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If the real world was like this:

Energy
A

A ) N1
1000 \ 100 10 \ / 1km

Individual cumulus clouds
Cyclone scale flow or orographic lee waves

then conventional NWP formulation:
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where truncation limit = spectral gap, would be well founded. .

Unfortunately there is no obvious spectral gap, i.e.
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!Proceedings of the ECMWF Workshop on Convection (1997)
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So what?! Consider (2-D) flow blocked by a long, tall, thin obstacle. Let 1, 2, 3 denote typical gridboxes.

Mean flow in 1 and
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Let p*> = subgrid orographic variance, U = upstream velocity. Current ECMWF subgridscale orbgraphic

parametrization blocks flow if Nw/U > 1. Suppose Ni/U 2 1 in grid boxes 1, 2 and 3. Then strong parametrized
drag in all 3 boxes, i.e.

—»-/
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I too large a scale.
I DRAG : Net drag too large
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Parametrized tendency should be:
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In NH, acceleration is stronger in 1 than 3 because of Coriolis effect. Resulting transverse pressure gradient
implies  lift force”. See also Durran, 1995.

Similar situation for organised convection e.g. Rayleigh-Bénard convection, such as occurs in midlatitude cold-
air outbreaks behind cold fronts. Let 1, 2, 3 denote typical grid boxes, as before
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no net warming

(possible net cooling) 330



PALMER, T N: ON PARAMETRIZING SCALES ...

Conventional parametrization tendency will give
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Related problem (Lander and Hoskins, 1997). Parametrization is driven by the smallest resolved scales. But
there is substantial model error in smallest resolved scales because of an inappropriate hard truncation limit.
Therefore there is potential positive feedback of error from parametrization.

Does this type of error near the truncation limit matter for cyclone-scale forecasts?

®  In quasi-2D flow there can be a strong inverse energy cascade from sub-cyclone to cyclone scales (cf
singular vector analysis).

@ Itisimportant to try to quantify these types of small-scale spatially coherent model error in order to assess
their impact on the predictability of cyclone-scale forecasts.

®  What is the pdf of model error associated with the misrepresentation of coherent structures near the
truncation limit?

Should this pdf be represented in an ensemble forecast? Is it possible that, on occasion,

',Verification
Verification

=
HYPOTHETICAL ensemble HYPOTHETICAL ensemble with
with initial perturbations only initial and model perturbations

Is there an alternative to conventional parametrization to deal with this type of model error?
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A possible approach

NWP — 9 |Parametrization

model | o /Closure
Schemes

2-way coupling ——» »\\\‘ /”/

Must be computationally | Low order nonlinear
cheap compared with —» | dynamical system
NWP model representing organised
orographic / convective
motions on mesoscale

Two possible low-order dynamical systems:

1. Nonlinear coupled ODE model based on Galerkin projection of equations of motion onto EOF basis
defined from a high resolution (e.g. orographic, cloud-resolving) model.

2. Cellular automaton model with rules learnt from a high resolution (e.g. orographic, cloud-resolving)

model.
EOF MODELS
NbEOF = POD (Proper Orthogonal Decomposition) used in probability theory
= Karhunen - Lo¢ve expansion used in turbulence theory
Use of EOF models
Lorenz (1956) first made suggestion
Sellers (1957) application to 500 mb height prediction
Rinne and Karhila (1975)  predictive skill of model with 57 EOFs as good as grid point model with 1080
grid points
Cazemier et al (1994) 80 EOF model could simulate short and long term evolution of 2D turbulent flow
simulated by 108 grid point
Selten (1995) EOF model of global circulation
Zuang (1996) 15 EOF model to study dynamical evolution of convective plumes in

atmospheric boundary layer.

e.g. Lorenz (1963)

z,=-10z,+10z,
2,= =223+ 282~ 2,
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when projected onto dominant 2 EOFs becomes: (Selten, 1995)

a,=2.3a,-04%aa,
a,= —62—2.7a,+0.49a?

|| ——— tue
-------- EOF[2]
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time

The figure above shows a timeseries of the tendency of the leading EOF as given by the Lorenz equations
and the approximated tendency by the EOF model with two EOF’s

Consider coupling the NWP and EOF model

EOF basis derived
from high resolution
limited area model

integration
NWP model | (eg COARE)

SR

| ] | | ] |
| | | | 1 1

EOF/POD model

Large-scale EOFs should be-J
partially resolved by NWP model

- so coupling not confined only

to smallest resolvable scale

of NWP model
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Let Ugop Trop denote wind and temperature projection of EOF-model state vector onto NWP model grid:

% +@WVu = ... —xU—ug,,)
NWP model oT
5 + V)T =...—x(T - Ty,p)

Let a,llv WP denote projection of NWP model state vector onto n”* EOF

d
EOF model Z" =..—k(a, —al"?)

EOF models representing adjacent spatial domains should be coupled together to ensure consistent common
boundary conditions. Nb EOF basis could be adaptive i.e. dependent on large-scale flow and stability
conditions.

CELLULAR AUTOMATA (CA)

See e.g. Adamatzky (1996) for background. First applied by von Neumann to biological problems.
Local evolution rule:

Cellular Automata (CA)

CA array
Each CA has discrete
A - number of states
. e.g. on/off
CAj;
cg. CA, (t+1)= f(CA,_y (1), CAy . (),..)

CA model is a dynamical system with discrete space - discrete time - discrete state vector.

There are many CA model representations of PDEs in physics e.g. Frisch et al (1986) a lattice gas automata for
the Navier Stokes equations

CAs are able to simulate hexagon-like patterns (cf Rayleigh-Bénard convection above)
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Application of CA method to subgridscale orographic blocking

Let h = mean orographic height within CA. If Nh/U > 1, CA is in ‘drag state’.

For CAs in a non-drag state, but within a neighbourhood of a drag state CA, the CAs are in an ‘adjustment
state’. Value and extent of neighbourhood of adjustment CAs determined by CA representation of

¢ =V-2h

Gridbox mean tendency given by counting CA values
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The Figure above is a snapshot of an example of a possible cellular automaton model of organised convection.
The grid is presumed to be equivalent to a GCM grid. At initial time the CAs are set ‘on’ according to a random
number generator. (For NWP, the individual CAs could be initialised using high resolution satellite imagery).
The probability of being ‘on’ can be thought of as being proportional to the magnitude of the convective closure
parameter. The probability of a CA remaining ‘on’ at the next time step is a function of the number on
surrounding ‘on’ cells. Isolated CAs die very quickly; the illustrated ‘blobs’ have a much longer timescale.
The function that gives the lifetime of a CA can be thought of as being determined by grid-scale wind shear. The

CAs can be made to advect with the ambient wind. (I am grateful to Bernd Becker for help in producing this
example.)
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