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Summary : The Extended Kalman Filter is a sequential, optimal algorithm for data as-
similation under some linearity hypotheses. Although it is computationally too expensive
to implement for operational weather prediction, it is a useful framework to understand
similarities and differences betwen various data assimilation and stochastic prediction
techniques. Some practical problems and solutions for future applications are reviewed in
this paper. ' ‘ ‘

1. INTRODUCTION : KALMAN FILTER THEORY

1.1 Historical framework

The Kalman filter? is an algorithm for data assimilation into numerical models. Its main
usefulness is that it provides a clean framework for estimating the uncertainty of the analyses
and short-range numerical weather predictions. Roughly speaking, it is a tool for estimating
the predictability of the analyses : in that sense, it provides the initial conditions that should
be used for the other predictability systems described by other papers in this volume.

The Kalman filter is actually just a linearization of the more difficult problem of stochastic-
dynamic prediction (Epstein, 1963). It was designed by Kalman (1960) in order to apply the
well-known technique of least-squares estimation to dynamical systems. Subsequently it has
been used with some success in engineering, e.g. for satellite tracking. On the other hand, it
has so far only been applied to numerical weather prediction (NWP) in extremely simplified
forms. In operational data assimilation for NWP, the main algorithms used have been successive
correction schemes, and the so-called Optimalrlnterpolation (OI) which is an approximation of
a part of the Kalman filter (Lorenc, 1986). With the advent of adjoint techniques ( Talagrand
and Courtier, 1987), it becomes possible to replace Ol by three-dimensional variational data
assimilation (3D-VAR) (Parrish and Derber, 1992, Andersson et al., 1994), which in turn should
soon be superseded by four-dimensional variational data assimilation (4D-VAR) (Thépaut et
al, 1991). At the same time, some work has been devoted to the development of algorithms
for efficient estimation of the short-range evolution of prediction errors, namely the breeding
method (Toth and Kalnay 1993) and the singular vector computation (Buizza et al, 1992) ;

!Current affiliation : European Centre for Medium-Range Weather Forecasts, Reading, UK.
2Also known as “the Kalman-Bucy filter”.
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those methods are aimed at prov1dmg the initial condition for realistic ensemble prediction at
the medium range.

As we will explain later, all these algorithms can be regarded as different approximations to
the extended Kalman filter, and they are to a large extent complementary to each other. Hope-
fully, in the near future it will be possible to merge advanced data assimilation and ensemble
prediction systems into a coherent algorithm for the estimation of analysis and prediction error
characteristics. An essential ingredient will be the implementation of an efficient approximation
to the extended Kalman filter as a part of the operational assimilation schemes (Fisher, 1995).
The design of such a high-resolution approximation is a major research topic in data assimila-
tion. It relies on the experience provided by years of experiments with low-resolution versions
of the Kalman ﬁlter in meteorology and oceanography (leler, 1986 ; Ghzl 1989 Parrish and
Cohn, 1985). '

1.1  The linear Kalman filter

Note that in this paper we are only going to address the discrete algorithm. There is also a more
difficult, but theoretically useful, definition which is continuous in time and space (Jaswinski,

1970).

We shall use the following standard notations (Ide et al, 1995) :
xt  true fluid state
x*, xf analysis and forecast vectors -
P®, P/ ' analysis and forecast estimation error covariances
‘M forecast model

n model error, with covariance Q

y° vector of observed values

. € observation error, with covariance R

H observation operator ‘
K analysis gain

o

x* background state used in the analysis
The basic hypotheses made about the assimilation system characterize the operators we are
going to use for the evolution of the system state (1 €. the model ﬁelds) and for the comparlson
of that model state to the observatlons of reahty

(i) xt(tH_Q = M(tiys, t:)x"(t:) +n(t: ) deﬁnes M as a llnear dynamlcal model of state evolution
between times ¢; and ¢;,;, which ha,srandom errors ) of known covariances n(t;)n(t;) =

Q(t:)

(ii) y? = Hx'(t;) + &(t;) defines H as a linear model of observation at time ¢, Wluch has
~ random errors € of known covariances 5(t el (t; ) = R(%)

(iii) there are no error biases : 7=0,€=0
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(iv) there are no cross-correlations between model and observation errors, 7€ = 0, nor
between model or observation errors at different times.

Note that the overbar is used to denote an ensemble mean, i.e. an average at a given time of
all possible values of the argument, according to its probability density function.

The linear Kalman filter equations define the optimal way of using the observations and the
model in a sequential way, in order to estimate the true atmospheric state :

State forecast xf(fip1) = M(ti1,t:)x%(t) (1)

Error covariance forecast P/ (tiz1) = M(tig1, )P (&) M T (41, 1) + Q) (2)
Kalman gain computation K; = P7(t;)HF[H;P/(t;) HF + R, (3)
State analysis x*(t;) = xf (&) + Ki[y? — Hixf(t;)] ' (4)

Error covariance of analysis P%(t;) = [I — K;H;]P/(t;) (5)

The algorithm consists of performing (1) state and (2) covariance forecasts for each model
timestep (%i,%i41), inserting the corrections (4) and (5) whenever observations are available. In
the latter equations, the matrix K; is computed using (3).

The derivation of these equations can be found in the literature (e.g. Ghil, 1989). To put
it in a nutshell, (1) comes straight from the dynamical model definition, (4) is the general
form of a linear analysis, (3) is the gain value which minimizes the r.m.s. estimation error of
the analysis under the above-mentioned hypotheses (just like in OI), (2) and (5) are just the
ensemble means of the deviations from the truth of (1) and (4), respectively, multiplied by their
own transposes. ; :

1.2 The extended Kalman filter

The extended Kalman filter, or EKF, is a generalization of the linear Kalman filter for non-
linear systems. It is particularly useful for numerical weather prediction, in which the state
evolution is strongly nonlinear, still the estimation error evolution can be assumed to be linear
to a large extent (Lacarra and Talagrand, 1988) More prec1sely, the EKF is deﬁned usmg the
following opera,tors :

- M tangent linear of the non-linear forecast model M )
H tangent linear of the non-linear observation operator H

where the linearization is performed in the vicinity of an estimate of the true state x* at each
timestep. The EKF relies on the following tangent linear hypothesis to make on top of the
linear Kalman filter hypotheses :

(v) the forecast and observation errors are, to a good approx‘lma,tlon glven by the linearized
operators (M H). '

In other words, the dynamical and observatlon models can both be linearized Wlth respect to
x(t:).
223



BOUTTIER, F.: THE KALMAN FILTER

The EKF equations are simply defined from the linear equations by keeping equations (1)
and (4) where the models M and H are now nonlinear, and by substituting their linearized
counterparts into the other equations :

State forecast x/(t;11) = M(fipa,t:)x%(t:) : : (1)

Error covariance forecast P¥ (tiv1) = M(tisa, -ti)P“(t,-)MT«(t,-H, t:) +Q(t:) (2E)
Kalman gain computation K; = Pf(¢,)H} [H;P(t,)H] + R;]™? (3E)

' State analysis x°(t;) = x/(t;) + Ki[y? — Hix/(t)] ~ (4)
Error covariance of analysis ~ P*(t;) = [I — K;H;]P/(t;) ' (5E)

In other words, the EKF manages the evolution of a multidimensional “error bar”, the matrix
P, in the vicinity of a non-linear trajectory, x. One should note that, in the NWP literature,
the phrase “Kalman filter” is often used to denote an algorithm which is actually an EKF.

1.3 Comments on the algorithm

The input to both algorithms is : the definition of the models themselves, the initial condition
for (x, P) (when the filter is started), the sequence of observations y°, and the sequence of model
and observation error covariance matrices (Q,R). The output is the sequence of estimates (x, P)
of the model state and its estlmatwn error covariance matnx

A first property of the (linear or extended) Kalman ﬁlter is its sequentzalzty to prov1de an
analysis, the algorithm uses only information from the past, up-to the latest observations. That
is convenient for real-time applications such as operational NWP ; some other algorithms, like
4D-VAR, are not sequential.

Another property of the Kalman filter is its optimality :

‘e the linear Kalman filter analyses and forecasts are the best linear and unbiased estimates
(BLUE) of the true fluid state using all available information from the past. That is true
only insofar as the hypotheses for the linear Kalman filter are verified.

e with the same hypotheses and input data, if there is no model efror, the optimum of a
4D-VAR analysis provides the same final result as the Kalman filter run over the same
time interval. That result shows that the Kalman filter is optlmal in the sense of the
4D-VAR cost- functlon (Thépaut and C’ourtzer, 1991 ; Lorenc, 1986) N

o the EKF algorlthm is optimal if the lmearlzatlon hypotheses are verified exactly. If the
models are not linear, the optimality is only approximately true to the extent that the
tangent linear hypothesis is verified. ’

One can see that the EKF is not really optimal. However, experience shows that the tan-
gent linear hypothesis is verified for many interesting NWP problems (Lacarra and Talagrand,
1988 ; Vuwkicevic, 1991), which means that the EKF is nearly optimal in those cases. Ome
has just to take steps to ensure that linearity indeed remains a good approximation, which
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may not be trivial, as linearity itself tends to depend upon the atmospheric situation and filter
characteristics.

Since there are many similarities between 4D-VAR and the EKF, it may be opportune to
recall the fundamental differences between them :

e 4D-VAR can be run for assimilation in a realistic NWP framework (Andersson et al.,
1994) because it is computationally much cheaper than the EKF.

e 4D-VAR is more optimal than the (linear or extended) KF inside the time interval for
optimization because it uses all the observations at once, i.e. it is not sequential, it is a
smoother (Bennett and Budgell, 1989).

e 4D-VAR relies on the hypothesis that the model is perfect (i.e. Q = 0), whereas (uncor-
related) model errors can be accounted for in the EKF.

e 4D-VAR can only be run for a finite time interval, especially if the dynamical model
is non-linear, whereas the EKF can be run forever as soon as the recurrence has been
initiated.

e 4D-VAR itself does not provide an estimate of P/, it has to be extended with specific
procedures to replace equations (2E) and (5E) (Fisher, 1995).

One should also note that the linearization of a non-linear model, or the use of approximate

dynamics (the incremental formulation, see Courtier et al (1994) ) involve essentially the same
hypotheses and algorithmic modifications in 4D-VAR and in the EKF.

1.4 Practical implementation

For realistic implementations, the dynamical and observation models are usually given as op-
erators coded for computers (like their tangent linear and adjoint operators). However, the
EKF equations do not allow one to easily avoid building the corresponding explicit matrices to
perform the algebraic computations. Even when matrix operators are avoided, a huge computer
power is required, as can be seen if one considers a system in which the model has n degrees of
freedom (the dimension of x) and p observations (the dimension of y) ; in NWP systems those
numbers are quite large® :

e P, Q, R, K matrices have sizes of order n%, p? or n x p : they cannot be easily stored in
computers or data handling systems.

o the first term in the right-hand side of equ. (2E) involves a number of dynamical model
integrations which is proportional to n.

3In state-of-the-art NWP centres, n > 107 and p > 10°, and the actual figures are usually 10 to 100 times
larger.
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e the right-hand side of equ. (3) involves the inversion of a p X p matrix.

e one should ensure that the P matrices are always positive definite (this may not always
be true due to.numerical truncation errors).

e all the coefficients of the P matrix should remain small enough in absolute value, so that
the tangent linear hypothesis remains true when evaluatmg equ. (2E) which involves all
lines and columns of P ' ' ‘ '

These are the main hurdles which have so far prevented the EKF from being applied to realistic
assimilation problems. As of today, the highest-resolution systems for which an EKF has been
run used models with n ~ 1000. It is safe to say that no computer improvement will ever allow
the use of a genume Kalman filter algorithm for a state-of-the-art assimilation system, simply
because increases in computer power tend to be at least partly used for improvements of the
dynamical model itself and to handle more observations. ‘As the computational requirements
of Kalman filtering increase like n?+p?, the relatlve discrepancy between the resolution of the
operational systems and that of the EKF that can be 1mplemented will only increase Wrth time.
The consequence of those numerical cost issues is that there is no point in running an exact
implementation of the EKF, except for theoretical research studies. One has to demgn some
efficient approximations to the algorithm.

Another difficulty with the Kalman filter dlgorithm, which should not be overlooked, is
its lack of stability, both for numerical and physical reasons. It is not trivial to keep the
positive definiteness of the P covarlance matrix over long per1ods of time. Depending on the
characteristics of the model dyna,rmcs and observing network, some error covariances may also
grow indefinitely or vanish, which means that the EKF equations have to be somewhat modified

in order to enforce some robustness and physical sense, as has been documented in simplified
experiments (Bouttier, 1994 ; Evenssen, 1992).

It is possible to rewrite the EKF equations in order to partly solve those problems A
comprehensive description of the possible formulations and of their implications is out of the
‘scope of this paper. Some useful information can be found in the papers mentioned i in the
bibliography, and in references therem The main ideds are the fo]lowmg ‘

e 4D-VAR ass1m11at10n can be used to replace the EKF over a ﬁmte time interval, although
it assumes Q = 0 and P® has to be estimated indirectly as the i 1nverse of the Hessran of
the cost-function (Fisher, 1995).

e 3D-VAR analysis is an efficient implementation of equations (3E) and (4), although (5E)
has to be replaced by an estimate of inverse Hessian (Fisher, 1995).

e A symmetric version of (5) is useful to improve the numerical stability :
P*— (I- KH)P/(I- KH)T + KRK® (55)

It can also be used to account for suboptimal analyses (Bouttier, 1994).
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e All occurrences of the P matrix can be replaced by a symmetric factorization : P = .57
which guarantees its positive definiteness (Boggs et al., 1995).

e The expensive equation (2) can be computed by assuming that Q is added only at the
end of each prediction cycle. One can integrate the lines and columns of the covariance
matrix : MPMT = M(MP)T, which suppresses the need for coding the adjoint of the
tangent linear model, or for explicitly building the matrix M (Gauthier et al, 1992).
Conversely, one can use an adjoint formulation, which allows one to directly compute a
subset of the coeflicients of P/ (less the model error), i.e. if u and v are two arbitrary
vectors,

vTMP*MTy = (MTu)TP¢(MT0) (2A)

which costs only a couple of adjoint integrations, and avoids handling large matrices
(Barkmeijer and Opsteegh, 1991 ; Veyre, 1990 ; Bouttier, 1993). '

In the sequel we shall see some applications of those variant formulations.

2. EXPERIMENTAL RESULTS

2.1  With simple models

Because of computational constraints, most of the experimental work on Kalman filtering has
so far been performed only with very simplified models. One may question the relevance of
such results to NWP, because such models do not even include what are considered to be
the most fundamental mechanisms of short-range atmospheric dynamics, namely baroclinic
instability and the peak of energy at synoptic scales. The expected increases in computer
power will hopefully allow some more realistic EKF experiments to take place in the near
future. Nevertheless, there are some lessons to be learnt from low-resolution experiments,
despite the need to take care when extrapolating them to high-resolution models :

e what kind of new meteorological information is provided by the EKF, like error variance
or correlation maps ;

e how do the input parameters (the model dynamics and the observations) work together
in the EKF algorithm to provide original information ;

e what kind of practical problems arise when implementing the EKF : non-linearity, speci-
fication of Q and R, numerical problems ;

e what is the impact of a modification to the observing system : the error covariance
matrices summarize the estimation errors in a much more comprehensive way (Cohn and
Parrish, 1991 ; Gauthier et al, 1992) than the usual impact experiments which tend to
depend on details of the experimental setup ;
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e exact implementations of the EKF, even in low-resolution models, are necessary to serve
as a reference for the validation of approximate algorithms, which is a necessary step
before experimenting with higher-resolution models ( Todling and Cohn, 1993).

The most notable experiments in the meteorolegical community. have involved the following
types of models : simple 1-D (Ghil, 1989 ; Dee, 1991), linear 2-D (Parrish and Cohn, 1985),
unstable 2-D (Cohn and Todling, 1995 ; Gauthier et al, 1992 ; Bouttier, 1994), 3-D quasi-
geostrophlc (Houtekamer, 1993). Con31derable work has also been done in the oceanographlcal
community (Miller, 1986 ; Bennett and Budgell, 1989 ; Evenssen, 1992 ; Gourdeau and Minster,
1993) and is continuing steadily.

The most interesting part of the EKF equations is (2) and (5), which feed some information
into the error covariance matrix, and (3), which defines how that information feeds back into
the model analysis. On the other hand, (1) and (4) are quite frivial in themselves : if an
approximation is used to define P¥ in (3), then the set (1), (3) and (4) define the well-known
scheme for 3D-VAR or OI assimilation of observations. Thus, a first step in understanding
what is the added-value of the EKF is to compute only (2), the forecast equation for the
covariance matrix. In Bouttier (1993), this has been done using a simple initial condition
for P® (a matrix with gaussian correlations and longitude-independent vanances) assuming
Q = 0 and linearizing the model in the vicinity of a realistic non-linear trajectory. One can
see in figure 1 how the equation (2) changes the error variances. The error correlations are
modified as well, as shown in figure 2. Such experiments show the net effect of the linearized
model dynamics on the error covariances. It is not straightforward to explain the observed
effects in terms of what we know. about the atmospheric dynamics, but some understanding is
"gained by running similar experiments using academic flows as basic states. It is also useful
to perform an adjoint decomposition of equation (2), as explained in Bouttier (1993), in order
to analyze precisely the forecast error covariances in terms of the dynamics and of the initial
covariances.. One can show that the variances tend to spread because of wave dispersion, to
move because of advection and to increase becaise of local dynamical instabilities, as one would
expect from local sensitivity techniques (Errico and Vukicevic, 1992 ; Rabier et al, 1994). In
unstable situations, the forecast error correlation structure follows closely that of the singular
vector which maximizes the local error growth (Farrel, 1988 ; Buizza and Palmer, 1995) ; in
the present experiment it is determined by barotropic instability patterns.

A slightly more complex experiment, performed in (Bouttier, 1994), consists of evaluating
(2) and (5) cyclically, but without.feeding back the covariance information into (3) ; instead,
the forecasts (1) and analyses (4) used to define the trajectory for linearization are borrowed
from an existing high-resolution assimilation system, in which a static approximation is used
for P/ in (3). Thus, we'can see how the information from the dynamics and observations feed
into the covariance matrices P over a long period of time, without allowing the covariances
to interfere with the model state analysis. This is a convenient way of experimenting with
error covariances, because the model state analysis will remain reasonably realistic, even if the
covariances go wrong. Another feature is that an approximation of the true analysis gain (3) is
used, because the covariances are computed only on a low resolution 2 D grid, with a simplified
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120w V 0w g 60 120

Figure 1: Top panel : 500hPa geopotential height (in m) field used as initial condition for the trajec-
tory. Bottom panel : height standard error field using equation (2E) for 24h with a T21 barotropic
model, starting with uniform values in each extratropical hemisphere. (reproduced from Bouttier,
1993). .

Figure 2: Left panel : initial condition for the height autocorrelation field in the same experiment as
in fig.1 . Right panel : same autocorrelation field after the 24h prediction.
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Figure 4: Mean quahty of the 500hPa he1ght a.na.lys1s a,ccordmg to'a 16- da.y mtegratlon of equations
(2E)-(5E) at T21 resolution on a single level, with a parameterization of non-linear error sa,turatmn
Reproduced from Bouttier, (1994).

observing network shown in figure 3. Consequently, the symmetric form (55) for equation (5)
has to be used in this experiment, because the analysis gain is no longer truly optimal. Using
this experimental setup, an estimation of the error covariances can be performed for several
weeks, which yields a lot of useful information :

e the map of the qua,hty of each analysis (fig.4), which depends on the meteorologlcal
situation and on the observing network : the quality is lowest along the extratropical
jets, except over data-dense areas ;

e the quality of the short-range forecasts, which reflect the advection of the analysis errors
. by the wind and their amplification in unstable zones ; .

o the location of the most useful observations for the quality of each analysis : they are
located on the western sides of the continents and on isolated islands (keeping in mind
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Figure 5: Evolution of the estimation error on 3 selected points during the experiment same experi-
ment as in fig.4 . full line: in the middle of the USA ; dotted line: in the Bay of Biscay ; dashed line:
somewhere amid the North Atlantic, far from land.

the low resolution of the experiment) ;

e the time evolution of the quality of the analyses and short-range forecasts, for each model
parameter (fig.5) : the behaviour is more sensitive to the atmospheric situation over and
near data-sparse areas ;

o the structure functions which would be used by a real EKF in the analysis (fig.6, upper
panel) : compared to their equivalents in 3D-VAR. or OI, they would lead to a better use
of the observatmns over land for the analysis over the oceans ;

e the structure of the errors in the existing analyses (fig.6, lower panel) : they are almost ho-
mogeneous and isotropic over data-dense areas, otherwise they are look like the structure
functions themselves. ‘

This information comes on top of the improvément of the analysis itself, which would be
expected from a complete implementation of the EKF. Experience in that framework also tells
us about some implementation problems :

e the symmetric formulation (5S) is sufficient to force. the covariance matnces to remain
symmetric and positive definite. ‘

e some kind of parameterization of non-linearities must be introduced into equation (2E),
otherwise the tangent linear hypothesis will break down in data-poor areas, which leads
to unrealistic large variances.
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Figure 6: Examples of error structures (height error autocorrelation fields) estimated in the same
experiment as fig.4 . Top panel: in a first-guess field ; bottom panel: in an analysis.

o if the model error Q is ignored, the EKF will run, but the error variances will be too
small ; the error correlations will also be too broad, which is unrealistic and may eventually
create ill-conditioning problems.

- o if the EKF is run with a low resolution, the observation error matrix R shall be inflated
to account for representativeness errors.

e itis pdssible to estimate some convenient time-averaged values for Q and R, by computing
statistics on the real forecast errors (Hollingsworth and Lénnberg, 1986 ; Lonnberg and
Hollingsworth, 1986). These estimates are themselves a valuable by-product of running
the EKF, but if the model used for the error covariance evolution is overly simplified, it
will appear that the produced error covariances P are realistic, but not very informative.

Many other interesting results have been produced by other authors, usually by running a
genuine EKF ; some have run into the practical problems explained above, others have gathered
some genuinely interesting information, like the impact of various observing systems, of special
features of the atmospheric dynamics, or of differences in the numerical formulation of the
EKF. The interested reader is invited to look into the references listed at the beginning of this
subsection.
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2.2  With state-of-the-art models

As explained above, it is unthinkable to run the EKF in a high-resolution model. Fortunately
there are some techniques which allow one to look at what a high-resolution EKF would produce,
at only a fraction of its price. Of course, this involves some approximations, but they seem quite
acceptable. The main restriction of such techniques is that one computes the EKF equations
only for a very small subspace of the model and for a limited time period, so that it is not
possible to apply these technique to data assimilation, which would involve global computations
going on over long time periods.

Thanks to its equivalence properties with the Kalman filter, 4D-VAR assimilation performed
over a given time interval gives the same i‘ésult, in terms of analyzed model state, as the Kalman
filter for the same model, assuming the model is perfect. To run 4D-VAR, one also has to
specify the forecast error covariance matrix P/ at the beginning of the time interval. Such
a matrix is necessarily approximate, as no EKF has been run before launching the 4D-VAR.
One has to resort to an empirical model of background error covariance matrix, assuming some
simple correlations and variances. It has been shown (Thépaut and Courtier, 1991) that both
hypotheses (perfect model and approximate P/) look quite acceptable when the 4D-VAR is
run for a time period between 6 and 24 hours. For longer periods some problems are bound
to occur due to non-linearity and model errors. At the end of the optimization period, a 24h
4D-VAR produces an analysis which is close to what an EKF would have provided at the same
resolution. The increment (the difference between the analysis and the first-guess) is the same
for both algorithms : looking at a 4D-VAR increment based on a single observation at the end
of the period gives the structure function we would have had in the EKF at the same time, i.e.
after the error covariances have been significantly modified by the dynamics (i.e. (2E) for 24h
with Q = 0) and does not depend much on the initial covariances. This idea has been applied to
a case study in Thépaut et al (1993) using a T63L19 primitive-equation model for the evolution
of errors. The corresponding increments (fig.7) for a single observation show that the strong
baroclinic instability in the past weather evolution leads the EKF (the 4D-VAR) into producing
some strongly baroclinic increments. Those increments are simultaneously consistent with the
local flow dynamics and with the location of the observation. As the bbServation has been put
in an area of strong instability, the structure of the corresponding increment is very close to
that of the singular vector which maximizes the global error growth over the same period. A
more comprehensive case study has been performed in (Thépaut et al, 1994), using the same
methodology, except that a whole set of single-observation experiments has been performed,
with simulated observations on the grid of a vertical cross-section of the atmosphere. This
provides a vertical cross-section of the 24-h forecast error correlations for a given observation
(Fig.8a), as well as a cross-section of the forecast error variances (Fig. 8b). In this particular
case the variances are highest in the low-level core of a low-pressure system and along the upper-
level jet, and the correlation with an observation situated in the low-level warm sector is tilted in
the vertical, and exhibit a clear identification of the air masses near the ground (the correlation
is higher with the warm air, lower with the cold air). Such an “intelligent” identification of
the meteorological situation is so far completely missing in the current operational analysis
systems.
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Figure 7: Structure of a 4D-VAR increment (at level 250hPa) produced by a single height observation
near an unstable zone. Reproduced from ( Thépaut et al, 1993). : :
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Figure 8: Left panel: vertical cross-section of the first-guess height standard errors assumed by a
4D-VAR analysis in the vicinity of an occluded frontal system. Right panel: vertical cross-section of
a first guess height correlation in the same situation. Reproduced from Thépaut et al, (1994).

234



BoOUTTIER, F.: THE KALMAN FILTER

Another technique, the seﬁsitivity study, is less straightforward but even more economical.
It consists of studying vectors of the kind MTv, as defined in (2A), where M7 is the adjoint
operator of the tangent linear in the vicinity of a given short-range forecast (usually a 24 or
48-hour forecast). The vector v can define a particular feature of the prediction (e.g. the value
of a particular forecast parameter at a given point, or its average over a given domain, in which
case v is the corresponding interpolation/average operator), see Errico and Vukicevic (1992)
and Delode et al (1995), or some part of the prediction error if the forecast is compared to a
verifying analysis (then v is the error pattern times the matrix of a user-defined scalar product),
see Rabier et al (1994). The vector MTv is often called the sensitivity pattern of v ; it can be
plotted as a meteorological field* in order to highlight the areas where the analysis errors have
been important for the prediction of v, as well as the structure of those errors. Some examples
of sensitivity patterns are shown elsewhere in this volume. Thus, the sensitivity patterns show
what kind of analysis increments an optimal assimilation system would have had to generate
in order to provide successful predetions. Their study allows for an assessment of the minimal
requirements of future EKF's, in terms of resolution of error covariances, so that they will be
able to correct the operational forecast failures we experience nowadays. Such EKFs would
have the necessary structure functions to produce analyses of good quality, provided they are
given observations of good quality.

3. LINKS WITH OTHER TECHNIQUES

Many techniques are being used for data assimilation or predictability estimation, and many
more are advocated in the literature. It can be unclear how they compare to each other :
some are quite empirical, which does not preireht them from being useful. Because of its clear
theoretical foundation, the EKF is a helpful common fmmework to cla.rlfy the ideas behind
these techniques. SR :

3.1 Usual data assimilation schemes

A comprehensive comparison of many assimilation techniques is found in Lorenc (1986), which
demonstrates, among other things, the equivalence between some versions of successive correc-
tions (or nudging), OI, 3D-VAR, 4D-VAR, splines, and the Kalman filter. In operational NWP
centres, the most popular algorithms are OI, successive corrections and 3D-VAR (also known

as SSI).

Assimilation systems using OI are an approximation of the EKF, because they are se-
quential, with non-linear prediction cycles according to equation (1), and linear analysis steps
according to (4). The analyses are only performed once in a while (every few hours) to save
computational time. The main approximation is that (2E) is only computed using an empirical

“Once a convenient scalar product has been defined for the analysis perturbations. It should be noted that
a natural, and completely objective, choice of scalar product is the one defined by the analysis error covariance
matrix. There is no need for the sensitivity pattern scaling to be arbitrarily defined.
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evolution law for the error variances. The gain (also called the analysis weight) is approximately
computed according to (3), using a kind of banded-matrix approximation in the matrix inver-
sion. The forecast error covariance matrix PY is specified in (3) using the approximate error
variances, together with a correlation model which is quasi stationary and empirical, according
to an analytical, homogeneous and isotropic formulation, and to some geostrophical balance
assumption for the mass-wind correlations (Lorenc, 1981). The equation (5E) is only computed
for the variances. Thus, OI assimilation is an EKF with a static correlation model and linear
observation operators.

Successive correction schemes are closely related to OI, except that the observations are
used at a more accurate time, and the gain computation (3) is approximated empirically.

The more recent 3D-VAR (Andersson et al, 1994) (or SSI, Parrish and Derber, 1992) scheme
is conceptually very similar to OI. The management of error covariances is performed in much
the same way, and the main difference comes from the numerical method for solving (3E), in
which the matrix inversion is implicitly replaced by the iterative (thus approximate) solution of
a variational version of the same problem. The latter method suppresses some numerical noise
found in OI analyses. An important advantage of 3D-VAR is mainly technical ; the structure
functions can be made more complex than in OI (Rabier and Mc Nally, 1993). The algorithm
also makes it possible to account for weakly non-linear observation models H, which has great
practical importance for using satellite data (Andersson et al, 1994).

3.2  Predictability techniques

The predictability problem is the estimation of the probability density function (pdf) of the pre-
dictions. The main components of the pdf are the mean (or the mode) and the error covariance
matrix, which is precisely what the EKF estimates in an assimilation system. Equations (1) and
(2E) can be used to estimate the pdf in the forecasts as well. Since (2E) is only valid within the
tangent linear hypothesis, the EKF is not relevant for medium-range prediction (which pertains
to the more general problem of stochastic-dynamic prediction, Epstein (1969) ). However, the
chances are that a good estimate of the medium-range predictability will have to rely on a good
estimate of ‘the pdf for shorter ranges, and that is precisely What is reflected in the de51gn of
modern ensemble predlctlon systems (EPSs). S

Ensemble prediction 1tself is a discrete sampling of the forecast pdf, from Wthh in turn
some approximation of the state and its error covariance can be computed if the ensemble is
large enough ; thus, it replaces equations (1) and (2E) of the EKF. The current EPSs use only
a very crude approximation of the analysis error covariances P* (Molteni et al, 1994), because
it is believed that the forecast error will depend more on error amplification during the forecast
than on the precise structure of initial analysis error. On the other hand, the evolution of what
is sampled from the initial pdf is computed without any linear approximation (the model error
is still neglected) : to that extent, an EPS is superior to the EKF. Another feature of current
EPSs is the small size of the ensemble (less than 100), which amounts to assuming that the
dimensionality or forecast errors is very small ; that hypothesis is supported to some extent
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by experiments (Houtekamer, 1993 ; Buizza and Palmer, 1995) but remains to be discussed.
On the other hand, the EKF does not imply such an assumption (although running the EKF
at a low resolution amounts to supposing that forecast errors have a low resolution, if model
error is not accounted for). Theory dictates that, when the ensemble size is increased, the
EPS converges to the EKF (to the complete pdf, actually, including higher-order moments).
In conclusion, the EPS is only superior to the EKF pending some hypotheses which remain to
be clearly investigated. Those hypotheses are more convincing for long forecast ranges than
for the short range. Nevertheless, EPS is considerably easier to implement than an EKF, as
it allows one to use directly a realistic forecast model, including physics. On the other hand,
EPS is probably not very useful for data assimilation in NWP, as the small ensemble sizes
do not allow for a correct estimation of the error correlations (Fisher, 1995). Another reason
to prefer the EKF is the linearity of the error evolution in atmospheric data assimilation ; in
other frameworks, where non-linearity is more important, it is indeed possible to modify the
EKF, using an EPS strategy to replace equation (2E), so that non-linearities are accounted for
(Evenssen and van Leeuwen, 1995).

It is well known that EPS cannot rely solely on statistical sampling of the assumed initial
pdf, because most analysis errors will actually be damped in the subsequent prediction : the
dimension of the unstable subspace tangent to the prediction is much smaller than the dimension
n of the model itself. Modern EPS techniques carry out an estimation of the most unstable part
of the daily dynamics. The breeding method ( Toth and Kalnay, 1993 ; see also in this volume)
performs a kind of local Lyapunov vector computation : a set of independent assimilation cycles
is emulated by adding some (im'ﬁally random) perturbations to the reference analysis, using
the forecast model to propagate perturbations in time and an empirical rescaling whenever
some analyses are performed. In the long run these perturbations (called bred vectors) look
like the most likely error patterns in the assimilation system, and they are used to generate
the initial perturbations for the subsequent EPS. One can see the breeding method as an
approximation for equations (2E) and (5E) in the EKF, with only a small sampling of the error
covariance matrix, and a crude approximation for the gain in (5E). There is (so far) no feedback
of the bred vectors onto the gain computation. However, the propagation of the errors uses
the high-resolution non-linear model with physics, which means their structure is completely
coherent with the model dynamics. The subsequent EPS can be seen in the short range as a
low-dimensional sampling of (2E) starting with a low-dimensional, high-resolution sampling of
the exact analysis error covariance matrix P®.

At ECMWF, it has been preferred to initialize the EPS using singular vectors (also called
optimal modes), which are the most rapidly growing modes in the early stage of the prediction
of interest (Buizza and Palmer, 1995 ; see also in this volume). The computation of the
singular vectors can be regarded as the exact determination of the short-range forecast, error
matrix PY according to equation (2E) of the EKF, in a small subspace of given dimension
which is associated to the largest eigenvalues of matrix P/ (model error is neglected). In other
words, the singular vectors generate the subspace of the model state which contains the most
uncertain part of the short-range forecast. In that space, equation (2E) is solved exactly ; a
very crude approximation is used for the analysis error covariance P, as only analysis variances
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are accounted for®. Actually, experience shows that it is better not to account for analysis
error correlations at all, rather than to specify unrealistic correlations, like the barotropic ones
assumed in 3D-VAR, which exhibit a spurious orthogonality to the most unstable patterns of the
forecast. Singular vectors are convenient for medium-range EPS, as the spread of the ensemble
is maximized in the first part of the prediction, so that for a given ensemble size the shape of
the medium-range pdf is made as visible as possible. For the short range, singular vectors can
be demonstrated to be the forecast error covariance matrix sampling which converges the most
rapidly to the exact matrix P¥ computed by the EKF as the ensemble size is increased.

One can see that both methods provide a discrete sampling of the short-range pdf using
two different approximations of the EKF :

the breeding method relies on a proper sampling of the analysis error covariances P us-
ing an approximation of the complete EKF. The samphng accounts for the mstablhty
properties of the past history of the assimilation..

the singular vectors rely on a proper sampling of the short-range low-resolution forecast
error covariances P’/ at the beginning of the prediction. The analysis error matrix P* is
very crudely apprommated Given these approximations, the samplmg is mathematically
optimal.

Both methods have their drawbacks and it is probably desuable to try and combine the best
features of them in a single algonthm

Another class of predictability techniques is worth mentioning briefly : those based on
the adjoint decomposition (2A) of equation (2E), already described in section 1. Although
they can only be used within the validity of the tangent linear hypothesis, they allow for the
determination of the error variances (or correlations) of only a few forecast parameters. They
can be superior to the EPS because they perform the exact computations of equation (2E)
for the parameters of interest (all degrees of freedom of the model dynamics and initial error
covariances are taken into account). They are good candidates for the design of specific short-
range predictability systems (Barkmetjer et al, 1993). However, they depend on the quahty of
the estimate of the analysis error P*.

3.3  Advanced assimilation techniques

Some improved algorithms are being developed for data assimilation, based on the breeding
method or on 4D-VAR. They can be regarded as versions of existing techmques which have
been modified to be closer approximations of the EKF.

It has been proposed to use the breeding method to improve the SSI (3D-VAR) assimila-
tion (Toth and Kalnay, 1993). As explained before, 3D-VAR is equivalent to (1), (3) and (4),

5The choice of scalar product in the singular vector computation amounts to an assumption about the
structure of analysis errors.
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whereas the breeding method is equivalent to approximations of (2E) and (5E). To combine
both, it is proposed to project (in some sense) each analysis onto the subspace defined by the
observations, parallel to the subspace generated by the bred vectors. The bulk of the forecast
error covariance matrix P¥ would still be specified in (3) according to empirical correlation
models. This procedure is equivalent to setting the variances in P7 to infinity in the subspace
generated by the bred vectors. Since bred vectors are precisely regarded as very uncertain
components of the short-range forecasts, the proposed technique could actually be a very con-
venient low-cost approximation to the full EKF, where the correlations (not the variances) are
exactly managed in a small subspace, using a high-resolution, non-linear version of (2E).

The 4D-VAR analysis is generally regarded as the basic ingredient of next-generation as-
similation systems. As explained before, and despite its theoretical equivalence to the EKF
in the linear case, the first 4D-VAR implementations would still differ from the EKF in many
aspects : the minimization interval would be limited, and the initial P matrix would be based
on simple correlation models, as in 3D-VAR. As a consequence, 4D-VAR would be a nearly ex-
act approximation to the exact EKF inside each optimization time interval, but equations (2E)
and (5E) would not be computed between the intervals. This is known as the cycling problem,
which is of more concern if the interval is shorter, because then the structure functions depend
more on the initial P/ matrix. Another important approximation coming with 4D-VAR is the
perfect model assumption (Q = 0) inside each optimization interval, which is of more concern if
the interval is longer, and if an incremental version of 4D-VAR is used to reduce the resolution
of the control variable, or to remove the physics from the minimization (Courtier et al, 1994).
Taking into account the model error in 4D-VAR itself is an area of active research (Leeuvwen,
1995). Thus, 4D-VAR is a step towards the EKF, but still leaves room for improvement.

3.4  Other techniques’

The EKF is by no means the ultimate assimilation algorithm. As explained in the introduction,
it relies on many hypotheses which are acceptable only to a limited extent.

An important constraint of the EKF design is the sequentiality in the use of observations,
which is not necessary for non-realtime applications such as reanalysis for climate studies or
field experiments. The problem of optimal retrospective data analysis is known as smoothing,
-and there is actually a variant of the Kalman filter, called the Kalman smoother, which can be
used whenever data for a given analysis can be taken from the future as well as from the past
(Bennett and Budgell, 1989). Unfortunately, such an algorithm is even more expensive than
Kalman filtering. There are a number of interesting lower-cost alternatives (Cohn et al, 1994),
among which is 4D-VAR analysis. '

An issue of much concern with EKF implementation is the specification of the error covari-
ances for the model Q and the observation R errors (although some knowledge about R has
been gathered in the past because it was needed in operational assimilation systems). These
matrices contain an amount of information we are simply unable to provide, given the data
records available (Dee, 1991 ; Dee, 1995) : it is necessary to use some indirect techniques to
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estimate them. More generally, there are several hypotheses behind the EKF (no biases, no
time correlation of model/observation error, linearity, plus additional hypotheses made to sim-
plify the algorithm) that need to be validated in real time using objective data. To that end,
a convenient framework is adaptative filtering, which is likely to develop in the years to come.

4. CONCLUSION : FUTURE IMPLEMENTATIONS OF THE EKF

Since the EKF is supposed to provide improved analyses, together with information about their
quality which would be very useful for ensemble prediction, it is desirable to implement it in an
operational framework. However, such a task is difficult, because the true EKF is too costly,
and we do not know much about the model error Q. Anyway, it would make little sense to
exactly implement the EKF : it is probably not useful to compute explicitly the huge amount
of information contained in the forecast error covariances P’ at the resolution of an operational
model. One shall first think about what we really need from the EKF. |

From a physical point of view, the algebraic complexﬂ;y of the EKF equations stems from
the followmg features of the algorithm : '

e any observation can be used to correct any part of the model state,

e there can be some significant estimation errors in all degrees of freedom of the model
state, ‘

e any perturbation in the model can interact simultaneously with all model variables,

e there can be some significant correlations between the estimation errors of all couples of
model variables.

Physical intuition tells us that what happens in a meteorological data assimilation system is cer-
tainly much less complex. Most observations are local in space, and uncorrelated to each other.
Like the real atmosphere, the dynamical model phase space is contained in a manifold which
is much smaller than the model state dimension. Most meteorological phenomena are known
to propagate at a very limited speed, so that a local perturbation at a given timestep will only
have a local effect in the next timestep. The combined local character of most observations and
dynamics should lead to mostly local error structures, as shown in the mean by the correlation
statistics of forecast errors (Hollingsworth and Léonnberg, 1986 ; Lonnberg and Hollingsworth,
1986). As a consequence, the complexity of the actual forecast error covariances, and hence the
actual cost of a well-designed EKF, is probably much smaller than what is apparent from the
equations themselves. A few simplification methods are known, which allow one to reduce the
cost of the EKF without sacrificing its usefulness ; many more are probably to be discovered
and implemented.

The computation of equations (1), (3E) and (4) is to a large extent a solved problem, thanks
to the 3D-VAR. (or SSI) technique. The main hurdle for the implementation of the EKF is the
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evaluation of (2E) and (5E), in which the representation of the error covariances is as much a
problem as the computational cost itself. Too many techniques for approximation have been
proposed to be cited in this paper ; we are only going to depict the most promising ones.

As already explained, the discrete sampling (or : randomization) of the error pdfs is a
way to avoid building explicitly large covariance matrices, while at the same time allowing
the computation of the error evolution with the most realistic models, as is done for EPS.
It is technically straightforward to implement and can be used to account for non-linearities.
However, it is more convenient for estimating the error variances than the correlations (Fisher,
1995), so that it is not a very attractive way to provide structure functions for the analysis,
unless one is willing to pay the price of a very large ensemble. As a rule, the quality of the
error covariances that can be recovered from a discrete sample grows like the square root of the
ensemble size, which means that the method is rather inefficient if satisfactory covariances are
not already obtained with a few elements.

A promising technique is the eigenvector decomposition of the error covariance matrices.
The underlying assumption is that the most important part of the errors, from the point of
view of some user-defined scalar product, is contained in a small subset of the model phase
space, which is the one generated by the eigenvectors associated to the largest eigenvalues of
the error covariance matrices (the smallest eigenvalues may also be of some interest). This
subspace is the optimal way of representing as much as possible of the total error covariances
while at the same time keeping the problem dimension low. Thanks to the symmetry of the
matrices, we obtain by design a diagonal representation of the covariance matrix in the relevant
subspace, and we know that the unknown remaining matrix coeflicients are all contained in the
orthogonal subspace (the cross-correlations are zero). Thus, one can build a good approximation
of the complete covariance matrix by using the known eigenvectors and eigenvalues in the most
important subspace, and filling the remainder by some convenient empirical models for error
covariances, like the ones already used in 3D-VAR or OI. The approximation is numerically
efficient if the spectrumbof the eigenvalues is steep, so that the unresolved part of the matrix is
small ; that property is likely to hold ( Houtekamer, 1993) as a consequence of the dimensionality
of the atmospheric dynamics (only a few areas of instability appear to be really active at a given
time, see Buizza and Palmer (1995) ). One can think of using that approximation to compute
only the most interesting part of the matrices on the left-hand side of equations (2E) and (5E) ;
there are some efficient iterative algorithms, like the Lanczos method (Buizza et al, 1992 ;
Fisher, 1995), which provide such information directly, without ever having to build explicitly
the matrices of the operators used. However, some further studies are required, as one does
not know precisely how the “remainder” of the matrix would interact with the subsequent
EKF computations : a more fundamental question is, how do the analysis errors and forecast
dynamics interact with each other ?

It is also possible to implement the EKF at only a reduced resolution (known as RKF,
or reduced Kalman filter, in Todling and Cohn (1993) ) for the error covariance matrices, as
suggested in section 2. Then the matrices have to be blended with an empirical covariance
model to provide the high-resolution covariance model necessary for the state analysis in (3).
The minimum resolution necessary to obtain realistic results is not well known. Some dramatic
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Figure 9: Differences between the’background and analysis standard errors for height near level
500hPa, using a Lanczos-based approximation of (5E) where only the most significant subspace of
dimension 52 has been resolved. Reproduced from Fisher, 1995.

reductions to the EKF cost can be achieved by making other specific hypotheses on the error co-
variance matrices (some covariances are zero...), or on the model itself (the In(_idel is barotropic,
or slow, or purely advective...). While the results may be quite enticing ( Cohn, 1992), the con-
sequences and realism of the hypotheses made are often quite unclear. Ideas for simplifying the
EKF should always be validated using a rigorous and meteorologically meaningful framework,
following the methodology of Todling and Cohn (1993). ‘ ‘

As a final illustration, here are the ideas for a future operational system at ECMWF
(Courtier, 1993 ; Fisher, 1995) : ' ‘

. @ the basic analysis algorithm will be an incremental 4D-VAR run sequentially at a high
resolution, with physics, for intervals between 6 and 24 hours,

e the 4D-VAR initial analysis error covariance matrix will be ‘computed exactly in a low-
- dimensional subspace, based on an eigenvector identification using a Lanczos-like algo-

rithm,

e the short-range forecast error covariance matrix will be computed for the next 4D-VAR
analysis using a low-resolution version of equation (2E) of the EKF,

e in the subspace which is not resolved, the analysis and forecast error covariances will
be complemented in the whole model space with a complex empirical correlation and
variance model, based on the existing experience with the 3D-VAR analysis.

The validation of that scheme will rely on the use of 4D-VAR as a reference, and on a careful
monitoring of the effective error statistics. A part of that work has already been implemented
for 3D-VAR : the result of a low-dimensional evaluation of equation (5E) at high resolution is
shown in fig.9 .

The development of such approximate extended Kalman filters for operational assimila-
tion systems will probably be a major area of interest for data assimilation and short-range
predictability in the years to come.
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