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ABSTRACT

Ensemble forecasting is a feasible method to integrate a deterministic forecast with an estimate of
the probability distribution of atmospheric states. At the European Centre for Medium-Range
Weather Forecasts (ECMWF) the Ensemble Prediction System (EPS) comprises 32 perturbed and
one unperturbed non-linear integrations at T63 spectral triangular truncation and with 19 vertical
levels. The perturbed initial conditions are generated using the most unstable directions growing
over a 48-hour time period, computed at T421.19 resolution. :

This work describes the performance of the ECMWF EPS during the first 18 months of daily
operation, focusing on the 500 hPa geopotential height fields.

First, the EPS is described, and the validation approach followed throughout this work is discussed.
In particular, spread and skill distribution functions are introduced to define a more integral
validation methodology for ensemble prediction.

Then, the potential forecast skill of ensemble prediction is estimated considering one ensemble
member as verification (perfect ensemble assumption). In particular the ratio between ensemble
spread and control error is computed, and the potential correlation between ensemble spread and
control forecast skill is evaluated. The results obtained within the perfect ensemble hypothesis
give estimates of the limits of forecast skill to be expected by ensemble prediction. ‘

Finally, the EPS is validated against analysis fields, and potential and real forecast skill are
compared. Results indicate that the EPS spread is smaller than the distance between the control
forecast and the analysis. Considering ensemble spread/control skill scatter diagrams, a
predictability index is introduced to estimate the percentage of wrongly predicted cases with small
spread/high control skill. Results suggest that there is a good correspondence between small
ensemble spread and high control skill. Nevertheless, the percentage of analysis values lying
outside the EPS forecast range is still high.

1. INTRODUCTION

Simmons et al (1995) analyzed in great detail the error growth of the 10-day forecast of the European Centre for
Medium-Range Weather Forecasts’s (ECMWF) operational model from 1 December 1980 to 31 May 1994, and
concluded that the accuracy has been improved substantially over the first half of the forecast range, but that
there has been little reduction of error in the late forecast range. While this applies on average, it is also true
that there has been improvement in the skill of the good forecasts. In other words, good forecasts have higher
skill now than in the past. The problem is that it is still difficult to assess a-priori whether a forecast will be
skilful or unskilful, only using deterministic prediction. By contrast, ensemble prediction has the capability of
estimating the forecast skill of a deterministic forecast. This is because ensemble prediction can integrate a

deterministic forecast with an estimate of the probability distribution function of atmospheric states.
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Since December 1992, both the US National Meteorological Centre (NMC) and ECMWF have integrated their
deterministic high-resolution prediction with medium-range ensemble prediction (Tracton and Kalnay, 1993,
Palmer et al, 1993). The development follows the theoretical and experimental work of Epstein (1969), Gleeson
(1970), Fleming (1971a-b) and Leith (1974).

Both centres follow the same strategy of providing an ensemble of forécasts computed with the same model,
one started with unperturbed initial conditions referred to as the ‘control' forecast and an ensemble with initial
conditidns defined adding small perturbations to the control initial condition. Apart from differences in the
ensemble size and the fact that at NMC a combination of lagged forecasts is used, the NMC and the ECMWF
approaches to ensemble prediction differ ‘substantially in the definition of the perturbations added to the control
initial conditions to generate the initial conditions of the perturbed forecast. We refer the reader to Toth and
Kalnay (1993) for the description of the 'breeding’ method applied at NMC, and to Buizza and Palmer (1995)

for a thorough discussion of the singular vector approach followed at ECMWEF.

The first part of this paper briefly describes the ECMWEF Ensemble Prediction System (EPS) and lists the major
modifications introduced since its implementation on 19 December 1992 (the reader is referred to Mqltem' et
al, 1996, for a more complete description of the EPS). The successful implementation of the ECMWF EPS
follows early experiments by Hollingsworth (1980), who demonstrated that a sparse random sampling of phase
space does not produce a realistic distribution of forecast states, and ensemble forecasting experiments in which
unstable singular vectors computed from a 3-level quasi-geostrophic model were used to generate the initial

perturbations (Mureau et al, 1993; Molteni and Palmer, 1993).

The second part of this paper has been inspired by the work of Lorenz (1982), who introduced the concept of
potential improvement in forecast skill for a deterministic prediction, and estimated it by comparing
deterministic forecasts from subsequent déys (see also Simmons et al, 1995). Our aim is to estimate the potential
forecast skill of ensemble prediction, by considering a perfect ensemble system where the verifying analysis is
substituted by a randomly chosen perturbed ensemble member. Working within this hypothesis, we evaluate
the characteristics of a perfect ensemble in terms of ensemble spread (i.e. the average distance of the ensemble
members from the control forecast), skill of the control forecast and of the ensemble-mean, correlation between
spread and skill, and percentage of analysis values lying outside the ensemble forecast range. In particular, we
focus on three requirements: i) the ensemble spread should be comparable to the error of the control forecast,
ii) small spread should indicate high probability of a skilful control forecast, and iii) the verifying analysis
should be included within the range covered by the ensemble forecasts. The work is based on 18 months of

daily ensemble prediction, from 1 May 1994 (when daily EPS started being run at ECMWF) to 31 October 1995.
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Finally, in the third part of the paper, we consider the ECMWF EPS and, focusing on the three requirements
mentioned above, we compare the potential with the real ensemble forecast skill. In particular, ensemble spread
and control skill distributions are compared, and scatter diagrams of spread and control skill are analyzed. An
index of predictability computed from contingency tables of ensemble spread and control skill is introduced to
quantify the difference between the potential and the real skill of the EPS. The skill of the ensemble-mean is

also discussed.

The paper is organized as follows. After this Introduction, Section 2 describes the ECMWF EPS and lists the
major modifications introduced since its implementation. The methodology and the validation technique
applied‘in this paper are discussed in Section 3. The potential forecast skill of ensemble prediction is studied
in Section 4, while the comparison between potential and real forecast skill of the EPS is discussed in Section 5.

Conclusions are drawn in Section 6.

2. THE ECMWF ENSEMBLE PREDICTION SYSTEM

The ECMWF EPS comprises, at the moment of writing, 32 perturbed and one unperturbed (control) non-linear
integrations of a T63L.19 Eulerian version of the ECMWEF model (Simmons et al, 1989 and Courtier et al, 1991).
The initial conditions of the 32 perturbed members are created by adding perturbations to the control initial
conditions. The initial perturbations are defined using the singular vectors (Buizza and Palmer, 1995) of a linear
approximation of the ECMWF model. A brief description of the EPS is reported hereafter, and a (randomly
chosen) case study is discussed to illustrate the main steps of the EPS performed daily. The reader is referred

to Molteni et al (1996) for a more detailed description of the EPS.

2.1 Singular vectors computation
Denote by x a perturbation, and by
x(t) = Lx, ' ¢))

the solution of the linear model equations

& _ A, V)

ot

where L is the forward tangent propagator, and A, in Eq (2) is an approximation of the tangent linear version

of the ECMWF model A.

The total energy of the perturbation x at time # can be computed as

e@I? = TLxyTLxy) = (xuL *T*Lxy), 3)

where L * is the adjoint of the linear propagator L with respect to the total energy scalar product (..;..) [Buizza
3
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et al, 1993, Eq (5.1)], and T is the self-adjoint local projection operator (Buizza and Palmer, 1995). The

application of the local projection operator permits the identification of singular vectors characterized by

maximum growth over the region of the Northern Hemisphere (NH) with latitude ¢>30°N.

The singular vectors v, of the propagator L are the perturbations with maximum energy growth over the

optimisation time interval ¢. They are computed solving the eigenvalue problem

L*T%Ly, = ov,. | 4

Specifically, they are the eigenvectors v, with maximum eigenvalues 0,-2 of the operator L *T2L . The square

- 2. .
root of an eigenvalue 0; is named a singular value.

At the moment of writing, the singular vectors are computed at T42L.19 resolution with ¢ =48 #, following a
time evolving trajectory computed applying the complete ECMWF physical package, but using only a linear
surface drag and vertical diffusion scheme (Buizza, 1994a) when computing linear forward and adjoint

integrations (Table 1).

Figure 1 shows the singularAvalues computed for 05.11.95 initial conditions (the singular vectors are ranked with
respect to the singular values). For this case, 38 singular vectors have been computed numerically after
performing 70 integrations of the forward/adjoint models, using a Lanczos algorithm (Strang, 1986). The
singular vectors have very localized structures, and grow in the regions of maximum instability of the
atmosphere. This was shown by Buizza and Palmer (1995), who also pointed out that there is a very strong
relation between the singular vectors' localization and a simple measure of both barotropic and baroclinic energy

growth given by the growth rate of the most unstable Eady mode (Hoskins and Valdes, 1990).

Figure 2 shows three singular vectors for the 95.11.05 case, at initial and optimisation time. The first singular
vector is growing across the eastern border of the Asian continent, a region characterized by a very intense and
rapid development (Fig 3). By contrast, the third and the sixth singular vectors are amplifying in relatively less
unstable regions, as is reflected by their smaller singular values. The different flow characteristics of the Asian,
Pacific and European regions influence not only the singular values, but also the vertical structure of the singular
vectors, especially at optimisation time. In fact, while the total energy of the first singular vector has double
maxima in the vertical, with a predominant low-level growth, the third and the sixth singular vectors have a more

common vertical profile peaking at optimisation time around model level 9 (Fig 4).
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Horizontal resolution: T42 spectral triangular truncation
Vertical resolution: 19 vertical levels

Optimisation time interval: 48 hours

Diabatic schemes in direct: full physics

Diabatic schemes in forward/adjoint: linear physics and horizontal diffusion
Local Projection Operator: A>30°N

Table 1 Characteristics of the singular vector computation used at the time of writing.

Northern Hemisphere Europe
day 2 day5S5to7 day 2 day5to7
01.05.94-31.07.94 1.43 (0.99) 1.56 (0.96) 1.30 (0.99) 1.50 (0.97
01.08.94-31.10.94 1.10 (1.03) 1.22 (0.97) 0.96 (1.00) 1.22 (1.00)
01.11.94-31.01.95 1.06 (1.03) 1.27 (0.98) 0.97 (1.03) 1.19 (0.99)
01.02.95-03.05.95 1.06 (1.01) 1.23 (1.02) 0.96 (0.99) 1.16 (1.03)
01.05.95-31.07.95 1.31 (1.02) 1.38 (1.00) 1.29 (0.98) 1.32(1.00)
01.08.95-31.10.95 1.28 (1.03) 1.28 (1.01) 1.11 (1.05) 1.16 (1.02)

Table 2 Ratio among the (seasonal average) rms error of the control and the (seasonal average) rms spread, for NH and
Europe, at forecast day 2 and averaged from day 5 to 7. Values in parentheses refer to a perfect ensemble (see text).
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Fig 1 Singular values 0, for 05.11.95 (the singular vectors are ranked with respect to their amplification rate).
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951105 PSI - SV= 1 951107 PSI - SV=1

Fig2  Singular vectors number 1 (top panels), 3 (middle panels) and 6 (bottorn panels) at initial (left panels) and optimisation
time (right panels). Each panel shows the singular vector streamfunction at model level 11 (approximately 500 hPa),
superimposed to the trajectory 500 hPa geopotential height field. Streamftinction contour interval 0.5 x 10 m%s™ for
left panels and 20 times larger for right panels; geopotential height contour interval 80 m.
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500HPA GEOP - DATE= 95110512 1000HPA GEOP - DATE= 95110512

a)
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T 72

500HPA GEOP - DATE= 95110812

/)

1995. Contour intervals 80 m for left panels and 40 m for right panels.
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Fig4  Total energy (m*? vertical proﬁle of (a) 1st, (b) 3rd and (c) 6th singular vector of 05.11.95, at initial (dash line, values
muttiplied by 100) and optimisation (solid line) time. (Note that singular vectors are normahzed to have unit initial total
energy norm.)
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These three singular vectors are among the 16 selected from the 38 computed singular vectors. The selection
criteria are such that the first 4 singular vectors are always chosen and each subsequent singular vector (from
the 5th onwards) is selected only if half of its total energy lies outside the regions where the singular vectors

already selected are localized.

2.2 Generation of 16 perturbations

Once the 16 singular vectors have been selected, an orthogonal rotation in phase-space and a final re-scaling
are performed to construct the ensemble perturbations. The purpose of the phase-space rotation is to generate
perturbations which have the same globally-averaged energy as the singular vectors, but smaller local maxima
and a more uniform spatial distribution. Moreover,_the rotéted singular vectors are characterized by similar
amplification rates (at least up to 48 hours). The rotation is defined to minimize the local ratio between the
perturbation amplitude and the amplitude of the analysis error estimate given by the ECMWF Optimum

Interpolation procedure. At the moment of writing, the re-scaling allows perturbations to have local maxima
up to & =4/1.5 larger than the local maxima of the analysis error estimate. The effect of the phase-space rotation

and re-scaling procedure can be seen by comparing the singular vectors of Fig 2 with three initial perturbations

shown in Fig 5.

2.3 Non-linear integrations

The 16 initial perturbations are sﬁecified in terms of the spectral coefficients of the 3-dimensional vorticity,
divergence and temperature fields (no perturbations are defined for the specific humidity since the singular
vector computation is performed with a dry linear forward/adjoint model), and the 2-dimensional surface
pressure field. They are added and subtracted to the control initial conditions to define 32 perturbed initial
conditions. Then, 32+1 (control) 10-day T63L19 non-linear integrations are performed. With the current
ECMWEF computer facilities (CRAY C90 with 16 processors), the elapsed time needed to compute 35-40
singular vectors is approximately 0.8 hour (phase described in section 2.1), the elapsed time needed for
generating the initial perturbations is 0.1 hour (phase described in section 2.2) and the elapsed time needed to
perform the 33 non-linear integrations is approximately 1.8 hours. Thus, the total elapsed time is approximately
2.7 hours, which is about 1.3 times the elapsed time needed to perform the 10-day T213L31 ECMWF

operational forecast.

A first way of verification of the EPS performance is an analysis of the spread and the skill characteristics over
different areas (see Fig 6 for the 05.11.95 case over NH). The spread of a perturbed ensemble member is defined
as the anomaly correlation or root-mean-square distance between the perturbed ensemble member and the
control, and the skill of a forecast is defined as the anomaly correlation or the root-mean-square distance

between the forecast and the analysis (see Section 3) 10
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951105 PSI

951105 PSI

951105 PSI

As Fig 2 but for three perturbations (streamfunction) generated applying a phase-space rotation to the selected

singular vectors, superimposed to the trajectory 500 hPa geopotential height field. Contour interval 0.25 x 10® m2s™

for streamfunction and 80 m for geopotential height.

Fig 5
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24 Major modifications of the ECMWF EPS

Both model modifications and changes in the configuration used to generate the initial perturbations alter the
EPS. The major model changes since EPS started (19.12.92) occurred on 04.08.93, when the new ECMWEF
surface and boundary layer scheme was introduced (Viterbo and Beljaars, 1995), and on 04.04.95, when the new
ECMWEF prognostic cloud scheme (Tiedtke, 1993; Jacob, 1994) and a new scheme for the representation of the
sub-grid scale orography (Lott and Miller, 1995) were implemented. While it is beyond the scope of this paper
to describe the impact of these changés on the model performance, we focus on the changes of the configuration

used to generate the perturbed initial conditions.

19.12.92: EPS starts three days a week

After a month of trial, on 19.12.92 ECMWEF started running the EPS every Saturday, Sunday and Monday. The
singular vectors used to generate the perturbed initial conditions were computed globally at T21L19 resolution.
VAfter comparing singular vectors optimized over time intervals ranging from 12 to 72 hours, the optimisation

time interval was set to 36 hours (Buizza, 1994a). The perturbation initial amplitude was set by o =4/2. The

computer facilities allowed the ensemble size to be set to 32 perturbed and one unperturbed 10-day T63L19 non-

linear integration.

20:03.93: local projection operator

Experimentation showed that during the NH warm seasons 70 iterations were not enough to compute at least
16 singular vectors growing in the NH. As a consequence, very similar if not identical perturbed forecasts would
be generated. To avoid this problem, the so-called 'local projection operator' (Buizza, 1994b) was introduced

in the singular vector computation, with ¢>30°N. The impact of the local projection operator was proved to

be almost negligible during the NH winter season. A further effect of its implementation was a small increase

in the ensemble spread over the NH.

01.05.94: daily EPS
From this date onwards the EPS has been run daily.

23.08.94: larger initial amplitude and longer optimisation time

Analysis of the EPS performance suggested that the ensemble spread was too small. Thus, it was decided to

increase the perturbation initial amplitude (i.e. & =y/4).

During winter 1994-95, so-called sensitivity experiments (Rabier et al, 1996) were performed at ECMWEF. The
basic idea was to identify the smallest initial perturbation that, added to the unperturbed initial conditions, was

able to most reduce the day 2 forecast error. This smallest initial perturbation, named 'sensitivity field', was
13
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computed using the adjoint model version. It was immediately realized that the comparison between the
singular vectors and the sensitivity fields could give indications of the role of the singular vectors in explaining
forecast error growth (Buizza et al, 1995). To ease the comparison, it was decided to increase the singular vector

optimisation time interval to 48 hours.

It is worth noting that one of the hypotheses on which the ECMWF EPS is based is that perturbations with initial
size of typical analysis errors evolve almost linearly up to the op_timisatlion,time. In other words, an upper
boundary to the optimisation time interval used when computing the singular vectors is given by the time limit
of validity of the linear approximation. This aspect was studied by Buizza (1995), who concluded that the time

evolution of perturbations defined using T21L19 singular vectors optimized over 48 hours, and scaled with

o <y/4, was linear to a good extent.

14.03.95: T42 singular vectors with smaller initial amplitude

The analysis of the total energy spectra of the singular vectors showed that the T21 truncation limit was too
close to where the singﬁlar vector initial energy was peaking (Hartmann et al, 1995). Moreover, a systematic
comparison of forecast errors, sensitivity fields and singular vectors confirmed that T42 was a more appropriate
resolution to capture dynamically relevant directions in phase-space (Buizza et al, 1995). Since T42 singular

vectors are characterized by larger amplification rates, the initial amplitude was reduced to keep the average

root-mean-square spread comparable to the control root-mean-square error by setting o =4/1.5.

3. VALIDATION OF THE ECMWF EPS

Molteni et al (1996) listed the range of EPS products available at ECMWEF, and presented different ways of
validating its performance. This paper focuses on spread and skill relations considering the 500 hPa
geopotential height field. Specifically, two types of verification are considered: spread and skill relations, and
probability of analysis values lying outside the EPS forecast range. Six 92-day seasons are analyzed, starting
from 01.05.94 until 31.10.95. The reader is referred to Strauss and Lanzinger (1995) for a description of other:
means of validation of the EPS (e.g. reliability diagrams). |

3.1 Spread and skill
Consider two 500 hPa geopotential height fields (1) =fix g,t) and h(r) =h(x g,i) , defined for each grid point value x s

inside a region X. Define the inner product

<f(t);h(t)>g52,,gez Wix JRX DG 1), ST )

14
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where w(x g) =cos(¢, ), ¢, being the latitude of x . Denote by |..| ¢ the norm associated to the inner product
14 14

defined in Eq (5).

The distance of two fields f and 4 can be computed in terms of their anomaly correlation coefficient (acc) with

respect to the climate cli

i (hin)= <(ft)-cli(®));(h(®) clz(t))> 6
IR0 ~cli®) , |1 ~(®) Cll(t)ll ,

or it can be compuied simply as the root-mean-square (rms) distance

d,,, Fht) = Ife)-clico),, @)

Let us now consider an ensemble of N values f; (e.g. the 32 EPS perturbed forecasts). Since the anomaly
correlation is not a normally distributed variable, averages among anomaly correlation coefficients are computed
after applying a so-called Fisher-z transform (see e.g. Ledefmann, 1984). Specifically, given the set of anomaly

correlation values d (f h;t), with j =1,..,NV, first the transformed values z; are defined

acc

1+d_ (f.h;t : ,
4,=1513log, el ' | ' )
1-d,. () | o |

secondly the average among the 4 is computed

_lxw ' I
=152, (85)

ol

and finally the average acc c?ac c(];,h;t) is computed applying the reverse Fisher-z transform

1513 513 '
A ——19—1- (8c)
Z

101.513 +1

For similar reasons, averages among rms values dm(f;,h;t) are computed as

(Fhi) = \j—zj” AT o ®

We define the spread of an ensemble of forecasts as the average distance of the perturbed ensemble members

from the control, computed either in terms of anomaly correlation or root-mean-square distances
15
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5P oe8) = d . (fcomst), . (10a)

SP s =d,, (Frc0M30), (10b)

Here f; is the j-th perturbed ensemble member, con is the control forecast and Eqs (8a-c) and (9) have been

applied.

The ensemble-mean of an ensemble of N forecasts is defined as the average field

fE%EJZL’;_ . - an

The skill of a forecast f given by an ensemble member, the T213L31 or the ensemble-mean, is computed either
in terms of acc or rms distance between the forecast and the analysis. Thus, it is defined applying Egs (6) or (7),
with f{r) being the forecast and h(t) being the analysis.

Let us now consider the ’skill of the control forecast and the spread of the EPS during a season. Probability
distribution functions of the control skill and of the EPS spread can be constructed and compared. Specifically,

considering the control skill, we denote by

Py _1<x<l, , o . (12a)

acc
the probability that the control acc skill has a value x. Analogously,

PRk, 0<x, | (12b)

identifies the probability that the control rms error has a value x.

Considering an ensemble of N forecasts fj, the probability distribution function of the ensemble acc skill is

defined as

sk(ens 1 sk(f)
Py )(x)ENEﬁl Pmk('; (), (13a)

and the probability distribution function of the ensemble rms error as |

Py E—;—,Eﬁl P*. - (13b)

Similarly, considering the spread, we denote by

Prx), -1<x<1, ' (14a)

and 16
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PP (x), 0<x, (14b)

the probabilities that the acc and rms spread have, respectively, values x.

Seasonal mean of skill and spread values can be computed either averaging the daily values applying Eqs (8a-c)
and (9), or by computing the first-order momentum of the probability distribution functions defined in Eqs (12a-
b), (13a-b) and (14a-b).

Spread and control skill relations are analyzed in this paper using scatter diagrams and computing correlation
coefficients between the two time series. Moreover, contingency tables for high/low spread, high/low skill will
be analyzed, with the categories defined by the average values (with this choice the tables will not be necessarily

symmetric).

32 Probability of the analysis lying outside the EPS forecast range ‘
Following an idea of O Talagrand (personal communication, 1994, see also Strauss and Lanzinger, 1995), let

us consider the gnd point values of the 500 hPa geopotential height predicted by the 32+1 EPS members j;(x,t) ,

ranked so that -~ <f, <..<f,, <=. They define 34 intervals:

dh, = (hx.) if -=<h@xH<f)), | | B ¢ E1Y
dh; = (h(x.t) if £ <hED<F), j=2,.432, : | ~ (15b)
dhyy = (hGef) if fyp<hED<Fy3), B | | (15¢)
dh,, = (h(x,!) iff33'<‘h(x,t)sm). | (15d)

Note that the first 32 intervals are closed to the left and opened to the right, while interval number 33 is closed
on both sides and interval number 34 is opened to the left and closed to the right. Following this interval
definition, the probability of the analysis lying outside the EPS forecast range is defined as the sum of the

probabilities of the analysis being in the two extreme categories, dh, and dh,,.

In a perfect model, because of the way each interval is defined, the probability of the analysis being inside the
first and the last intervals should be nil, while the probability of being inside each of the other 32 categories
should be identical, i.e. 1/32 in case of a 32+1 EPS.

4. POTENTIAL FORECAST SKILL OF ENSEMBLE PREDICTION
i) The EPS distribution of spread around the control should be similar to the control skill distribution
(e.g. seasonal average rms spread should be similar to seasonal average rms error of the control).

ii) Small spread (around the control) should indicate high probability of a skilful control forecast.
17
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iif ) The verifying analysis should be included within the range covered by the ensemble forecasts.

All these requirements should be verified in the hypothesis of a perfect model, and, in the hypbthesis that the
analysis error lies in the sub-space of the phase-space of the system described, the 16 selected singular vectors.
In fact, the spread and control skill distributions should be similar for the cloud of perturbed members to include
the analysis. If the rms spread is smaller than the control rms error, for example, none of the perturbed forecast
will be able to diverge enough from the control to get closer to the analysis. Small spread indicates that,
whatever perturbation is added to the control initial conditions, very similar forecasts are originated. In such
a situation, one should expect that the probability of analysis errors not damaging the skill of the control forecast

should be high (very predictable case).

In this section we work in a perfect ensemble hypothesis, and we verify whether requirements i)-iii) are true for
the six seasons analyzed in this paper. The 'perfect ensemble' hypdthesis has been fulfilled by considering a
randomly chosen ensemble member as the verifying analysis. This guarantees that the verifying analysis always
lies in the sub-space of the phase space of the system described by the 16 selected singular vectors, that the

spread is large enough and clearly that model errors are not taken into consideration.

Figures 7a-b show the 5-day running mean of the skill of the control forecast, the skill of the ensemble-mean
and the average spread during a warm and a cold season (acc values are shown 4instyead of rms Values since they
are less seasonally dependent). The ensemble spread and the skill of the control forecasts are comparable. This
is confirmed by the ratio between the rms error of the control and the average rms spread at forecast day 2, and
by the ratio averaged from day 5 to 7 (Table 2, values in parentheses refer to perfect ensemble), computed not

only over NH but also over Europe.

The correspondence between spread and skill is further confirmed by the comparison of the spread distribution P7.(x)

and the control skill distribution P;""(x), for the two seasons (Fig 8). It is worth noting that comparable

acc

spread and control skill do not imply that the ensemble spread distribution P, (x) and the ensemble skill

distribution P;~“")(x) are comparable (see, e.g., Fig 9 for forecast day 7 over NH). In fact, by constmctioh, all

ensemble members are more distant from the analysis than the control up to forecast day 2, time limit up to
which the initial perturbations dynamics can be linearly approximated (Buizza, 1995). After this time limit, non-
linearity could possibly bring some ensemble members closer to the analysis than the control, but would

probably bring most of them further away.
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Figures 7a-b also show that there is temporal correlation between spread and skill. Tables 3-4 report correlation
coefficients for NH and Europe at forecast day 7, for the six seasons analyzed in this paper (values in
parentheses). Correlation coefficients range between 0.50 and 0.65 for NH, and between 0.31 and 0.86 for
Europe. Note that the category small spread/low skill is not empty, and thus one should expect a certain

percentage of small spread values not corresponding to skilful control forecast also with a perfect ensemble.

Considering the percentage of the analysis values lying outside the ensemble forecast range, nil percentages are

found for all seasons, as expected.

It is worth discussing the impact of releasing the hypothesis that the analysis is included in the ensemble forecast
range, by not including the ensemble member used for the verification in the perfect ensemble. One case study
has been analyzed (Fig 10). The changes in the ensemble spread are almost negligible, and thus the spread/skill
relation remains practically the same. The ensemble skill distribution changes slightly, and the percentage of
analysis values lying outside the ensemble forecast range increases from nil to 4% (3%) and 8% (19%),

respectively, at forecast day 7 and 10 ovér{ NH (Europe).

5. EPS VALIDATION FROM 01.05.94 TO 31.10.95 o ;

Let us first consider the two 92-day periods starting on 01.05.94 and 01.11.94 already discussed in detail in the
previous section, and let us compare the performances of the EPS and the perfect ensemble. Note that in reality
requirement i) formulated at the beginning of section 4 may be released or not, depending on whether small
initial perturbations are asked to compensate for model errors. Until estimates of the relative size of model with
respect to analysis errors are not known, we can argue that in the early forecast range, since model errors should
not dominate the influence of analysis errors, requirement i) should be fulfilled, while we would allow the spread

to be smaller than the distance between the control forecast and the analysis in the late forecast range.

Figures 7c-d are analogous to Figs 7a-b but using reality as verification. The control skill is lower than the
average spread (high values of acc spread indicates highly correlated ensemble members, or in other words small
differences among the ensemble forecasts). This is confirmed by the ratio between the rms error of the control
and the average rms spread (Table 2), and by the comparison of the spread distribution (Fig 8c-d) and the control
skill distribution verified against the analysis (Fig 8e-f).

Table 2 shows that the lack of spread is particularly noticeable during the NH warm seasons. The fact that the -
difference is enhanced during the NH warm seasons could be due to the EPS initial perturbations being

computed with a dry linear forward and adjoint model, and to moist processes playing a more important role
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Northern Hemisphere day 7

01.05.94-31.07.94 cc=0.50 (0.65) Low skill High skill
Small spread 17 (13) 31 (35)
Large spread 28 (33) 16 (11)
Lprea= 0.23

01.08.94-31.10.94 cc=0.40 (0.56) Low skill High skill
Small spread 12 (11) 28 (29)
Large spread 27 (40) 25 (12)
b= 0.08

01.11.94-31.01.95 cc=0.23 (0.64) Low skill High skill
Small spread 22 (15) 25 (32)
Large spread 24 (35) ~ 21 (10)
ipreg= 0.31

01.02.95-03.05.95 cc=0.27 (0.50) Low skill High skill
Small spread 17(17) 30 (30)
Large spread 29 (31) 16 (14)
ipred= O

01.05.95-31.07.95 cc=0.26 (0.55) Low skill High skill
Small spread 18 (12) 25 (31)
Large spread . 29 (37) : 20 (12)
b= 0.22

01.08.95-31.10.95 cc=0.39 (0.55) Low skill High skill
Small spread 17(12) . V 30 (35)
Large spread 31 (34) - 14 (11)
ipes= 0.29

Table 3 Seasonal contingency tables for small/large spread, low/high skill (computed in terms of acc), for NH at forecast day
7. The categories are defined by the average values. For each contingency table, the correlation coefficients cc
between spread and skill and the predictability index i,,.; [see Eq (16)] are reported. For each contingency table, the
values in parentheses refer to a perfect ensemble (see text).
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Northern Hemisphere day 7

01.05.94-31.07.94 cc=0.47 (0.86) ‘ Low skill High skill
Small spread 15(8) 25 (32)
Large spread 39 (41) 13 (11)
Lpres= 0.46

01.08.94-31.10.94 cc=0.18 (0.31) Low skill " High skill
Small spread 15 (14) 29 (30)
Large spread 25 (30) 25 (18)
bpreq= 0.06

01.11.94-31.01.95 : cc=0.45 (0.50) Low skill ‘ High skill
Small spread 16 (13) 31 (34)
Large spread 33 (33) 12 (12)
bpres= 0.18

01.02.95-03.05.95 cc=0.43 (0.43) Low skill : High skill
Small spread 15 (11) - 26 (30)
Large spread 32 (35) 19 (16)
ipes= 0.26

01.05.95-31.07.95 cc=0.46 (0.69) Low skill ‘ High skill
Small spread ' 19 (11) : 26 (34)
Large spread 28 (35) 19 (12)
bpreg= 0.42

01.08.95-31.10.95 - cc=0.31 (0.49) Low skill High skill

' Small spread 20 (14) 25 (31)

Large spread 30 (34) ‘ 17.(13)
ipred

= 0.30

Table 4 As Table 3 but for Europe.
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mean (solid with squares). c) as b) but for a perfect ensemble without the ensemble member used as the analysis
for verification. Values refer to the NH 500 hPa geopotential height for 02.12.94.
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during the NH warm than cold seasons [Errico and Ehrendorfer (1995) showed that the inclusion of moist

processes in the singular vector computation changes singular vector growth rates and structures.]

Table 2 also shows that the ratio between rms control error and rms spread is larger between day 5 and 7. This
can be explained by the energetic characteristics of the T63L19 version of the ECMWF model, compared to the
atmosphere or to the T213L.31 model version itself. As Simmons et al (1995) pointed out, the level of transient
activity in the forecast model should be similar to the transient activity in the analysis. Tibaldi et al (1990),
comparing earlier versions of the ECMWEF model at different resolutions, showed that a T63L19 resolution was
not able to ensure the right level of change during the whole 10-day forecast period. Recent investigations
confirmed that this problem is still present in the current T63L19 version of the ECMWF model (Anders
Persson, personal communication 1995). The lack of mbdel activity could be cured, at least in part, by using
a higher resolution model version when performing the non-linear integrations. Note that, in fact, while the
T106L19 model version used by Tibaldi et al (1990)’was not performing significantly better than the T63L.19

version, the current T106L.19 model version is characterized by a more realistic model activity.

A complete picture of the EPS performance over the NH for the six seasons is given in Fig 11. Concerning the
ensemble-mean skill, Fig 11 and Table 5 show that the ensemble-mean field is more skilful than the control

forecast after forecast day 5, but that the improvement in reality is smaller than its potential value.

i) Ensemble spread distribution versus control skill distribution

Both Figs 11a-b and Table 2 confirm that the increase in the initial perturbation amplitude that was made on
23.08.94 reduced the difference between spread and control error, but despite the changes implemented on
14.03.95 (perturbations generated using T42 singUlar“:vect‘drks but with smaﬂer initial amplitude, see section 2.4)
the spread is still too small. - When the 14.03.95 modifications were introduced, the perturbation initial amplitude
was set to have slightly more spread than with the previous system. Since T42 singular vectors are more
unstable than T21 singular vectors, this was achieved with a net reduction of perturbation initial amplitude. The
lack of spread measured afterwards seems to be related to the change implemented on 04.04.95 (new model
version, see introduction of Section 2.4). In fact, the model version introduced on 04.04.95 seems to be less
active and thus less able to sustain the perturbation growth (A Simmons, personal communication, 1995; this
is confirmed by comparison of seasonal integrations of new and old quel versions, C Brancovié, personal
communication, 1995, and by results obtained by R Gelaro, personal communication, 1995, who found a

reduction in the model sensitivity fields between the new and the old model versions).

A more thorough description of the EPS performance is given by the seasonally averaged ensemble skill

distributions P

(x) (Fig 12). Probability distribution functions can be used to evaluate the percentage of
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Northern Hemisphere Europe
day 7 day 10 day 7 day 10
01.05.94-31.07.94 0.03 (0.05) 0.05 (0.10) ' 0.02 (0.04) 0.05 (0.10
01.08.94-31.10.94 0.05(0.07) 0.10 (0.17) 0.04 (0.08) 0.11 (0.21)
01.11.94-31.01.95 0.04 (0.06) 0.10 (0.14) 0.05 (0.05) 0.14 (0.14)
01.02.95-03.05.95 0.02 (0.06) 0.10 (0.14) 0.05 (0.06) 0.11(0.14)
01.05.95-31.07.95 0.02 (0.07) 0.06 (0.16) 0.03 (0.05) 0.04 (0.15)
01.08.95-31.10.95 0.03 (0.08) 0.08 (0.18) 0.01 (0.09) 0.13 (0.19)

Table 5 Difference between the (seasonal average) skill of the ensemble-mean and the (seasonal average) skill of the control
forecast, in terms of acc. Values in parentheses refer to a perfect ensemble.

Northern Hemisphere ' ' Europe
day 5 day 7 day 5 day 7

01.05.94-31.07.94 30 26 36 28
01.08.94-31.10.94 20 16 23 16
01.11.94-31.01.95 17 15 13 11
01.02.95-03.05.95 19 16 10 16
01.05.95-31.07.95 32 28 48 34
01.08.95-31.10.95 27 23 38 25

Table 6 Seasonal average of the percentage of analysis values lying outside the EPS forecast range.

NH forecast day 7 Europe forecast day 7

cc ipred cc ipred
01.05.94-31.07.94 0.50 (0.65) 0.11 0.55 (0.50) 0.33
01.08.94-31.10.94 0.27 (0.53) 0.30 0.04 (0.19) 0.46
01.11.94-31.01.95 0.24 (0.55) 0.45 0.35.(0.47) 0.10
01.02.95-03.05.95 0.32 (0.36) 0.27 0.51 (0.39) 0.16
01.05.95-31.07.95 0.42 (0.63) 0.31 0.44 (0.77) 0.53
01.08.95-31.10.95 0.42 (0.56) 0.06 0.31 (0.46) 0.45

Table 7 Correlation coefficients and predictability indices computed from scatter diagrams of the skill of the ensemble-mean
versus the ensemble spread around the ensemble-mean, at forecast day 7 over NH and Europe. Values in
parentheses refer to a perfect ensemble.
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EPS members with a skill score higher than a predefined threshold, e.g the percentage of EPS members having
acc skill higher than 0.8 or 0.6 (Fig 13).

ii) Correspondence between small spread and high skill

Consistent with the results discussed above, the correlation coefficients between spread and control skill in the
EPS are smaller than the correlation values in the perfect ensemble approximation (Tables 3-4), with differences
ranging from zero (for the period 01.02.95-03.05.95 over Europe) to 0.41 (for the period 01.11.94-31.01.95 over
NH). '

Figure 14 shows the scatter diagrams of the ensemble spread versus the control skill for NH at forecast day 7
(it is worth recalling that the contingency tables and the correlation coefficients in Table 3 refer to the scatter
diagrams shown in Fig 14). In terms of correlation coefficient, the scatter diagrams in Figs 14a and 14c have,

‘respectively, the highest and the lowest value.

Considering requirement i) of Section 4, for each contingency table we can define a skill index as the difference
between the EPS number of small spread/low skill predictions and the number of the small spread/low skill

predictions in a perfect ensemble, divided by the number of small spread predictions. In mathematical terms

EPS per
_ |nyy -niy | v 16
pred_ EES ? ( )

Ry

EPS EPS

where n;;~ identifies the contingency table element on the i-th row, j-th column, and where the superscript

or ™ refers, respectively, to the contingency table of the EPS verified against the analysis or against an ensemble
member (perfect ensemble). [The differences in the populations of the actual and perfect contingency tables is
statistically significant for all seasons apart from the one started on 01.11.94, for which the difference has (only)

a 65% probability of being s1gmﬁcant according to a chi-square test.]

Since the index i, quantifies the capability of the EPS to identify the predictable cases, we will call i, the
'predictability index' (in simple words, ored gives the percentage of cases when predicted small spread did not

correspond to high skill of the control forecast). Predictability indices have been computed for all seasons
(Tables 3-4): values close to zero indicate that the EPS values of small spread/low skill is very close to the value
given by a perfect ensemble. Predictability indices range from zero (for the period 01.02.95-03.05.95 over NH)
t0 0.46 (for the period 01.05.94-31.07.94 over Europe). Note that periods with very high correlation between
spread and skill do not usually correspond to periods with low predictability indices. For example, the scatter

diagram for the period 01.02.95-03.05.95 (Fig 13d) is characterized by a very skilful predictability index, but
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by one of the lower correlation coefficients. This indicates that the two types of verification capture different

aspects of the EPS, and should be used jointly to have a more complete EPS validation.

iii) Percentage of analysis values lying outside the EPS forecast range

Table 6 lists the percentage of analysis values lying outside the EPS forecast range, for NH and Europe at
forecast days 5 and 7. The seasonal variability of the percentages reflects the ratio between control error and
ensemble spread, with seasons with larger percentages corresponding to seasons with higher ratios (see Tables 2

and 6).

iv) Skill score of the ensemble-mean, and its correlation with ensemble spread around the ensemble-mean
Figure 11 shows that the ensemble-mean is more skilful than the control during NH cold seasons, but that the
difference in skill is rather small during NH warm seasons. This is also confirmed by Table 5, which also shows

that the difference between the potential and the actual difference is not very large.

It is worth investigating whether ensemble prediction can be used to predict the forecast skill of the ensemble-
mean, by comparing the ensemble-mean skill with the spread of the ensemble defined with respect to the
ensemble-mean instead of to the control forecast. Correlation coefficients between the skill of the ensemble-
mean and the spread around the ensemble-mean, and predictability indices of the corresponding contingency
tables have been computed. Table 7 reports the values computed using acc spread and skill for NH and Europe
at forecast day 7. Compared with the results obtained using the control forecast (Tables 3-4), the correlation
coefficients are similar, while the predictability indices relative to the ensemble-mean skill are higher, indicating

an overall reduction of correspondence between small spread/high skill.

6. CONCLUSIONS

Ensemble prediction through multiple integrations of a deterministic model estimates the probability distribution
of atmospheric states. At ECMWF, the Ensemble Prediction System (EPS) comprises one 10-day low resolution
(T63L19) integration étarting from the analysis, and 32 10-day T63L.19 integrations starting from perturbed
initial conditions. The perturbed initial conditions are generated using the singular vectors of a T42L.19 linear
approximation of the ECMWF primitive equation model. In the first part of the paper the EPS has been
described, and the validation methodology applied throughout the paper has been presented. In particular,

ensemble spread-and control skill distribution functions have been defined.

In the second part of the paper the potential forecast skill of ensemble prediction has been discussed. A perfect
ensemble system has been considered, by substituting the verifying analysis with an ensemble member, and

verified for six 92-day seasons from 1 May 1994, the starting date of daily operational EPS. It has been shown
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that a perfect ensemble fulfils three requirements: i) the ensemble spread is comparable to the skill of the control
forecast, ii) small spread indicates a high probability of a skilful control forecast and iii) the verification is

included within the ensemble forecasts range.

In the third part of this paper we compared the potential and the real forecast skill of the ECMWEF EPS. Results
show that the ensemble spread is still too small, especially in the second half of the 10-day forecast period. It
is worth mentioning that preliminary results obtained by using a T106L19 model version indicate that the initial
perturbation growth is more sustained in the T106L19 than in the T63L19 model version. Moreover, recent
comparison of T42L.19 and T63L19 singular vectors shows that the T63L19 singular vector growth is
approximately 20% larger than the T42L19 growth. These results suggest that an increase of resolution both
in the singular vector computation and in the non-linear model integration should reduce the difference between

ensemble spread and control skill, without any further increase in the perturbation initial amplitude.

Considering the correlation between small spread around the control forecast and the control forecast skill, a
'predictability index' i, has been defined and computed using ensemble spread/control skill contingency tables.
Both temporal correlations and predictability indices quantify limits of forecast skill tﬁat should be expected
from ensemble prediction. Correlation coefficients of the EPS verified using the analysis have been proved to
be smaller than their potential counterparts. Nevertheless, predictability indices indicate that there is a good

correspondence between small ensemble spread and high control skill.

Consistent with the too small ensemble spread, the percentage of analysis values lying outside the EPS forecast
range is still not negligible. This could indicate that the sub-space of the phase space of the system spanned by
the ensemble perturbations does not include the analysis. It is again worth mentioning that preliminary results
of the comparison of ensemble experiments with 128 instead of 32 perturbed members suggest that 32 members
is too small an ensemble size. Thus, at least some of the problems should be related to the ensemble size,
although other problems could be related to only part of the analysis error lying in the sub-space spanned by
the initial perturbation. ‘ ' '

The skill of the EPS ensemble-mean has been compared with the skill of the control forecast. Results show that
the ensemble-mean is slightly more skilful, with acc differences at forecast day 7 for NH (Europe) between 0.02
(0.01) and 0.05 (0.05). The analysis of the correlation between the ensemble spread with respect to the
ensemble-mean and the skill of the ensemble-mean has demonstrated that the correspondence between small

spread/high ensemble-mean skill is smaller than the correspondence measured using the control forecast.
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Concluding, the analysis of the first 18 months of daily EPS has highlighted the potential of ensemble
prediction, together with the weaknesses of the present system. The results reported in this paper should provide
the users with an updated figure, so that the possible economic value of the quantification of forecast uncertainty
could be estimated (see, for example, Wilks and Hamill, 1995, who examined the potential economic value of

ensemble-based forecasts of surface weather elements).

Current experimentation of a new ensemble configuration with a larger size, and based on a higher resolution
forecast model, indicates that at least some of the problems highlighted in this paper should be cured in the near
future.
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