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Abstract: Weather element forecasts obtained from an EPS are essentially "posteriori"
estimates of the weather element probability distribution, given the model forecasts. These
can be compared to various "prior" or unskilled estimates taken from climatology (the
climatological distribution for the valid time) or persistence (the climatological distribution
given yesterday's observation). The verifying observation can be regarded as a single
outcome of a stochastic process. Existing verification methods for both deterministic (e.g.
temperature) and categorical forecasts (e.g. POP) will be examined in the context of these
concepts. Also, these concepts point to some additional verification measures which are
described.

L. INTRODUCTION

Until the advent of ensemble prediction systems (EPS), veriﬁcatioﬁ of NWP model results usually consisted B
either of comparisons of point output from the model on a grid with analyses, or interpolated model output
with point observations. Many different measures have been defined and used, such as mean absolute and
root mean square error, anomaly correlations, S1 scores to name a few. These scores are computationally
different and express different aspects of the model performance, but in all cases the elements of the
verification sample are produced by space and time matching of single point deterministic forecasts from the
model with the corresponding observation. The "forecast error" is determined by simple difference between
the forecast value and the observed value of the weather element. The forecast value is presented as a "best
estimate” and any associated uncertainty is not estimated. In terms of the verification, uncertainty is simply

an unspecified component of the error.

The advent of EPS's recognizes the uncertéinty in the forecast due to the uncertainty in the initial conditions
of the model. The ensemble represents an attempt to quantify the uncertainty, indeed to estimate the full
distribution of possible outcomes given what is hoped is a realistic range of possible initial conditions.
Verification methods heretofore applied to deterministic forecasts from models are inadequate to the task of
verification of the output of an EPS, and new measures must be sought. Since some of the output products
from the ensemble are presented as probabilities estimated from the ensemble distribution, many of the
traditional verification measures used for probabiliy forecasts from statistical interpretation systems are
directly applicable. However, these verification measures are inadequate for verification of the ensemble

output with specific observations, such as temperatures, pressure, height or wind.

In this paper I propose some verification methods for ensemble forecasts which are consistent with the
stochastic nature of the output of an EPS and which follow standard theory and practice of statistics. It is

convenient to consider the subject in terms of "deterministic” and "categorical" or piobabilistic forecasts.

114



WILSON, L.J. VERIFICATION OF WEATHER ELEMENT FORECASTS.........

Deterministic forecasts are specific forecasts of the value of a surface weather element at a particular
location. They carry the units of the weather element. Examples are temperéture, pressure and wind.
Categorical forecasts are expressed as probabilities of occurrence of one or more mutually exclusive and
exhaustive categories of a weather element. Such forecasts must also state the category boundary. Examples
are "probability of temperature anomaly greater than +4 degrees”, probability of precipitation, etc. I will
restrict the discussion to the verification of surface weather elements, but it can be easily extended to upper

air weather elements.

2. VERIFICATION OF DETERMINISTIC FORECASTS FROM THE ENSEMBLE.

The output of an EPS is a collection of deterministic forecasts which comprise an estimate of the distribution

of each weather element at each point in the model domain. This is in fact a conditional distribution: The

forecast is the probability distribution of the weather element given the model run and the ensemble of initial

conditions. In statistical (Bayesian) terms, this can be considered an "a posteriori" distribution. That is, it is
the estimated (altered) distribution following the addition of new knowledge about the predictand. The

| corresponding "prior" distribution represents knowledge about the weather element before the model is run.

This can be either the climatological distribution for the day of the year, or, it could be a persistence

distribution. The latter is the conditional distribution of today's values of the weather element given

~ yesterday's value.

In this context, the verifying observation is a single realization, an individual extracted from the
climatological distribution. For verification purposes, one is interested in the probability that the observed
value of the weather element will occur, given the model's estimate of the posterior distribution. Logically, if
the model has skill, the probability of obtaining a particular observation given the ensemble should be larger
than the climatological or persistence probability. It is this conditional probability that can be used to verify
the ensemble prediction, P(Xghs| Xeps), for weather element "X".

Figure 1 shows schematically the verification model described above, using temperature as an example. The
desired probability is P(Tgpgl Teps)- To compute this requires an estimate of the parameters of the EPS
distribution, and assumptions about the distribution shape. For a first approximation, it can be assumed the
EPS distribution will be of the same family as the underlying climatological distribution for the weather
element in question. One would expect the EPS to predict the same distribution as in nature, and
distribution-fitting, with appropriate goodness of fit tests would itself provide useful verification information
about the EPS.

Although the ensemble is an attempt to estimate the full posterior distribution, it is not possible to do so with
the small ensembles that are produced operationally. To delineate the shape of the distribution would require
many hundreds or thousands of ensemble members. The parameters of the distribution can be estimated with
more stability and confidence on a small sample. Such a parametric method also permits prior knowledge

about the expected distribution shape to be incorporated into the assessment of the forecast.
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For temperature, the underlying distribution is normal, as shown on Figure 1, and so estimation of the
parameters of this distribution simply means computing the mean and standard deviation from the ensemble.
Once the parameters have been estimated, the probability can be computed directly from the formula for the
distribution. Since the distribution is continuous, one must define a reasonable finite range of values around
the observed temperature which are considered "correct". Strictly speaking, +/- 0.5 degree could be chosen

since it is the resolution limit for temperature, but larger ranges could also be used.
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Figure 1. Comparison of hypothetical climatological and EPS distributions for a
normally distributed weather element such as temperature. In this case, the EPS is
predicting a temperature above normal, and has reduced the variance with respect | (reliable) and sharp.
to climatology.

accurately positioned

The above idea can be
simply extended to skill measures by comparing with the corresponding a priori probability, that is, the
probability P(TopgTstd). A skill score can be defined in the usual form,
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Skill = [P(Tobs|Teps) - P(Tobs| Tstd) V(1.0 - P(Topsl Tstq)]

where the numerator gives the difference (improvement) in the forecast probability compared to the standard
forecast (T4, usually climatology or persistence) and the denominator is the normalizing difference between
the perfect score and the standard probability. The skill is thus a percentage improvement over the standard
(unskilled) forecast. This kind of score has the advantage that the "difficulty” of forecasting is taken into
account: For a given forecast probability, a "difficult” climatology will have a broader distribution, with
lower climatological probabilities and correspondingly higher skill. For the special case where the observed
temperature is near normal (near the climatological mean) the EPS shows skill by predicting a narrower
distribution than the climatological distribution. Again, higher skill is obtained in more difficult situations for
a given EPS probability.

The above discussion applies to cases where the EPS distribution is unimodal. If there is sufficient evidence
that it is multimodal, as indicated for example by the cluster analysis, then the EPS distribution can be
treated as separate distributions of the same form, and the parameters estimated separately for each distinct
cluster. Figure 2 illustrates this situation, for two clusters. The accuracy score then becomes the sum of the
products of the prior probability of occurrence of each cluster and the likelihood of obtaining the observation

given the occurrence of the cluster:

P (TobslTeps) = P(TobslTepsl)P(Tepsl) + P(Tobs|Tep52)P(Tep52) ot P(Tobs|Tepsn)P(Tepsn),

for n clusters. Since the estimates of the distribution parameters become unreliable for small samples, this
refinement will be of benefit only when the distribution is clearly multimodal, for example when there is a

bifurcation of the ensemble "plume". The corresponding skill score is,

Skill = [P(Tobs|Tepsl)P(Tepsl) ot P(Tobs|Tepsn)P(Tepsn) - P(Tops|Tsta)] / [1.0 - P(Topg[Tstd)]

For temperature and other relatively smooth and continuous elements such as msl pressure, geopotential
height and upper air temperafures, the underlying distribution is usually nearly normal. For many other
surface weather elements, however, it is not so. Precipitation amount during a given period (QPF) requires a
highly skewed distribution, which can model the high probability density near 0. One distribution which has
this characteristic is the two-parameter Gamma distribution, which, depending on the values of the
parameters, may have an exponential shape with high density near 0, or a slightly skewed shape for cases
with significant probability density away from the lower boundary of 0. The less skewed forms might be
appropriate in cases where the ensemble suggests precipitation is likely, where the ensemble-predicted mean
amount is considerably higher than the climatological mean amount. Figure 3 shows two examples of the
Gamma distribution with different parameters, as might be suggested by an ensemble forecasts for no
precipitation and some precipitation. Mielke (1973) has suggested that a two-parameter family of
distributions called the Kappa distribution might fit daily precipitation data better than the Gamma

distribution, but the Gamma distribution is more widely used and programs are available to fit its parameters.
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Figure 2. Comparison of hypothetical climatological and EPS distributions for a

normally distributed weather element where
distribution. :

the EPS has predicted a bimodal

For windspeed, the
Weibull distribution
has been found to fit
well (Somerville and
Bean, 1978). This
distribution takes a
highly skewed shape

also with high density

near 0 for some values
of its parameters, but
also takes a near-
normal shape if the
probability density is
concentrated away
from 0. Like the
Gamma distribution, it
is designed for positive-
definite variables. It is
negatively-skewed
(higher density below
the mode than above),
which makes it useful
for windspeed where
underprediction is more
likely than

overprediction.

For variables defined

on the range 0 to 1 such as percent of cloud cover, the Beta distribution can be used (Somerville and Bean,

1978). It is also a two-parameter distribution, and includes not only the U-shape typical of cloud amount,

but also the uniform distribution and near-normal forms. It can be positively skewed or negatively skewed or

symmetric, depending on the parameters.

Sometimes a transformation of the variable makes it easier to fit a distribution. Examples are the "cube-root

normal" distribution for QPF, where the cube root of the precipitation amount is found to have a normal
distribution, and the "Lognormal” distribution, by which the logarithm of the visibility is approximately

normal.

118



WILSON, L.J. VERIFICATION OF WEATHER ELEMENT FORECASTS.......-..

Gamma Distribution —~ No pecpn Table 1 su arizes the
Some pcen distributions which have

been used to fit

1 meteorological data.
1 Once an appropriate
distribution is chosen, its
parameters can be

| estimated from the
ensemble as described

above. Statistical

density

programs are readily

. available for distribution

prob.

fitting. One of these is
N | | STATGRAPHICS, a
Y ] PC program that will

8.4 " i~ estimate the parameters
" / , [ of 14 different

! ~ , distributions given a
: S i dataset.

The verification method

[
-
N
W
2N

described in this section
Precipitation

Figure 3. An example of the two-parameter Gamma distribution, which might be

fitted to QPF forecasts. The two curves are possible shapes of predicted method, where the 32

distributions for cases where precipitation is unlikely and where some precipitation| members of the

is likely.

is a "parametric"

ensemble are used to
estimate the parameters of an assumed distribution. It has not been demonstrated that the assumption that the
posterior distribution is the same shape as the prior distribution is valid. The ensemble is designed in part to
find the extremes of the distribution with relatively few members; the perturbed analyses are by no means
random in a statistical sense. What impact this might have on the output distribution is not known. One way
of checking the distribution shape would be to compile a large sample of ensembles for a particular weather
element, compiling them and plotting the frequency distribution. This can be compared with the frequency

distribution of the corresponding observations.
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Table 1. Summary of theoretical distributions that have been found to fit observations of weather elements.
Algorithms to fit a dataset to most of these distributions are generally available.

Weather Element Distribution Characteristics

Temperature Normal Two-parameter; mean and standard deviation

Geopotential height Symmetric, bell-shaped

Upper air temperature

Precipitation (QPF) Gamma Gamma: Two-parameter, "shape and spread”
Kappa Positively skewed (median higher than mode)
(cube-root Applies to variables bounded below; approaches normal when
normal) well away from lower bound

Kappa: similar to Gamma in form, but not as well known.
Not likely to be included in distribution-fitting programs
Cube root normal: The cube root of precipitation amount
has been found to be approximately normally distributed.

Wind speed Weibull Two-parameter
Negatively skewed (median lower than mode)
Applies to variables bounded below

Cloud amount Beta Two-parameter; a family of distributions including the
uniform and U-shaped as special cases

Intended for variables which are bounded above and below
such as probability estimates, and cloud amount
Negatively or positively skewed, depending on parameters

Visibility Lognormal Normal distribution with logarithmic x-axis; applies to
positive-definite variables.

3. VERIFICATION OF THE ENSEMBLE

One measure that has been used to assess the performance of the ensemble as a whole is the Talagrand
diagram. A Talagrand diagram is designed to verify the estimated distribution via the random variable "P",
the probability that the verifying observation will lie in the interval between adjacent ensemble members. For
ensembles of 32 members, the range of the verifying element is divided into 33 segments, with the end
segments open-ended, and the expected value of P is about .03 for each of the ranges. If the EPS has truly
divided the range into equal probability segments, on average, a plot of the frequency of occurrence of the
verifying observation over the 33 ordered intervals for a large sample should display a uniform distribution.
The Talagrand diagram can be applied to any variable, but it usually has been applied to 500 mb heights and

upper air temperatures.

For a sample of ensembles, the total sample variance is composed of two components, the variance about
ensemble mean, and the variance of the ensemble mean. The former can be calculated by subtracting the
ensemble mean from each member of the ensemble, within each ensemble, squaring and summing over all the
data. The latter is simply the variance of the ensemble means taken together. The total sample variance can

be compared with the variance of the verifying observations. The two should agree.

In this context, care should be taken with the interpretation of the Talagrand diagram. Preparation of the

diagram for an ensemble verification dataset usually results in a U-shaped distribution, rather than the
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expected uniform distribution. The open-ended extreme categories usually show higher-than-expected-
frequencies with a modest under-estimation of the frequencies in the middle of the range. Thus the verifying
observation lies outside the predicted range of the distribution more often than expected. This can be due
either to underprediction of the spread of the distribution, or to an error in the location of the ensemble mean
(the placement of the distribution ) or both. Likely, the verifying observation lies too often outside the
ensemble for both reasons. Therefore, it can be misleading to conclude just from the Talagrand diagram that
the ensemble spread should be increased. The ensemble attempts to estimate the frequency distribution of
weather elements arising from the uncertainty in the initial conditions. Errors in the model simulation will not
be accounted for, but will contribute to the total error. Results shown at this workshop indicating that
improvements to the model resolution lead to a greater reduction in the tendency for verifying observations to
lie outside the ensemble than is achieved by increasing the ensemble size tend to support this point.

The ensemble mean should be treated with caution in summary verification of the ensemble. First, it does
not represent a specific trajectory of the model. It may not even be close, for example when the ensemble
bifurcates with near equal numbers of members on both sides of the bifurcation. Second, the mean is
statistically different from individual outcomes. Its estimated variance is S2/32 for an ensemble of 32
members, where S2 is the variance estimated from the ensemble. The mean is thus a very conservative
estimator of a forecast value of the weather element, which will generally score well on a quadratic scoring
rule. However, the ensemble mean will never predict extreme events. For all these reasons, it is not useful to
devise verification measures that involve matching the ensemble mean with individual outcomes or individual
ensemble members. It is, however, useful to compute summary linear scores such as the overall bias between
the ensemble mean and a set of observations. This does not require matching of individual ensemble means

with specific verifying observations.

4. VERIFICATION OF PROBABILITY FORECASTS FROM THE ENSEMBLE

A primary goal of ensemble prediction is the estimation of probabilities of occurrence of specific weather
events based on the ensemble. Therefore, verification of probability forecasts from the ensemble is highly
relevent to evaluation of the EPS. Probability forecasts are normally made by defining two or more categories
of the predictand element, separated by one or more thresholds, then estimating the probability of occurrence
of each category by a simple percentage of occurrence of the ensemble members in the category. In the
contest of the above discussion, this is a "non-parametric" estimate of the probability of category occurrence

because it makes no reference to the parameters of the distribution of the ensemble forecast.

If one has reason to believe the ensemble forecast distribution should take a specific known shape, it is
possible to estimate probabilities from the ensemble using a parametric method. First, the parameters of the
expected or assumed distribution are estimated and then probabilities can be obtained from the formula of the
distribution. The advantages of this approach are that additional information about the distirbution can be

incorporated, and the estimates may be less noisy than would be obtained directly from a 32 member
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ensemble. A parametric approach could be compared and tested against the non-parametric approach first

for a normally distributed variable such as surface temperature or 500 mb height.

Verification measures for probability forecasts are of two types, summary scores and graphical or tabular
methods based on stratified data. The former attempt to summarize one or more attributes of the forecast
quality in as few numbers as possible, usually a single value. Examples are the Brier Score and the Brier
Skill Score. Such scores must be carefully interpreted and used. Graphical or tabular methods usually give
more insight into the performance being measured because they do not attempt to summarize into a single
value. The stratification of the data can be specified to describe specific attributes of the forecast. Examples
of these methods include contingency tables, reliability tables and signal detection theory measures such as
the relative operating characteristic (ROC). The following are some comments on the use and interpretation
of these measures. They are discussed more fully with examples in Stanski et. al., 1990.

The Brier Score summarizes the overall accuracy of a probability forecast of a dichotomous (2-category)
event. As it is usually presented, it is negatively oriented (0 is a perfect score) and has a range of 0 to 1. The
Brier Score is highly sensitive to the sample climatological probability (The mean frequency of occurrence of
the event in the verification sample), which means that it cannot be used to compare the accuracy of forecasts
computed on different verification samples. The same is true of the Brier Skill Score (BSS), which is in the
standard skill score format (score of the forecast - score of the standard forecast)/(perfect score - score of the
standard forecast). A further problem with the BSS is that it can become unstable when the sample is too
small and/or the forecast event rarely occurs. For example, a series of monthly BSS values for a station in a
dry area is likely to be rather noisy because of variations in the sample climatology from month to month. It

is often advisable to use a longer averaging period for this score, especially when the event is relatively rare.

A verification sample consisting of matched observations of a categorical event and the corresponding
forecast probabilities can be stratified in two distinct ways. If the data are stratified according to the forecast
probabilities (all the 10% +/- 5% forecasts put in one bin etc), then this leads to a reliability table and
associated measures. Stratification by observation, that is, separating the occurrences of the event from the
non-occurrences, leads to the likelihood diagram, measures of discrimination, and the relative operating
characteristic (ROC) curve. These are the principle graphical (tabular) verification measures for probability
forecasts, and are discussed briefly below. Contingency tables also are produced from partitioned data, but
they are primarily designed for categorical forecasts where the uncertainty has been removed, and will not be
discussed here. It should be noted that the two methods of stratification correspond to Murphy and Winkler's

(1987) "calibration-refinement" and "likelihood-base rate" factorizations, respectively.

Reliability tables are primarily a way of presenting the degree of reliability of a probability forecast system in
graphical form. "Reliability" is the degree to which the probability forecast agrees with the actual frequency
of occurrence of the event. On the diagram, perfect reliability is represented by the 45 degree line. For

points on that line, the actual frequency of occurrence of the event in the verification sample is exactly equal
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to the forecast probability of the event. For perfect reliability, the forecast is "accurate" as stated: 10%
means 10%, 70% means 70% etc, and systematic departures from the accurate probability forecast (biases)
are easy to see on the diagram. However, there is another important attribute of a good probability forecast,
it should have some degree of sharpness, the tendency to predict probabilities that are significantly different
from the climatological frequency. A system which forecasts the climatological probability all the time is a
reliable system, but the forecasts are not very useful. Sharpness can also be represented graphically on the
reliability diagram by means of a histogram of the frequencies with which each of the probability categories
has been forecast. A perfectly sharp forecast is in fact a categorical forecast, represented by bars only at
either end of the histogram. If the perfectly sharp forecasts are also accurate (the event was forecast only
when it occurred and was not forecast only when it did not occur), this is a perfect forecast. On the reliability
table, that is represented by two points, at the lower left and upper right of the table. Real forecasts will lie
somewhere in between these extremes. A relatively unsharp (smooth or conservative) forecast might produce
a bell-shaped frequency histogram around the climatological frequency of occurrence. Sharper systems may
give a uniform distribution of probabilities, while particularly sharp systems will tend towards a U-shaped
distribution of probabilities. Sharpness can be expressed numerically by the variance of the forecast
probabilities in the sample either with respect to the sample climatological frequency (the sample mean) or
with respect to the long term climatological frequency. It should be noted that sharpness is NOT the same as
resolution. Resolution is another attribute obtainable from the reliability table which measures the system's
ability to separate the forecasts into categories which are associated with different relative frequencies of
occurrence. Compared to resolution, sharpness is a simpler attribute to measure and control since it is a
function only of the forecasts.

Figure 4 shows two reliability tables for two different forecast methods, but based on the same data. The
system on the right is reliable, but relatively conservative, since it does not attempt to forecast greater than
50% probability of this realatively rare event, 24 hour precipitation of more than 10mm. The system
represented by the verification on the left is sharper, attempting to forecast all probabilities, but loses
reliability in doing so. In terms of a quadratic scoring rule, the conservative system obtains a better score.

Sharpness is penalized in quadratic scoring systems unless it is fully supported by reliability.

Stratification of the data sample according to the observation results in two separate distributions of forecast
prabability, one for the occurrence of the event and the other for thev non-occurrence. When plotted, these
two distributions constitute a likelihood diagram. They provide graphically the information needed to assess
the ability of the system to discriminate between situations leading to occurrence and situations leading to
non-occurrence of the event. A perfect system would once again consist of two spikes, at 0% for the non-
occurrences and at 100% for the occurrences. A perfectly non-discriminating system would be indicated by
complete overlap of the two distributions, with identical means. In the general case, discrimination is most
effective if the means of the two distributions are separated AND the dispersions of the two distributions are
relatively small, to minimize the overlap area. Statistics which measure this are the separation of means

expressed in terms of the standard deviation of one of the distributions and the Mahalanobis distance statistic
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used in discriminant analysis, which is the squared distance between the distribution means divided by the

pooled variance within the categories.

100 100
>~ 90 1 o » 90 "',.
S a0 z 80~
5 70+ g 01 o
g e 2 o0 2
fx 50- = 50 &
2 40- RS 104 ».7149 2 404 8§ 4
E a0 1807 T 7967 £ 30- 2
3 725118 S L. }
= 204 azf =20 e1136 ]
= Jo- 1610 = 0- 0 H
22166 0 1'882? —30,0.0.0/0
9 10 20 30 40 50 60 70 80 90 100

®% 10 20 30 40 50 60 70 80 80 100

PROBABILITY FORECAST T+24
Figure 4. Reliability tables for 24h forecasts of probability of precipitation greater than 10mm in
24h averaged over a large sample for 72 Canadian stations. The forecasts were made by statistical
processing of model output using discriminant analysis (left) and regression estimation of event
probabilities (REEP) (right). Sample sizes in each 10% probability bin are plotted next to the points
of the table.

PROBABILITY FORECAST T+24

The relative operating characteristic (ROC) curve, taken from signal detection theory, offers a way of
assessing the probability forecasts as a basis for decisions about which category will occur. The concept is
similar to the discriminant idea: Taking each 10% probability as a threshold for decision about whether or
not the event will occur, the percentage of hits and percentage of false alarms are computed and plotted
against each other. A full description of how to prepare the data for the curve is given in Stanski et. al.,
(1990), and Figure 5 is an example for probability of precipitation forecasts made in Canada over a one year

period.

Ideally, if the forecast has detected the signal, if it has discriminated between occurrences and non-
occurrences with some degree of skill, the percentage of hits will always exceed the percentage of false
alarms, and the curve will lie in the upper half of the diagram. On this diagram, 0 skill is the 45 degree line.
Figure 5 clearly indicates the difference in discriminating power between the 12h and 72h forecasts, but both
show skill in this context. Quantitative measures associated with the ROC are the area under the curve, with
a range of 0 to 1, positively oriented, and 0 skill level at 0.5, and the distance between the two conditional
probability distributions. This is exactly the same measure described above, the distance between the

distributions expressed in terms of the standard deviation (usually) of the non-occurrence distribution.
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Since the ROC curve uses cumulative frequencies in the computation of its variate, a stable graph can be
obtained with smaller samples than is possible with the reliability table. However, the most important

advantage of the ROC is that it is the only verification measure that I am aware of that permits the

simultaneous evaluation of corresponding deterministic and probabilistic forecasts. In the context of the

EPS, a probability forecast of, say, an 850 temperature anomaly greater than +4 can be computed and
plotted. Then, the T213 model's prediction of that event (or the control model's prediction) for the same

sample can be processed into a hit rate and false alarm rate and plotted on the same diagram. The result will
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Figure 5. Example of ROC curves, for 12h (upper) and 72h
(lower) operational probability of precipitation forecasts for
Canadian stations. There are 7250 cases in the sample. The area
under the curves and the separation of the two conditional
distributions is tabulated on the figure.

be a single point. If the point lies above
(below) the curve, the T213 forecast is

better (worse).

5. CONCLUDING REMARKS

This paper describes a variety of
verification measures appropriate for use
in the evaluation of weather element
forecasts from an ensemble prediction
system. I have attempted to select
measures that can be used together to
provide a complete and consistent picture
of the performance of the system, and
which are consistent with statistical
theory and practice. The measures that
have been discussed are those that are
most relevent to the output of the EPS
and which are sensitive to important
attributes of EPS products.

Since the EPS output represents an
attempt to estimate the probability
distribution of the model output arising
from uncertainty in the initial conditions,
some new formulations have been
proposed in recognition of the stochastic
nature of the EPS forecasts. These new
methods should be validated on output
from the EPS to assess their utility. On

the other hand, verification rules that have been used to assess post-processed probability forecasts can be

applied directly to the ensemble forecasts. The characteristics of these have been described with reference to
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previous experience with other data sources. It is hoped this proposal will lead to a standard set of

verification measures for EPS forecasts.
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