var (not shown). The geographical distribution of the improvement brought by
4D-Var in the Northern hemisphere in the medium range (day 5) is shown in Figure 6 for the
geopotential height at 500 hPa. The top panels are relative to the August period, the bottom
ones to the January period. The left-hand side panels represent the RMS error for the 5-day
forecasts started from the 3D-Var analyses. The right-hand side panels represent the difference
between the RMS error for the 5-day forecasts started from the 3D-Var analyses and the RMS
error for the 5-day forecasts started from the 4D-Var analyses (positive values indicating where
4D-Var performs better than 3D-Var are shaded). For both periods, there is quite a good
correspondence between the areas of improvement brought by 4D-Var and the areas where
the forecasts issued from 3D-Var had large errors. In particular, for the summer period (top
panels), 4D-Var brings an improvement of more than 30m in Northern Europe, where the errors
from the 3D-Var forecasts were around 140m (local improvement of around 25%). Similarly, for
the winter period (bottom panels), 4D-Var brings an improvement of around 60m or more in

225



RABIER, F. ET AL: FOUR DIMENSIONAL VARIATIONAL ASSIMILATION ...

FORECAST VERIFICATION
500 hPa GEOPOTENTIAL —4D-VAR 6hr
ANOMALY CORRELATION FORECAST
AREA=N.HEM TIME=12 MEAN OVER 29 CASES ---- 3D-VAR
DATE = 950824 TO 960129
100
%
90
80
70
60
50
40
30
20
10 -
0 T 1 1 1 I I T I j
0 1 2 3 4 5 6 7 8 9 10
Forecast Day
MAGICS 5.2 hugin - dal Tua Nev 5 11:30:42 1986 - SCOVIEW 5COCOM c
FORECAST VERIFICATION
500 hPa GEOPOTENTIAL ~———4D-VAR 6hr
ANOMALY CORRELATION FORECAST
AREA=S.HEM TIME=12 MEAN OVER 29 CASES -=-=-= 3D-VAR
DATE = 950824 TO 960129
100
%
90 |
80
70
60
50 -
40
-~
30
20
10 -
0 T 1 T 1 ¥ 1 1 1 T
0 1 2 3 4 5 6 7 8 9 10
Forecast Day
MAGICS 5.2 hugin - dal Tue Nov 5 11:30:43 1886 - SCOVIEW SCOCOM c

Figure 5: Anomaly correlation for the Geopotential height at 500 hPa, computed over 29
forecasts (14 consecutive days in August 1995 and 15 consecutive days in January 1996) for
the Northern Hemisphere (top panel), and the Southern Hemisphere (bottom panel). 3D-Var
is represented by a dashed line, 4D-Var on a 6-hour window by a solid line
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the Pacific area where the errors from the 3D-Var forecasts reached 190m (local improvement
of around 35%). The forecast performance brought by 4D-Var though not large on averaged
scores, is always positive and is largest in the areas of large errors; the improvement reaches
30% locally.

The fact that 4D-Var reduces the largest errors implies that the analyses are mainly different
in components which have a relatively high growth rate. We have compared the analysis
changes made by 4D-Var and the key analysis errors computed operationally (Rabier et al,
1996, Klinker et al, 1997). The correspondence is quite good, in particular for the January
period in the Central Pacific, Hudson Bay, and Labrador sea areas. Comparisons in a case
study are illustrated in the following section. '

4.2 Comparison with key analysis errors

Key analysis errors are computed for the 25th August 1995 based on the two-day forecast error.
These represent the part of the analysis error which grows substantially in the following forecast,
as explained in Klinker et al (1997). Besides the control forecast started from the control
analysis, a sensitivity integration is also run from the analysis from which the key analysis
errors are subtracted. The medium-range forecast error is noticeably réduced, particularly over
Europe in the sensitivity integration. The question one might ask is whether 4D-Var on a
6-hour period is able to cancel some of this fast growing component of the error. Both the
3D-Var and the 4D-Var systems are cycled for 24 hours, from the 25th August 1995 at 127 to
the 26th August 1995 at 12Z. Then, two forecasts are run from the resulting analyses. The
divergence of the two pairs of forecasts (4D-Var versus 3D-Var and sensitivity versus control) is
remarkably similar for the 31st August 1995, as shown in Figure 7 over Europe. Both the 4D-
Var and the sensitivity bring changes of around 150m at 60N, 30E, thus reducing the error by
respectively 30% and 40% from an initial error of about -300m for both the control experiment
and the 3D-Var forecast. This error can be traced back to a comparable deepening of the low
over the Labrador sea on the 26th August 1995: 9.5m for 4D-Var and 14m for the sensitivity
perturbation in the area 57N, 55W for the geopotential at 500 hPa. The 3D-Var and 4D-Var
analyses are shown in Figure 8 together with the radiosonde observations at the 500 hPa level.
One can notice that the 4D-Var analysis (dashed lines) is slightly deeper around 60W than the
3D-Var analysis (solid lines). This change, although very small, is compatible with the available
observations, and is located in a very sensitive baroclinic area. In this comparison, it was not
expected to find a very good correspondence between 4D-Var and the sensitivity, as the two
systems have used very different information, and in particular the sensitivity integration used
the analysis one day ahead of the observations used in both 3D-Var and 4D-Var. However, it
is known that this sensitivity integration captures a key part of the analysis errors and this
comparison illustrates that 4D-Var can also capture a fraction of it.
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Figure 6: Geographical distribution of the forecasts errors in the medium range (day 5) for the
geopotential height at 500 hPa. The top panels are for the August 1995 period, the bottom
ones for the January 1996 period. The left-hand side panels represent the RMS error for the
5-day forecasts started from the 3D-Var analyses (contour interval is 40m, shading starts at
40m). The right-hand side panels represent the difference between the RMS error for the 5-day
forecasts started from the 3D-Var analyses and the RMS error for the 5-day forecasts started
from the 4D-V ar analyses (contour interval is 15m, positive values indicating where 4D-Var
performs better than 3D-Var are shaded for values above 15m).
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Figure 7: Divergence of forecasts for the geopotential height at 500 hPa valid for the 31st
August 1995. The left-hand side panel represents the difference between the forecasts started
from 4D-Var and from 3D-Var on the 26th August 1995. The right-hand side panels represents
the difference between the sensitivity integration and the control forecast started on the 25th
August 1995. Contour interval is 20m.

229



RABIER, F. ET AL: FOUR DIMENSIONAL VARIATIONAL ASSIMILATION...

Z500 hPa. 26/8/95 12h. 3D-Var (solid) and 4D-Var (dashed) analyses
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Figure 8: Analyses for the geopotential height at 500 hPa for the 26st August 1995. 4D-Var is
shown as dashed lines, 3D-Var as solid lines. Contour interval is 4m. Radiosonde observations
are also plotted.
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4.3 Increments and fits to observations

The fit of the analyses and the background fields (6-hour forecasts) to the available data is
investigated for the August 1995 period (for the first 8 days of assimilation). The root-mean-
squares and averages of the differences between model equivalent of the observations and the
observations, averaged over the period are plotted for various observation types as a function of
height. The results, averaged over large areas (Northern hemisphere, Tropics, Southern hemi-
sphere) are quite similar for both systems. The fit of the background fields to the observations
are computed using a quadratic interpolation for the background at ranges 3, 6 and 9 hour for
both systems. The fit of the analyses to the observations, on the other hand, are computed
along the 4D-Var model integration for the 4D-Var system, and in a static way for the 3D-Var
system. This implies that the comparison of the fit of the analyses to the observations will
be fair only for data reporting in the middle of the 6-hour assimilation window for which the
3D-Var analysis is valid (basically radiosonde data). Results for the standard-deviations of the
difference between analyses (respectively backgrounds) and observations are presented in Table
1(respectively 2) for the radiosonde data (TEMPs) at three levels and aircraft observations
(AIREPs) at 250 hPa. The significance of the results is computed using a Fisher’s test at the
90% confidence level. Whenever the standard-deviations for the two systems are significantly
different, it is indicated in the Tables. For the radiosonde data, only results for which the two
systems are significantly different for at least two out of three levels are presented. From Table
1, one can notice that the 4D-Var analyses fit better the radiosonde mass data than the 3D-Var
analyses everywhere and fit worse the radiosonde wind data in the Northern hemisphere. How-
ever, the worse or better fit of the analyses to the data is not in itself a performance criterion.
The relevant comment which can be made from this table is that both systems fit the data
reasonably. The fit of the background fields to the data is more relevant to judge the quality
of the assimilation system as the short-range forecasts and observations are not correlated. In
Table 2, the fit of the 4D-Var background fields to the radiosonde mass observations is better
than the fit of the 3D-Var backgrounds to the observations in the Northern hemisphere. It is
also better for the fit to aircraft wind data in both hemispheres.

These small differences can hide some larger local differences, and the averaged difference
between the RMS of the 4D-Var increments and RMS of the 3D-Var increments for the geopo-
tential height at 200 hPa show that, indeed, the size of the increments is not uniformally
identical in the Northern hemisphere (Figure 9).

4D-Var increments tend to be smaller around 50N, especially over the oceans. The maximum
difference occurs over the West Atlantic area, with 4D-Var increments up to 6 meters smaller
than 3-Var increments. To clarify the reasons for this difference, the RMS fits to the data
produced over this West Atlantic area (30 to 60N, 80 to 40W) are presented in figure 10. The
solid lines represent the RMS fits of the background fields to the observations, the dashed ones
the RMS fits of the analyses to the observations. There are around 300 observations in that
area over the period. The 4D-Var analyses and forecasts (shown as squares) have a better fit
to the data, especially the background (16.5m compared to 20m for the 3D-Var background at
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Figure 9: Averaged difference between the RMS of the 4D-Var increments and the RMS of the
3D-Var increments for the geopotential height at 200 hPa for the August 1995 period. Contour
interval is 1m. Negative values are shaded.
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Figure 10: RMS fits to the radiosonde geopotential data produced over the West Atlantic area
(30 to 60N, 80 to 40W). The solid lines represent the RMS fits of the backgrounds to the
observations, the dashed ones the RMS fits of the analyses to the observations. 4D-Var is
shown as squares, 3D-Var as circles. The abscissa is the RMS in geopotential meters. The
ordinate is the pressure in hPa. "
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TABLE 1. STANDARD DEVIATIONS OF DEPARTURES OF ANALYSES FROM THE OBSERVATIONS FOR THE
AUGUST 1995 PERIOD.

Type of obs Variable  Area Level ~ Number of obs 3V(AN) std 4V(AN) std Significant

TEMP U NH 850 hPa 6567 2.16 m/s 2.22m/s yes
TEMP U NH 500 hPa 7152 2.18 m/s 2.25m/s yes
TEMP U NH 250 hPa 6931 2.85m/s 2.87 m/s no
TEMP A% NH 850 hPa 6567 2.12m/s 217m/s yes
TEMP A% NH 500 hPa 7152 2.15m/s 2.21 m/s yes
TEMP A% NH 250 hPa 6931 2.88 m/s 2.87m/s no
TEMP Z NH 850 hPa 6986 6.93 m 6.12m yes
TEMP Z NH 500 hPa 7216 9.69 m 9.63 m no
TEMP Z NH 250 hPa 6866 1713 m 16.60 m yes
TEMP Z Tropics 850 hPa 925 8.98 m 6.97 m yes
TEMP Z Tropics 500 hPa 923 11.98 m 11.31 m yes
TEMP Z Tropics 250 hPa 894 19.84 m 18.08 m yes
TEMP Z SH 850 hPa 822 6.78 m 5.06 m yes
TEMP Z SH 500 hPa 824 8.09m 741 m yes
TEMP Z SH 250 hPa 800 14.24m 12.80 m yes

"Three levels (850, 500 and 250 hPa) are indicated for radiosonde data (TEMPs) whenever two at least show
significant differences in the fit to observations between 3D-Var and 4D-Var. The significance test is carried
out with a Fisher’s test at 90 % confidence.

250 hPa). The smaller increments for the 4D-Var system are then a consequence of a much
better background field from which to start the minimization.

This area is very active from a baroclinic point of view. Furthermore, there are a lot of
single-level aircraft data, which are better assimilated in a 4D-Var system due to the flow-
dependent structure functions. An example is given in Figures 11 to 13. For the very first
cycle of the assimilation period (24/08/95, 0Z), a cross-section of the vorticity background field
along 45N is presented in Figure 11 just off the American coast. One can notice a westward
tilt with height typical of baroclinic systems. The 4D-Var increments (Figure 12) are more
tilted than the rather barotropic 3D-Var increments (Figure 13). 3D-Var extrapolates data
with the specified barotropic structure functions, whereas 4D-Var knows about the dynamical
evolution over the assimilation period. Although 4D-Var is implemented here with a 6-hour
assimilation window, the interaction between the dynamics and the observations is sufficiently
strong in active baroclinic areas to provide some useful information leading to a better analysis
and short-range forecast in these areas.

Figure 9 also exhibits some areas where 4D-Var increments are substantially larger than the
3D-Var ones. In particular, there are some differences of up to 5m over Central Asia. The RMS
fits to the data produced over this area (35 to 45N, 60 to 100E) for geopotential data indicate
that the 4D-Var background is worse by about 2m in the upper troposphere. The worse quality
of the 4D-Var system can be explained by the importance of orographic processes in this area

234



RABIER, F. ET AL: FOUR DIMENSIONAL VARIATIONAL ASSIMILATION...

TABLE 2. STANDARD DEVIATIONS OF DEPARTURES OF BACKGROUNDS FROM THE OBSERVATIONS FOR
THE AUGUST 1995 PERIOD.

Type of obs Variable  Area Level ~ Number of obs 3V(FG) std 4V(FG) std Significant

TEMP Z NH 850 hPa 6986 19.38m 8.94 m yes
TEMP Z NH 500 hPa 7216 13.44m 13.02 m yes
TEMP Z NH 250 hPa 6866 21.35m 21.27Tm no
AIREP U NH 250 hPa 27327 4.04 m/s 3.88 m/s yes
AIREP U Tropics 250 hPa 2616 4.86 m/s 491 m/s no
AIREP U SH 250 hPa 3426 3.70 m/s 3.57m/s yes
AIREP A% NH 250 hPa 27327 4.26 m/s 4.05 m/s yes
AIREP A% Tropics 250 hPa 2616 4.75 m/s 4.63 m/s no
AIREP A% SH 250 hPa 3426 3.85 m/s 3.59 m/s yes

Three levels (850, 500 and 250 hPa) are indicated for radiosonde data (TEMPs) whenever two at least
show significant differences in the fit to observations between 3D-Var and 4D-Var. Aircraft observations
(AIREPs) are represented at the level 250 hPa for which there are more data. The same computation of
First-Guess At the appropriate Time came into the computation of the two systems. The significance test
is carried out with a Fisher’s test at 90 % confidence.

which are not included in the tangent-linear and adjoint models used in 4D-Var. In section 3,
the comparison between the evolution of a perturbation by the model with full physics and the
simplified model used in the minimization already hinted at possible problems there.

4.4  Tropical performance

Turning to the Tropics, there are at least two indications that the present 4D-Var system does
not perform as well as 3D-Var there. The first indication is that the short-range tropical wind
scores (verified against its own analysis or against observations) are slightly worse, in particular
at 200 hPa. The second indication is a worse balance in the hydrological budget in the first
day of the forecasts. The forecasts started from the 3D-Var analyses have a slight imbalance
between global precipitation and evaporation rates (less than 5%) in our experiments, but this
imbalance reaches 10% in the 4D-Var case. 4D-Var forecasts have greater precipitation than
evaporation rates at the very beginning of the forecast.

The 4D-Var analyses are moister than the 3D-Var ones (see Figure 14 for the mean analyses
difference for the August 1995 period) by up to 0.3 g/kg zonally averaged along the Equator.
The 4D-Var analysis is moister from the very first analysis cycle, and the averaged increments
clearly add more humidity to the Tropical atmosphere than the 3D-Var ones. Figures 15 and 16
show the mean zonally averaged increments for 3D-Var and 4D-Var respectively. Both analyses,
on average, add humidity in the tropical band, but 4D-Var increments are about twice as large.
When looking at the geographical distribution of the 3D-Var and 4D-Var increments, they seem
to occur at the same locations, but with a different amplitude.

The fact that 4D-Var produces larger increments could mean that the effective background
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Figure 11: Cross-section longitude/height along 45N, showing the background vorticity field
for the analysis on the 24/08/95 at 0Z. Contour interval is 0.000025 s~1.
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4D-Var vorticity increments for 24/08/95, 0Z
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Figure 12: Cross-section longitude/height along 45N, showing the 4D-Var increments for the
analysis on the 24/08/95 at 0Z. Contour interval is 0.000005 s~ 1.
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3D-Var vorticity increments for 24/08/95, 0Z
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Figure 13: Cross-section longitude/height along 45N, showing the 3D-Var increments for the
analysis on the 24/08/95 at 0Z. Contour interval is 0.000005 s~
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error standard-deviations are larger than for 3D-Var. In 4D-Var, the implied background error
standard-deviations are those which would be produced by a Kalman filter implemented over
the assimilation window. This means that they evolve according to the dynamics over the
6-hour period. Although this is one of the main advantages of the method if the dynamics
and simplified physics used in the tangent-linear and adjoint models are accurate, it could
be a drawback if this simplified model is not a good approximation of the evolution of the
atmosphere. Budget diagnostics show a large dynamical tendency of humidity in the mid to
low troposphere in the tropical area. In the model with full physics, this is almost balanced by
parametrized physical tendencies of opposite sign. But in the adiabatic tangent-linear medel,
the humidity advection tendencies which are driven by the dynamics are larger than they would
be if relevant parametrized physical processes such as convection were included. 4D-Var "sees”,
during the minimization, a larger net change in humidity than what it should, which implies
a larger uncertainty in the background field, thus a larger background error. The absence of
relevant physics is thus one factor which might explain the larger humidity increments in this
area.

Other factors were also seen to be important, such as the version of the atmospheric model
used in the assimilation. The performance of 4D-Var in the tropical area will certainly improve
when more physical processes are included in the tangent-linear and adjoint models (see next
section). However, as explained by Wergen (1992), the Tropics might still remain a potential
problem area for 4D-Var because of large model errors there and because there is less tendency
information and multivariate information to be extracted from the data. V

o. FUTURE DEVELOPMENTS

5.1 Development of the tangent-linear and adjoint of the physics

The tangent-linear and adjoint of the main physical parametrizations are under development
(Mahfouf et al, 1996). These include vertical diffusion, sub grid scale orography, large scale
condensation, diagnostic cloud scheme and a simplified solar radiation scheme for surface fluxes.
As far as the convection is concerned, an approximation of the Jacobian is being used to
investigate the scientific problems of developing a suitable formulation.

‘We have performed a very simple sensitivity experiment to evaluate the impact of introduc-
ing more physics in the Tropics. To simulate the effect of convection, the tangent-linear model
~dynamics are modified by multiplying the vertical velocity perturbation by a factor less than
one in the vertical advection and energy conversion terms. This factor is a smooth function
going from 0 at the Equator to 1 at 30 degrees North and South. The change is intended to
simulate (in an over-simplified way) the fact that the dynamics are balanced by the convective
processes in the Tropical area. The adjoint model was modified accordingly. Three cycles of
assimilation from the 24th August 1995, 0Z to the 24th August 1995, 127 were re-run with
4D-Var on a 6-hour window with this change included in the minimization stages. Comparison

239



RABIER, F. ET AL: FOUR DIMENSIONAL VARIATIONAL ASSIMILATION...

Averaged analysis difference 4D-Var - 3D-Var. August 1995
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Figure 14: Cross-section latitude/height, showing the difference between the 4D-Var and the
3D-Var specific humidity analyses, averaged over the August 1995 period, and over longitudes.
Contour interval is 0.1 g/kg.
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Averaged increments. 3D-Var. August 1995.
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Figure 15: Cross-section latitude/height, showing the 3D-Var specific humidity increments,
- averaged over the August 1995 period, and over longitudes. Contour interval is 0.05 g/kg.
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Averaged increments. 4D-Var. August 1995.
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Figure 16: Cross-section latitude/height, showing the 4D-Var specific humidity increments,
averaged over the August 1995 period, and over longitudes. Contour interval is 0.05 g/kg.
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with the reference 4D-Var analysis for 127 shows that the specific humidity has indeed been
decreased by about 0.2 g/kg in a narrow latitude band at the Equator (not shown), leading
to values much more similar to the corresponding 3D-Var values. As a consequence, the fore-
cast run from this analysis exhibits a much smaller difference between initial precipitation and
evaporation rates (0.02 mm/day) than the control 4D-Var (0.08 mm/day), thus reducing con-
siderably the precipitation spin-down. This simple experiment is an indication that accounting
for parametrized physical processes, and particularly convection, in the minimization phase of
the assimilation will be beneficial for the tropical analysis.

5.2  Line-search for outer loops of 4D-Var incremental

The present formulation of 4D-Var incremental does not guarantee a decrease in the cost-
function at high resolution after each update. Although the minimization achieves a decrease
in the cost-function at low resolution during the inner loops, this decrease might be compensated
by a similar or even larger increase when going to high resolution, when the fit to observations
is re-computed with the full model in the outer loop. An example of this behaviour is shown
in Figure 17 for the standard 4D-Var with a 6-hour window on one particular analysis (solid
line). One can see that the decrease in the cost-function is quite large during the first two
minimizations, and that it starts getting smaller for the subsequent two minimizations, as one
comes closer to the minimum. The jumps in the cost-function occurring for each outer-loop
also tend to become smaller, which indicates that the method converges. For instance, the
last jump occuring at iteration 60 is only a fraction of the first one at iteration 15. However,
it appears that this last increase almost completely cancels the previous decrease in the last
minimization. The values of the cost-function at iteration 45 (at the beginning of the last
minimization) is 55860, at iteration 60 (at the end of the last minimization) 54920, and at the
last outer loop (iteration 60) 55829. The final cost-function is only marginally smaller than it
was at the previous outer-loop, which is not satisfactory.

A possible solution to eliminate this problem is to perform a line-search at high resolution
(in the outer loop), in the direction given by the minimization at low resolution. Instead of just
injecting the increments found at low resolution into the high resolution field, one would then
find an appropriate scaling to optimize the decrease of the cost-function at high resolution along
the direction given by these increments. The way this is achieved is simple: once the increments
at low resolution are computed, one performs several computations of the observational cost-
function at high resolution and of the background cost-function (only available for technical
reasons at low resolution) from different scalings of the increments. Then, one fits a parabola
to the total cost-function evaluations, and associates the optimal scaling factor to the minimum
of the parabola. This idea is tried on three cycles of assimilation from the 24th August 1995,
0Z to the 24th August 1995, 12. It is found unnecessary to compute the scaling factors for the
first two outer-loops (because they are so close to 1), but the optimal scaling was computed
for the two last outer-loops (factors as low as 0.4 are occasionally found). The performance
of the minimization for the first analysis is shown as dashed line in Figure 17. The behaviour
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Decrease in J for 4D-VAR std / line-search
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Figure 17: Decrease of the cost-function as a number of iteration number for 4D-Var on a
6-hour period, for the 24th August 1995, 00Z analysis. Standard 4D-Var is shown as solid line,
4D-Var with line search for the outer loop is shown as dashed line.

of the minimization, although quite similar to that of the standard 4D-Var, is better at the
last outer-loop. The values of the cost-function at iteration 45 (at the beginning of the last
minimization) is 55574, at iteration 60 (at the end of the last minimization) 54346, and at the
last outer loop (iteration 60) 55410. The final cost-function is now considerably smaller than

it was at the penultimate outer-loop, which is precisely what we wanted to achieve with this
method.

6. CONCLUDING REMARKS

In this paper, results of extended 4D-Var assimilations in cycling mode, over several two-week
assimilation periods have been presented. 4D-Var is implemented in its incremental formulation
(Courtier et al, 1994) with a high resolution (T106) model with the full physical parametrization
package to compare the atmospheric states with the observations and a low resolution (T63)

244



RABIER, F. ET AL: FOUR DIMENSIONAL VARIATIONAL ASSIMILATION...

model with simplified physics to minimize the cost-function. The comparison of 4D-Var on
several assimilation windows (6, 12 and 24 hours) with 3D-Var (the equivalent of 4D-Var with
no time-dimension) over a two-week period showed a clear benefit of using 4D-Var over a 6
or 12-hour window over the static 3D-Var scheme. It also exhibited some problems for the
forecasts started from the 4D-Var on a 24-hour window. This poor performance of the 4D-Var
on a 24-hour system is disappointing as the influence of the dynamics had been found to be
beneficial in earlier studies on such an assimilation window (Rabier and Courtier, 1992, Thépaut
et al, 1996). However, there are at least two possible explanations. The first one is that, in the
set-up of these experiments, the tangent-linear and adjoint models used in the minimization
are only approximations of the assimilating model (lower resolution, very simplified physics).
An example of the error these approximations introduce in the time evolution of a perturbation
shows an increase from about 20% at the 6-hour range to 30% at the 24-hour range. This error
affects the convergence of the incremental 4D-Var, with larger discontinuities in the values of
the cost-function when going from low to high resolution for longer assimilation windows. The
second main reason is the fact that a perfect model is assumed in this 4D-Var context. This
is certainly not ideal (as shown for instance by Wergen, 1992), and probably more detrimental
at the 24-hour range than at the 6-hour range. Experiments performed with this hypothesis
have been successful for short 2 to 3-hour windows (Kuo et al, 1995, Zou et al, 1995), but
other experiments indicate a benefit of relaxing this constraint on a longer 12-hour assimilation
window (Zupanski, 1993, Zupanski, 1996). Some possibilities have been tried to introduce
some model error terms in 4D-Var (Derber, 1989, Wergen, 1992, Zupanski, 1996). A full
weak-constraint approach is equivalent to the representers method (Bennet, 1992, Egbert et al,
1994) as shown by Amodei (1995) and Courtier (1996). However, before changing our 4D-Var
formulation, more diagnostics are needed on the fit to observations (Dee, 1995a, Ménard and

Daley, 1996) and more work should be carried out on evaluating model error statistics (Daley,
1992, Dee, 1995b, Wahba et al, 1995).

In the mean-time, we have performed more experiments comparing 4D-Var on a 6-hour win-
dow with the 3D-Var system. Two additional two-week periods show a consistent improvement
in extratropical forecast scores when using the 4D-Var system. The main improvements occur
in areas where the 3D-Var errors are the largest. Local improvement can be as large as 35% for
the root-mean square of the 5-day forecast error, averaged over a two-week period. A compari-
son with key analysis error, as computed in Klinker et al (1997) shows that, indeed, 4D-Var on
a 6-hour window is able to reduce substantially the error in its fast-growing components. The
overall fit of analyses and short-range forecasts to observations is comparable or slightly better
in 4D-Var. In active baroclinic areas, the fit of the background to the data is considerably
better for the 4D-Var system, resulting in smaller increments. It appears that in these areas
(and in particular over West-Atlantic), 4D-Var is able to use better the information contained
in the observations. The way 4D-Var can extrapolate some aircraft data in the vertical with a
baroclinic tilt is illustrated in the paper.

Some problems exist in other areas (Tropics and mountainous areas) mainly due to a lack
of parametrized physics. The tangent-linear and adjoint of the main physical parametriza-
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tion schemes are under development (Mahfouf et al, 1996). Once they are available, more
experiments will be performed for 4D-Var on a 6-hour window and for longer periods as well.
Experiments will also be performed with higher resolution models. However, care should be
taken not to exceed the range of validity of the tangent-linear hypothesis, as it is known to
break down first for the small scales (Tanguay et al, 1996).

More potential advantages of using 4D-Var in an operational context have not been inves-
tigated in this study. For instance, the same amount of data is currently used in a 4D-Var
on a 6-hour window analysis as in a 3D-Var analysis, with a synoptic screening of data. A
screening on one-hour time-slots, more adapted to 4D-Var is being developed (Jarvinen, pers
comm). 4D-Var is known to use consistently asynoptic data such as radiances (Andersson et
al, 1994). More types of observations have already been tested in the four-dimensional frame-
work, such as ozone (Fisher and Lary, 1995, Riishgjgaard, 1996), precipitable water (Filiberti
et al, 1996, Kuo et al, 1995), radio refractivity (Zou et al, 1995),... 4D-Var will continue to
be tested in a quasi-operational framework, with more physical processes, and more observa-
tions. Although this algorithm is expensive, some scenarii exist to reduce its cost such as a
multi-incremental strategy (Veersé, pers comm) or quasi-continuous variational assimilation
(Jarvinen et al, 1996) which should keep it within the possibilities of operational testing and
allow for a full examination of the method.
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