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Summary: We raise several theoretical and technical issues about long-range forecasting. The first issue
is the comparison between statistical models and dynamical models. We demonstrate, using a very
simple chaotic dynamical system, that even with a perfect model, dynamical ensemble prediction may
require a very accurate knowledge of the initial error statistics in order to beat a simple linear model.
We also propose several methodologies in order to combine dynamical and statistical forecasts. These
methodologies are tested in a perfect model environment using a simple general circulation model
(GCM), and in a real-atmosphere environment using a realistic GCM. These methodologies are based
on the identification and the prediction of “predictable components” such as provided by the
multichannel singular spectrum analysis. ‘

1. INTRODUCTION -

Research on long-range forecasting, on the time scale of several weeks to a season has become
abundant within the previous years. This is mainly because computer resources made possible the
numerical integration, over long periods, of physical and dynamical models derived from the
physics laws (Tracton et al., 1989; Brankovic et al., 1990; Milton and Richardson, 1991; Déqué
and Royer, 1992; Palmer and Anderson, 1994, for a thorough review). Well before this possibility
was offered to scientists, however, long-range forecasts were carried out by meteorological
centers on a routine basis. The forecasting iechniques were far different since they were based on
empirical grounds. Their success, which was difficult to assess, was questionable. Today, the long
records of observed and analysed meteorological variables at least allows the validation of long-
range forecast models, but despite the introduction of many degrees of realism in the state-of-the-
art numerical models, the long-fange predictability is still very poor, with correlations of the order
of 0.2-0.3 on average. For lead times exceeding, say, 15 days, empirical models still beat
dynamical models (Van den Dool, 1994). |

Admittedly, the reasons for the apparent failure of dynamical models are numerical
constraints : the large computing time required inhibits the possibility of carrying out long
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validation experiments necessary to measure skill with any statistical reliability. This difficulty is
increased by the fact that (i) the skill is anyway expected to be low, and (ii) the extraction of a
predictable signal usually requires ensemble forecasting, that is, many simulations of the same
forecast period. Finally, development, tuning and validation of new physical parametrizations
require many of these long validation experiments, and it is plausible that the full validation of a
long-range forecast model takes longer than its own obsolescence time.

The first purpose of this article is to compare the skill of dynamical and statistical (empirical)
model approaches, using various examples. In particular, we examine a theoretical aspect of the
problem: we argue that not only model errors can explain why a statistical model beats a
dynamical model. The lack of knowledge of the initial error statistics can also produce the same
effects; We show, by using a simple nonlinear deterministic dynamical system with 5 variables
that even within a perfect model framework, a simplified linear (and therefore containing model
errors) model can provide more skillful forecasts than dynamical ensemble forecasts using the
perfect model and a “bred growing modes” technique for generating perturbations.

Our second purpose is to examine the possibility of hybrid forecasts combining in an “optimal
way” a dynamical forecasting system with a statistical forecasting system. Section 2 is devoted to
a theoretical examination and discussion of the relative skill of statistical and dynamical models,
and of the various technique for building hybrid models. Section 3 contains experimental forecast
results obtained within a perfect model framework, the model being a simple quasi-geostrophic
one. Section 4 contains results performed with the former french operational general circulation
model EMERAUDE for real-atmosphere forecasts. Most of the results presented in this article
(especially those of Sections 3 and 4) can be found in Vautard et al. (1995), Pires et al. (1995) and
Sarda et al. (1995) to which the reader is referred for technical details.

2. THEORETICAL ASPECTS ABOUT LONG-RANGE FORECASTING
2.1 Statistical and dynamical prediction as an initial-value problem

The hope to forecast qualitative characters of the future weather for lead times exceeding the
so-called deterministic period (15 days, say),'is primarily based on the existence of slowly-
evolving climatic modes such as the El Nino phénoménon or regular low-frequency phenomena
such as oscillations or slow Rossby waves. It is expected that a significant part of the atmospheric
predictable vsigna.l is due to slow, predictable variations of the boundary forcing. In this respect,
long-range forecasting should not be considered as an initial-value problem. When long-range
forecasts are issued from an atmospheric general circulation model, three sources of forecast
errors are therefore expected: Errors in the initial conditions, model errors and errors in the
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boundary conditions. Mathematically speaking, the third source is not different from the second,
unless the forecasts are issued from a coupled atmosphere-ocean model, in which case interface
flux errors can also arise from bad initial values.

Since our purpose here is mostly theoretical, we shall only consider the first two above error
sources. Let us assume, in a more general way, that the problem is to forecast the future evolution
of a (nonlinear) deterministic dynamical system of the form

dX (1)

=F(X(1)) , M

where F is a deterministic function, and X(t) is the vector representing the state of the system at
time ¢. Both statistical and dynamical approaches are, in a way or another, based on the
extrapolation of an initial ¢ondition X(0) using a model function G(X) instead of F(X). We shall
denote Gg(X) the statistical function and G4(X) the dynamical function. When the dynamical
model is perfect, Gg=F. It would be rather astonishing that this occurred for the statistical model!

The fact that the statistical model beat the dynamical model can obviously arise from the fact
Gy is a better approximation than G, especially since the statistical model is built from real data,
while many physical parametrizations involve more or less arbitrary coefficients. The purpose of
the next section is more interesting. We want to show that even for a perfect dynamical model, the

errors in the initial conditions can lead to the same conclusion. Hence we consider here that our
dynamical model is perfect, i.e. Gg=F.

Under this assumption, the forecast error only comes from errors in the initial conditions X(0).
The initial condition one has at hand is, in fact ’

X'=X(0)+e , . o R @

where e is the error. Of course, ¢ is unknown, but its distribution can be approximated (Lénnberg
and Hollingsworth, 1986; Houtekamer and Derome, 1995). Let us denote by p the probability
density function (PDF) of the error e. Since the system is fully deterministic, if the initial error
PDF are known, the PDF of the true future value at time ¢ is also known, and can be obtained by
integration of the perfect model from a large sample of random initial error pullings. This latter
PDF is

p.X()=pX®\X") , | | )

where p(AIB) denotes the conditional probability of event A knowing event B. The best single
prediction, in the least square sense, that can be given is therefore the average of the random
variable X(t) whose distribution is given by Eq. (3). Thus, in a perfect-model environment, the
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best forecast is obtained by the classical ensemble average forecast strategy. Another possibility is
to use a Bayesian strategy by choosing the peak of ps. In any case, the key problem is to
approximate as closely as possible the initial error PDFE. By the way, this PDF is not unique since
it may result also from various assumptions. For instance, it may depend on the current flow or on
the flow over the past few days, i.e. |

p(e) = p(elX' (¢)) (4a)

p(e)=p(elX' (1), X (t— @), X' (t —2a),...) . (4b)

The dependence of initial error statistics on the past flow is obvious since classical assimilation
processes use a “first guess” resulting obtained as a forecast from the previous analysis cycle. The
first conclusion is that there is not a unique ensemble average forecast, and that sets of initial
perturbation pullings can be obtained in various ways. Which initial perturbation generation

strategy to use in order to have an optimal forecast is a difficult question. Probably, the quality of
the forecast in a perfect model depends mostly on the entropy H(p) of the chosen PDF p,

H(p)=~[p(e)log(p(e))de , )

which measures the information content of the PDF; If H is low, the PDF is more “peaked” and
the forecast cloud is more concentrated around the true forecast. Unfortunately, there is, to our
knowledge, no general way of estimating the “minimum-entropy” initial error PDF, which would
give the best forecast, and hence reach the prédictability limit of the system. ‘

Unfortunately also, not all initial-error PDFs are compatible with the true error. If a given
strategy, such as the “bred growing modes” (Toth and Kalnay, 1993), or the “optimal
perturbations” (Molteni and Palmer, 1993; Palmer et a., 1993) is used systematically, the resulting
PDF may be inconsistent with the true error statistics and generate erroneous ensemble average
forecasts. Some of these aspects are discussed in Houtekamer and Derome (1995). We now turn to
an example.

22 Experiments with a simple dynamical system

In this section, we demonstrate that a perfect ensemble-average forecast model can provide less
skillful long-range predictions than a simple linear (thereby imperfect) model, and that the
defficiency is due to bad estimations of the initial error statistics. The dynamical system under
consideration is the 5-variable model proposed by Molteni et. al (1993), and was designed in the
first place to illustrate the modulation by tropical forcing of the mid-latitude regimes frequencies.
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This model consists in the classical 3-variable model of Lorenz (1963), coupled to an harmonic
oscillator. Its evolution equations are:

@——ax+ay+av
dt

du [ ©

The coupling is conservative since the sum of all cubic terms vanish in the energy equation.
We set the parameter values to b=8/3, p=30 and 6=10 (the same values as used by Molteni et al.
(1993)). The oscillating variables are u and v. They are much more predictable and slow than the
“Lorenz” variables x, y and z. The doubling time of small errors of the Lorenz variables is about
0.7 units, hence a proper units conespondence with the real atmospheré would be that 1 Lorenz
unit correspond to about 5 days. The oscillatory variablés, which mimic some prédictable
intraseasonal oscillation (namely the Madden and Jullian one), must therefore have a period of
about 50 days. Hence we chose £2=0.7. The dissipation parameter  is set to 0.1, as in Molteni et
al. (1993). The coupling parameter o, which introduces nonlineaﬁty in the oscillation’s behaviour,
is set to 00=0.4 (quasi-linear case), or 0.=0.8 (nonlinear case). Figure 1 shows a time sequence of
the two variables x and  in the two cases. Even in the quasi-linear case, the oscillation undergoes
chaotic fluctuations. We shall focus only on the prediction of the predictable component u.

A long run of 100000 units is carried out and is output every 0.1 units. In order to simulate the
atmospheric analysis errors, a random normal perturbation is added to each variable, with a
variance equal to 9% of each variable’s variance. The system is next integrated 0.1 time units, and
the resulting perturbation simulates the analysis errors. Relative to the initial random error
introduced, the “analysis” error has grown along the unstable modes and decayed along the stable
modes, which is also the case of errors which undergone the assimilation process (Toth and
Kalnay, 1993; Pires et al., 1995). The analysis error has a total variance equal to 10% of the total
variance of the system. ‘ |

In order to perform ensemble average forecasts, we use the “bred growing modes” (BGM)
technique designed by Toth and Kalnay (1993), with two sets of parameters; For the first one, the
breeding cycle is taken as 0.1 units and the breeding starts 0.8 units before the analysis time, that
is 8 breeding cycles are completed, starting from small initial random perturbations with a
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Figure 1: Typical time sequence of the two variables x (light curves) and u (heavy curves)
for 0=0.4 (panel a) and o=0.8 (panel b). :

variance equal to 0.01% of each variable’s variance. At the end of the breeding. cycle, the
perturbation is rescaled to 10% of the total variance (of all variables). In this manner, the initial
perturbation PDF is erroneous: it has a too large variance along unstable directions and a too small
variance along stable directions: the resultingkforccasts will exhibit too much spread. In order to
generate perturbatibns with statistics closer to the analysis error statistics, we generate sets of
perturbations along only one breeding cycle, with an initial perturbation size of 9% and the same
final rescaling. In this case, the major difference between the perturbation PDF and the analysis
error PDF is due to rescaling. Indeed, analysis errors do not have a fixed size. We also finally
generate sets of perturbations having a more correct PDF, by simply omitting the rescaling stage
of the last experiment. This case will be denoted the “correct error statistics” case (CES).
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Figure 2: Correlation scores of the forecast of the u variable using the imperfect linear
model (heavy curves), the perfect dynamical control forecasts (heavy dashed curves) and
various ensemble average forecast techniques with 2, 4, 8, 16, 32, 64 and 128 number of
members. The dashes decrease as the number of member increases. a) For the bred
growing modes perturbations with 8 breeding cycles and 0=0.4; b) same as a) but with 1
breeding cycle; ¢) CES perturbations (see text); d) Same as a) but for 0=0.8.
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The simple, imperfect, linear forecast model of the u variable simply consists in omitting the
coupling term in the last two equations of (6). Single integrations of the uncoupled # and v
equations are carried out from the ahalysed values. The model is close to the statistical model that
would obtain by a simple auto regression, of order larger than 2, of the u variable. Finally the
“control experiment” denotes the single forecast issued from the analysis.

The forecasts are extended to 20 units, which allows statistics to be computed from 5000
independent cases. The skill of these various forecasts is shown in Figure 2, as a function of the
lead time, and for various values of the number of members (2,4,8,16,32,64,128). It is measured
as the time correlation between the true and the forecast u values. These curves are highly
significant since the correlation is calculated over 5000 independent cases. Their burrips are not
" due to undersampling, but are typical of low-or‘derk models. In the quasi-linear case, for the first

BGM set of perturbations (BGM1) and the control experiment, the skill is lower than that of the
~ linear forecasts (Fig. 2a). However, the BGM method is more skillful, at almost all lead times,
than the linear model for the second set of perturbations (BGM2; Fig. 2b), where the perturbations
PDF is closer to the analysis PDF, but only when the number of members is larger than about 100.
The skill of CES perturbations (Fig. 2c) is also larger than that of the linear model when the
number of members is larger than 100. In the nonlinear case (Fig. 2d), the linear model hardly
beats all ensemble prediction models.

These results confirm the importance of generating perturbations in a correct manner. Note also
that for this simple dynamical System, the ensemble forecasts always beat the linear model at short
lead times, in the “deterministic range”. Finally, our results émphasize that for the prediction of
“predictable components”, one major problem is the computational cost; For this dynamical
system, the number of members required to beat the imperfect model by only about 5% of
- correlation skill in the long range is above 100, when the model is perfect as well as the
perturbation set. Thus, it would not be surprising that for the real atmosphere, simple statistical
models based on linear regressions, such as that developed by Barnett and Preisendorfer (1987) or
Barnston (1994), still beat ensemble forecasts for a long time...

2.3 Hybrid approaches

The problem is now to take advantage of both forecasting systems. General circulation models
have an enormous advantage with respect to statistical models: they can predict the weather where
data records are absent or not long enough. Hence the question is whether one can improve the
prediction of the future climate by combining both approaches. On areas where data coverage is
large, one would expect improvements only if the two model predictions bear different
information contents. That is, if statistical and dynamical models have equivalent skill and error
statistics, one cannot expect an hybrid approach to be more skillful than the best of the two.
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However, taking into account that dynamical models are de facto not perfect, some improvements
by the combination with statistical models are expected. Roughly speaking, hybrid models would
correct the dynamical model errors. Alternatively, statistical models are expected to represent well
the past climate, but generally fail to forecast nonstationarities, such as those due to anthropic
effects. In this case, dynamical models would help to correct the statistical model defficiencies.

One very simple hybridization technique is borrowed from estimation theory: the best linear
unbiased estimator (the BLUE; see, e.g. Jazwinski, 1970; Gelb, 1986); It simply consists in
calculating the optimal (in the least square sense) linear combination between two estimates of the
same quantity. Therefore, if f7 and f> are forecasts of the same quantity g, the BLUE is

f=af+(1-a)f, B o @)
where
v, —c
=—1 ' : 3
¢ v,+v,—2c ®

vy and v, are the respective variances of f;-g and f2-g and c is their covariance. The biggest
limitation to this approach (as well as other hybrid approaches) is that these latter coefficients
must be calculated from a long training series, and therefore one must have at hand many
independent dynamical forecast cases. This approach will be tested in Section 3 and 4.

Other hybridization techniques can be devel’oped. For instance, the BLUE technique can be
applied at each step of the dynamical forecast, yielding a particular objéctive nudging technique.
Nonlinear hybridization methods, borrowed from data assimilation fields ,aré presently tested at
LMD. For instance, the statistical model forecasts can be considered as “future observations”, and
incorporated within a 4-D variational assimilation scheme.

3. PERFECT MODEL EXPERIMENTS
3.1 The dynamical model

In this Section, we perform an array of long-range forecast experiments using the 3-level quasi-
geostrophic model developed by Marshall and Molteni (1993), to which the reader is referred for
technical details. The horizontal resolution is a triangular truncation at total wavenumber 21
(T21). The constant forcing of the model is obtained as the residual of the potential vorticity time
derivative equations over the winter months (December through March) using the ECMWF
analysis for the period 1983-93. The model is therefore ran under perpectual winter conditions.
The model has a fairly realistic climate and variability given its simplicity. Recent analysis of long
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simulations revealed the existence of intraseasonal oscillations in the angular momentum (Strong
and Vautard, 1995, manuscript in preparation), with realistic maintenance mechanisms. It has also
been shown to be relatively successful in simulating extratropical low-frequency variability and
phenomena like planetary flow regimes (Marshall and Molteni, 1993; Michelangeli, personnal
communication). ' ‘

A long control simulation of 25000 days has been carried out, and output data are sampled on a
daily basis. These data are considered throughout the Section as the “true data”. Artificially
erroneous analyses were generated by adding a perturbation to the true geopotential height field.
This perturbation was obtained by adding a small random error at the beginning of the control run,
running the model from the perturbed state and rescaling the perturbation every five days. Once
these small perturbations are constructed, two set of erroneous analyses are generated, with fixed
geopotential height rms error amplitudes of 10m and 30m (when averaged over the three levels),
which are close to the order of magnitude of actual observation errors, by simply rescaling the
current perturbation on a daily basis.

Two series of 60-day forecasts are produced by integrating the model from the two sets of
erroneous observations. In order to have at hand independent experiments, the successive
forecasts are separated by 80 days. Therefore, 310 independent long-range forecasts are produced
for the two sets of initial errors. In the following, the experiments conducted with an initial error
of 10m will be referred to as the “small error experiments”, and the other set as the “large error
experiments”. Note that we are not considering here ensemble forecasts, but only the equivalent of
the “control” experiments of Fig. 2. ' '

The quantity to be forecast here is the the 30-day average of the 50 kPa geopotential height
over the Euro-Atlantic sector (80W-40E; 30N-70N: the ATL domain). Therefore, at the end of the
forecast stage, 30-day averages are calculated. Moreover, on this time scale, it would be illusory
to expect interesting skill from continuous forecasts, and therefore the predictand values are
classified into three equally-probable catgeories, at each grid point: Above, below, and near
normal. The category separator values are calculated from the “true data”. The continuous
forecasts are thus transformed into categorical forecasts.

Monthly-mean 50 kPa height tercile forecasts (from any model) are verified against the true
tercile, and a 3x3 contingency table is built at each grid point. The measure of skill used here is
the categorical LEPS (linear error in probability space) score (Ward and Folland, 1991): Each
entry of the contingency table is multiplied by a constant scoring weight, the same as used for
terciles by Ward and Folland (1991). The final skill score is obtained, at each grid point x, by
summing up all the products and dividing by the score of perfect forecasts. This scoring system is
equitable in the sense of Gandin and Murphy (1992), that is, the weigths are such the score is O for
random or a constant categorical forecasts and 1 for perfect forecasts. The global skill score S is
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estimated by simply averaging, over the geographical domain of the predictands, the values of the
grid-point LEPS scores. The statistical significance of the skill scores is estimated, in a
nonparametric way, as in Vautard et al. (1995).

Both for the construction of the statistical model (see Section 3.2) and for the estimation of the
dynamical model error statistics, data must be separated into a learning period and a verification
period, the first being used for data processing and statistical coefficients tuning, and the second
for the verification of models’ skill. As we have at our disposal long data series, we use a
simplified version of the cross-validation procedure (Tukey, 1958). The control run is divided into
two parts, (containing 15000 and 10000 days respectively). The statistical model building is
performed on each of the two parts (the learning period) and verified on the other part, which
allows noninflated estimation of skill. The global skill is calculated by averaging scores over the
two verification periods (with weights according to their respective lengths).

3.2 The statistical model

The statistical model is that developed by Vautard et al. (1995) (see also Vautard, 1995). It is
based on a two-step procedure. First, “predictable components” are identified, and are
extrapolated, using a linear autoregressive model. Second, these extrapolated components are used
as predictors for a speciﬁcatioﬁ stage using a simple‘analogue method.

The first step consists in performing a principal component analysis (PCA) of the 50 kPa
geopotential heights in order to obtain spatial principal components (S-PCs). Then, space-time
principal components (ST-PCs) are obtained from a multichannel singular spectrum analysis
(MSSA: Broomhead and King, 1986a,b; Plaut and Vautard, 1994), which is a PCA in the delay-
coordinate phase space, that is, the space of T-long sequences of consecutive state vectors defined
by the 10 S-PCs. These filtered ST-PCs achieve a good compromise between predictability and
explained variance (Vautard et al., 1995). T is called the window iength, and is fixed to 90 days in
the present study. ‘ | ' | |

- The behaviour df the ST-PCs bears similarity with that of forced-damped stochastic oscillators,
which justifies the use of autoregressive models for their time extrapolation. They also behave
similarly as the “u variable” of the Molteni et al. (1993) model (see Section 2). The extrapolation
of the ST-PCs is performed by a linear autoregressive model whose coefficients are tuned from
the levaming period. These extrapolations run up to 60 days ahead.

The second step is the specification (or “downscaling”) step. The problem is to estimate, from
the forecast ST-PCs, the value at each ATL grid point of the 30-day 50 kPa geopotential field
average. Instead of estimating directly the values of the predictand, one estimates crudely its
conditional probability distribution (CPD), discretized into the three terciles. The CPD is
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Figure 3: Cross-validated distribution of the LEPS Score of the statistical model applied to
the forecast of 30-day 70 kPa averages with a lead time of 15 days. The figure is
borrowed from Vautard et al. (1995). The validation is performed over 40 winters
-(december through march).

| calculated by seeking, within the learning period, the :iearest neighbours (analogues) of the
forecast 10-dimehsional ST-PC vector, and Counting the number of occurrenCcs of predictand
values falling within each tercile. Then, a deterministic decision is made by forecasting the tercile
having the largest conditional probability. The similarity measure used to find analdguéé is the
_pattern correlation in the vector space spanned by the first 10 ST-PCs. This statistical model is
called STA in the following.

This statistical model has been tested by Vautard et al. (1995). They applied it to the forecast of
monthly mean 70 kPa heights, and showed that the most predictable feature of this field over the
North Atlantic was the so-called North-Atlantic Oscillation (NAO) for winter forecasts. Figure 3
shows the skill score pattern.obtained by a cross-validation of this statistical model over 40 years,
at a lead time of 15 days, that is for the prediction of the DAY15-DAY45 monthly average. There
are three centers of significant predictability: Near greenland, In the Southern part of the domain
and over Europe. These centers reflect the predictability of the NAO.
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Figure 4: The four Atlantic weather regimes identified by Michelangeli et al. (1995). The
patterns displayed are the anomalies (in m) of the 70 kPa geopotential heights associated
to the cluster centroids. The figure is borrowed from Vautard et al. (1995).

The model was also tested for the prediction of the occurrences of the four atlantic weather
regimes identified by Michelangeli et al. (1995). These latter were obtained from a cluster
analysis technique. The centroids of these clusters are displayed in Fig. 4. In this application, the
predictand was the the number of days, during a forthcoming period of 30 days, of each regime.
These variables were also classified into three equally-probable terciles, and forecast in the same
manner as the 50 kPa heights. The skill scores obtained for each regime are displayed in Fig. 5, as
a function of the lead time, and for various values of the number of forecast ST-PCs used as
predictors in the specification stage. Also shown on Fig. 5 are the scores of a persistence model,
which simply consists in predicting the same tercile as the latest observed tercile, and another one-
step model using only spatial principal components as direct predictors and the same analogue
technique as for the specification stage. In all cases, the ST-PC model beats the persistence model,
and most of the time (especially at long lead times), beats the S-PC model. The important feature
of Fig. 5 is that the regimes of Fig. 4 are not equally predictable. The most predictable regime is
the second one, which consists basically in a positive phase of the NAQ. Forecasts of the
“blocked” regime (regime 3) bear hardly any significance.
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Figure 5: LEPS skill scores of various statistical models applied to the prediction of the
forthcoming occurrences of the four weather regimes within time periods of 30 days, as a
function of the lead time. The heavy curves correspond to a one-step direct analogue
model using the leading 10 spatial PCs as predictors. The curves with circles correspond
to the persistence model. The other curves correspond to the two-step ST-PC model
described in the text, using various numbers of predictor ST-PCs (see legend on the
graph). The figure is borrowed from Vautard et al. (1995).
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3.3 Two hybrid models

If indeed ST-PCs are predictable features, they should be well extrapolated by the dynamical
model itself. One way to improve the statistical model is therefore to replace the linear
extrapolation of the ST-PCs by the calculation of the ST-PCs using the 50 kPa height field
forecast by the dynamical model, at the same lead time as for the statistical model, and then to
apply the specification stage exactly as before, using the analogue method. This is the first, simple
hybrid statistical-dynamical model, called hereafter HYB1.

The second hybrid model uses the BLUE procedure applied onto extrapolated ST-PCs: Each
couple of ST-PCs, extrapolated by the linear regression and by the dynamical model, are
combined using Equations 7 and 8, yielding “hybrid ST-PCs”. Once again, these are used as
predictors for the specification stage which is the same as before. This second hybrid approach is
called HYB?2 in the following. ‘

3.4 Skill of the models

Going back to the quasi- geostrophic model experiments, the global LEPS scores of all models are
displayed on Fig. 6 as a function of the lead time, for the two initial error cases. The DYN model
produces good forecasts at a short lead time, but its skill decreases dramatically faster than the
skill of the other models. This strongly indicates that when only a few filtered predictable
components are considered and then “downscaled” to the target predictand, there is a significant
increase in skill relative to direct estimation of terciles from model integrations. In fact, for both
initial error amplitude cases, the DYN model loses any skill once the celebrated “deterministic
period” of about 10-15 days is not contained within the predictand averaging period. The
amplitude of the initial error essentially affects the skill of the forecast for short lead times, where
there is some skill left. Note that the skill of the dynamical model is perhaps underestimated in the
long run, relative to its counterpart for the real atmosphere since the QG model does not take into
account any possible sources of skill coming from persistence or slow variations of boundary
conditions. '

The STA model is fairly insensitive to the initial error amplitude, and beats marginally the
HYB1 model for lead times greater than about 15 days, independently of the error size. As shown
by the 10-90% confidence interval, this difference is however nonsignificant. The HYB2 model
almost always performs better than the best of STA and HYB1. Once again, this improvement is
marginal, but systematic. Note finally the important skill increase between the original DYN
model and the most sophisticated HYB2 model.
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Figure 6: Global LEPS scores of the 50 kPa height tercile forecasts in the ATL region
using the DYN, STA, HYB1 and HYB2 models. See legend on the graph. a) Small error
case; b) Large error case. The error bars represent the 10-90% confidence interval
associated to the STA model. The figure is borrowed from Pires et al. (1995).

The geographical distribution of LEPS score are presented in Fig. 7 for a lead time of 15 days,
for the four models, and for the small error case. Regions of relatively high skill of the DYN
forecasts are rare. The threshold value for which skill scores are significant at the 90% level is
about 0.05. Regions of significant skill are therefore located over the Southwestern and
Northeastern parts of the ATL domain. All the ST-PC-based forecasts display a similar skill
pattern, with significant skill in the mid-Atlantic and near polar regions. This skill pattern is
reminiscent of the skill pattern of Fig. 3 for the real atmosphere. The distortion observed in the
skill pattern relative to that figure is consistent with the distortion between the NAQO simulated by
the QG model (as identified, for instance, by the first ATL EOF) and the actual NAO pattern. The

fact that HYB1 and STA have almost similar score patterns confirms that their errors are highly

correlated, if not almost equal, in which case no major skill increase can be expected from the
BLUE procedure of the HYB2 model.
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DYN | STA

Figure 7: Geographical distribution of the LEPS score for the various model forecasts,
with a lead-time of 15 days. a) DYN. b) STA. ¢) HYB1. d) HYB2. After Pires et al.
(1995). '

4. REAL ATMOSPHERE EXPERIMENTS
4.1 Experimental design

In this Section, we compare the skill of the statistical model described in Section 3.2 with the
skill of 44-day forecasts issued at METEO-FRANCE (Déqué and Royer, 1992) from the
EMERAUDE model (the “DYN” model), which waS the former operational weather forecast
model used in France. The experimental design is constrained by the EMERAUDE experiments
which were carried out before 1992.

For this application, the EMERAUDE model is a spectral T42 model, with 20 levels in hybrid
vertical coordinates. The simplified physical parametrizations include radiation, convection,
hydrological cycle, interactive cloudiness. The integration scheme is semi-implicit with a time-
step of 20 mn. Boundary conditions are monthly climatological sea surface temperatures (SST), to
which is added a persistent anomaly, computed from days -11 to -2 before the starting analysis.
For further details about the model itself, the reader is referred to Déqué and Royer (1992).
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The model is ran up to 44 days (D+44) starting from 40 independent dates occurring in the
winter season. The starting dates lie near 15 October, 15 November, 15 December and 15 January
of each year for the cold seasons 1983-1984 to 1992-1993. Each forecast consists of a set of 5
lagged integrations starting with ECMWF analyses of days D-2 to D with a 12 hours time step.
We use the average of the ensemble forecast, which provides slightly improved skill, as
mentioned by Déqué and Royer (1992), than individual forecasts. The predictand is, as in Section
3, the 30-day average 50 kPa geopotential height over the ATL domain. The ensemble-average
forecasts are also ouput into a categorical format, as above, by placing each 30-day grid point
average into its respective tercile.

Since all forecasts are performed over a ten-year period, this period is taken as the verification
period while the 1950-1983 period is used for training the statistical model. The tercile separators,
for instance, are calculated from the learning period. However, the hybrid models construction, as
well as the removal of systematic errors (see below), require the knowledge of some dynamical
forecasts, for which we shall use a cross-validation technique, by omitting in these calculations
the cold season over which the forecast is verified against the analysis, as in Déqué and Royer
(1992).

The statistical model is the same as above, with differences due to the seasonal character of
real-atmosphere data: Before any processing, the annual cycle is removed from the analyses of the
50 kPa height. As above, the statistical model is called STA for simplicity. The hybrid models
HYB1 and HYB2 are also defined as in the previous Section, and tested.

4.2 Systematic errors, trends and skill biases

The systematic error of the dynamical model is large. Figure 8 shows the systematic error of
30-day averages, over the ATL sector, calculated from the 40 cases, at a 14-day lead time, i.e. for
periods (D+15,D+44). There is a large underestimation of the height in the mid-Atlantic, and a
smaller overestimation over Europe, at all lead times. Therefore, one expects skill increases by
removing the systeinatic error. This can be done by calculating it in cross-validation, for a given
winter, from the 36 forecast cases issued during the 9 other winters. The resulting forecasts are
denoted DYN-S, and will also be tested. The 50 kPa heights exhibit some climate differences
between learning (1950-1983) and verification periods (1983-1993). Therefore, the statistical
model also has a “systematic error”. It is possible to remove this error in the same manner as for
the dynamical model (STA-S). |

In both cases, the use of data posterior to the forecast can inflate the skill, due to
nonstationarities in the predictand. This is particularly true when using the LEPS skill score. In
particular, three difficulties arise is assessing the significance of the LEPS skill score. The first
one is due to the bias of the LEPS skill score when verification terciles are not balanced, i.e. do
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Systematic Error

Figure 8: Systematic 50kPa error of the dynamical model for forecasts of 30- -day averages
at a lead time of 14 days. After Sarda et al. (1995).

not occur exactly one third of the time. In this case, a random model having the “right
climatology”, i.e. a number of forecast occurrences equal to the number of observed ones, has a
strictly positive skill score. The second difficulty arises from the combination of trend and
systematic errors: Assume that the forecast model has a systematic error that is so large that it
always forecasts a given extreme tercile; When this tercile turns out to have also the largest
verified occurrence probability, the LEPS score is positively biased. In the opposite case, 1t is
negatively biased. Finally, when the variance of the forecasts is smaller than the Obscrved
variance, the N category is overforecast and the skill is negatively biased (Ward and Folland;
1991). In this case, one still has the poSsibility of inflating artificially the variance, but the
inflation factor can only be estimated using cross-validation. We are not aware of any universal
scoring system which avoid all these pecuhantles We choose, here, to assess the statlstlcal
significance by a simple test that takes into account the above problems.

The statistical significance test used here compares the measured LEPS score with that of a
random forecaster predicting the same tercile frequencies as the model to be tested. These tests are
therefore model- and grid point-dependent: The 40 forecast tercile maps are shuffled 1000 times,
but not the verified tercile maps, yielding 1000 contingency tables from which LEPS scores are
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calculated. The 900th value, as obtained by sorting them into ascending order, provides a one-
sided 90% significance test above which the model score is expected to lie. In this way, all skill
bias problems mentioned above also occur for the random forecaster. By substracting the average
of the 1000 LEPS score values to the model score, one also obtains an unbiased estimate of the
score.

This method of estimating score significance, and removing its bias, is very conservative: A
simple persistence model, which is by definition able to forecast trends, has a vanishing unbiased
score. Note also that, in the presence of trends, the unbiased score of perfect forecasts is different
than 1. Finally, a non-random model able to forecast the trend, but not the variability around this
trend has a vanishing unbiased score also. In the results presented below, both unbiased and
standard LEPS scores will be shown in order to allow discussion about the ability of the models to
forecast trends.

5.3 Models skill

The global (biased) skill scores of the models DYN and STA are displayed in Fig. 9a as a
function of lead-time. The DYN forecasts have clearly higher skill at short lead times, but for lead
times exceeding 10 days, the score difference with STA forecasts becomes nonsignificant. Note
that, due to the small number of cases used, the skill score of the STA modelyturns out to be
higher at long lead times. When the score of STA is calculated from all winter days (november
through march), instead of only the 40 independent cases, it decreases monotonically with lead
time, as expected (see Fig. 9a). The 40 cases selected turn out to have below-average score. Also
shown on Fig. 9a is the score of the single-member DYN forecasts, which is slightly lower than
that of the average DYN forecasts. Finally, these scores are clearly higher than those obtained
from a simple persistence model, where the forecast tercile is the latest-known tercile, i.e., that of
the 50 kPa 30-day average ending at the day of the forecast.

The DYN scores are significant at the 90% confidence level at all lead times. Note that our
significance test leads to 10%-90% error bars lying entirely in the positive score domain. This
results from the null hypothesis of a random forecaster ;‘knowing” the trends or the climate
difference between learning and verification periods. The STA score, when calculated from the 40
cases, is only marginally significant at some lead times (actually at the longest lead times). The
confidence limits of the STA score calculated from all winter days (not shown) is, in fact,
significant at all lead times. Note finally that the confidence intervals are tighter for the DYN
model than for the STA model. This is due to the combination of two factors: (i) STA tends to
produce more extreme forecasts than DYN, and (ii) LEPS scores reward (resp. penalizes) more
correct (resp. erroneous) extreme tercile forecasts than correct near-normal forecasts. Note finally
that the persistence model has, as anticipated in Section 5.2, a nonsignificant score. This confirms
the severity of our significance test.
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Figure 9: Global LEPS scores of the DYN, STA, and persistence models, versus lead-
time, for the forecasts of the 50 kPa heights. a) Raw forecasts for the DYN, STA,
persistence, and individual-members of the dynamical model. Heavy error bars represent
the 10%-90% confidence interval for the random forecaster associated to the DYN model;
Light error bars stand for the STA model, and light bars without caps stand for the
persistence model. See also the legend on the graph. b) Same as a) for the unbiased LEPS
score of the DYN, DYN-S, STA, STA-S models. Heavy (resp. light) error bars are
associated to the DYN-S (resp. STA-S) model. After Sarda et al. (1995).
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Figure 10: a)Number of cases for which DYN beats STA (shaded bars), and reverse (solid
bars), versus lead-time. b)The same for DYN-S and STA-S. After Sarda et al. (1995).
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Fig. 9b shows the unbiased scores of the DYN, STA, DYN-S and STA-S models. The STA and
DYN unbiased score curves cross at a lead time of 8 days, as observed for the quasi-geostrophic
perfect model. A comparison of the difference between the two curves with the size of the
confidence intervals shown in Fig. 9a indicates, however, that the significance of this difference
cannot be established from our experiments. Figure 9b also shows that the removal of systematic
errors does not clearly improve the unbiased skill of the models. The STA-S scores are even
almost systematically nonsignificant at the 90% confidence level.

The variations of the respective skills of the DYN and STA models with the lead time are also
illustrated on Fig.10a (resp. Fig. 10b for the DYN-S and STA-S models) by calculating the
number of cases, among the 40 considered, for which one model provides a better forecast than
the other. The skill measure is again the LEPS score of the contingency matrix, but is cumulated
over the 176 grid points only, for a given case and lead time. For lead times longer than 8 days the
STA (resp. STA-S) forecasts seem more accurate the the DYN (resp; DYN-S) forecasts, in terms
of number of successes.

As explained in Section 5.2, the procedure used to remove score biases also removes the part of
skill due to models’ ability to forecast trends or climate differences between learning and
verification penods Actually, the STA model does exhibit some skill in forecastmg the trend.
This can be checked by looking at the frequency of STA forecasts in extreme tercﬂes (not shown).
There is in fact a clear tendency of the STA model to forecast more frequently extreme terciles
that occur more frequently during the verification period. However, STA forecasts are carried out
using only learning-period analogues for which these frequencies are balanced.

Local skill scores may be hardly seen as significant in a 40-case study. The results presented
below confirm this point. Figs. 11a-d show the grid-point LEPS scores of the DYN, DYN-S and
STA models, at a 14-day lead time. The DYN model achieves the highest (resp. lowest) scores
South of Greenland and over the Mediterraneanvarea (resp. over the Eastern Atlantic). However, it
is likely that these peak scores are mostly due to the combination of trends and systematic errors,
as mentioned above When the systematlc error of DYN is removed, the score pattern still exhibits
a large area of negatlve values over the Eastern Atlantic, but its peaks are now centered pre01se1y
where the trends are hlghest The STA model (Fig. 11c) has a more homogeneous score pattern,
with negative values only in scattered areas, over the very Eastern part of the domain and North
~ Africa. Its score also exhibits larger values over Europe and South of Greenland. In order to have
a better estimate of the STA score pattern, Fig. 11d shows the score map obtained from forecasts
over all winter days of the verification period. The resulting map Strongly resemble the score map
of Fig. 3, again corresponding to the higher predictability of the NAO. These maps also show
that, unlike for the quasi geostrophic perfect model, the distribution of skill of the STA and DYN
models are qualitatively different. One should therefore expect to gain some skill from the
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Figure 11: Geographical distribution of the (biased) LEPS score for the DYN (a), DYN-S
(b), and STA (c) models. In panel d), the score of the STA model, calculated from all
possible predictand days within the cold season along the verification period (10 winters) -
is represented (STAa). Contour interval is 0.1. After Sarda et al. (1995). ' '

combination of the two forecasts, which is the gca1:0f the hybrid models. The fact that the skill of
the two models is very different not only results from the systematic errors of the dynamical
model, but also from its systematical deficiencies, in a more general sense. '

Figure 12a shows the (biased) global LEPS scores of the DYN, STA, HYB1 and HYB2 models.
The global scores of HYB1 exceeds 0.24 a'tk all lead times. Only at lead times smaller than 3 days
does DYN perform better than HYB1. The score of HYB2 forecasts‘ibs srnaller than that of _HYBI,
presumably due to undersamp]ing problems. The two hybrid models have sccr_es. significant at the
90% confidence level, using the same testing precedure as above. then unbiased scores vare
considered (figure 12b), however, HYB1 does not beat STA for lead times longer than 10 days.
By contrast, at long lead times, the BLUE procedure seems to provide the best unbiasedskill
(HYB2). By comparing the size of confidence intervals (Fig. 12a)‘ with the difference between the
DYN and HYB2 curves, one notices that the HYB2 procedure signiﬁcantly improves the skill of
the original dynamical model, while the difference between HYBI1, HYB2 and STA sccres is
nonsignificant. All these curves sliow a qualitatively similar behaviour as for the perfect-model
experiments presented in Section 3. | |
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Figure 12: a) Same as in Fig. 9 (biased LEPS score), for the STA, DYN, HYBI1 and
HYB2 models (see legend on the graph). Heavy error bars stand for the HYB1 model and
kight error bars stand for the HYB2 model. b) Same as Fig. 10a, but for the unbiased
LEPS scores. After Sarda et al. (1995).
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Figure 13: Same as Fig. 11, but for the HYB1 (a) and HYB2 (b) biased scores, and the
HYB1 (c) and HYB2 (d) unbiased scores. After Sarda et al. (1995).

The biased/unbiased score maps of HYBI. and HYB2 are shown in Figs 13a-d. From a
qualitative point—bf—vievw, the skill of HYB1 and HYB2 do not differ greatly, with peaks South of
Greenland and over Eurobe. The skill values are positive almost everywhere, and are much higher
than those of STA and DYN. However, when skill bias is removed (Figs. 13c-d), there are areas
of negative skill, such as over Eastern Europe and the North Atlantic. The main problem is that
grid-point skill scores are generally nonsignificant at the 90% confidence level, and it is hard to
draw any conclusions from this figure. Note finally that HYB1, which does not use any data in the
verification period, does forecast correctly the climate differences between learning and
verification (not shown). ' '

Figure 14 recapitﬁlates the skill of the various models, for a lead time of 14 days. Both in terms
of score and significance, the HYB2 model performs best. All models but the persistence model
have a significant score at the 90% confidence level, but only the statistical and hybrid models
pass the test at the 95% confidence level.

300



VAUTARDR. et al.: STATISTICAL, DYNAMICAL AND HYBRID FORECASTS ...

0.4 -

5 7
]
@z 5

DYN
DYN-S
STA

0.3 -

o
M
'
as
+

0.2

0.1 -

LEPS scores

Models

Figure 14: Global LEPS scores of the various models at a lead time of 14 days (Heavy
dots with crosses), together with the 10%-90% (heavy shaded bars) and 5%-95% (light
shaded bars) confidence limits of their associated testing random forecaster.

6. DISCUSSION

The whole content of this article demonstrates that the advantage of using large numerical

models for'long-range prediction, with respect to less computationally expensive statistical
models is not obvious. The basic reasons are:

(i) Dynamical model errors still dominate the forecast errors for long lead times. -

(i1) In some cases, even with a perfect model, one would have to know as acdurately as possible
the probability distribution of initial errors quite accurately in order to produce ensemble-average
forecasts that would beat significantly simple, linear and therefore imperfect models. ‘

(iii) Even when an accurate knowledge of the analysis error statistics is at hand, an important
skill increase would probably require many perturbed integrations for the same forecast. We
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exhibited a simple dynamical system for which at least 100 ensemble members are needed in
order to beat a simpler imperfect model in that case.

However, dynamical models have important capabilities not shared by statistical models. These
are the possibility of producing forecasts in areas of poor data coverage, and also the ability to
predict climate changes. For the above reasons, it may be desirable to develop hybrid schemes that
bear the positive aspects of the two approaches. We proposed here several ways to construct
hybrid models. The one achieving the best ratio success/complexity consists in isolating
predictable components (such as identified by the space-time principal components), extrapolating
them with the dynamical model and finally “downscahng them to ‘the target predictand using
simple schemes such as analogue schemes.

Another suggestion is to use classical estimation techniques as the “best ﬁnearbunbiased
estimator” (BLUE) in order to combine the extrapolations of the above predictable components.
This last method does not appear to be significantly more successful than the previous one in a
perfect model environment, but may help to compensate the dynamical model’s deficiencies. In
our real-world experiments, this second method turns out to be the most successful at long leads.

Another issue discussed in this article is the difficulty to validate long-range forecast-models.
Indeed, due to the low values of the scores, many independent forecast cases are required in order
to exhibit any significant skill. We believe that our 40-case study (Section 5) is not sufficient. A
relevant question is whether cbmputational resources allow today any serious validation
experiments. ‘ ' ' |
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