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L. INTRODUCTION

Probabilistic forecasting has been an issue for many years in operational meteorology, and various tech-
niques have been proposed or used to verify probabilistic forecasts (Stanski et al., 1989). However, the
recent introduction of ensemble forecasting poses a new challenge, not only for the verification of ensem-
ble forecasts, but also for the validation of an ensemble system. While the validation of a forecast model is
reasonably well understood (although there are still problems and pitfalls to be avoided), the validation of
an ensemble system requires new concepts which are not yet so well defined.

What should be expected from a perfect ensemble forecast? This fundamental question remains to be clar-
ified. What a perfect deterministic forecast model should provide is clear: it should return a forecast field
which is identical to the verifying analysis (at the resolution of the system, and assuming that the analysis
is “correct”). What a perfect ensemble forecast should provide can be seen from different aspects. The sim-
plest expectation, most natural but most radical, is that the ensemble should provide the “best” statistical
estimation of the truth, without any reference to a control forecast. However, a probably more realistic
approach is to refer to the skill of a control forecast, and to state that the ensemble should provide an esti-
mation of the truth with a dispersion similar to the dispersion of that control forecast. '

2. OVERALL STATISTICAL PROPERTIES

A valid ensemble must comply with two types of statistical properties. The first type deals with the own
characteristics of the ensemble forecasts, regardless of their skill. Basically, the statistical distribution of
the ensemble must be the same as the distribution of the analysis. The second type, more stringent, deals
with the distribution of the errors of the ensemble forecasts.

In this paragraph, we explore a condition of the first type, following a method suggested by O. Talagrand
(personal communication). The distributions of the ensemble members should be compatible with the dis- .
tribution of the analysis, and this can be investigated by counting the number of occurrences of the
observed values in the intervals defined by the single ensemble members, at each grid point for the ensem-
ble forecast to be verified. Given that on the long run the ensemble members should all behave with the
same characteristics as the real atmosphere, the frequency of occurrence of all intervals should be the
same, including the two extreme intervals outside the entire range of ensemble values. Figure 1 shows such
an evaluation in graphical form, for the forecast of geopotential at 500 hPa over Europe at day 1, 2, 3,4, 6
and 10. The distribution shows an excess in the extreme classes at all ranges, more pronounced in the
shorter ranges. The middle interval (number 17) is over-represented at day 1 and 2, due to the symmetric
distribution of the initial perturbations.

With an ensemble of 32 members, each class should occur in 100/(32+1) = 3% of the cases (dotted line in

figure 1). This applies in particular to the two extreme classes, which means that, even with a “perfect” 32
member ensemble, the analysis will not be captured by the ensemble at about 6% of the grid points.
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It should be noted that the property measured by the Talagrand diagram, like all properties of the first type,
is a necessary condition if the ensemble is to be skilful, but it is by no means sufficient. Figure 2 shows a
Talagrand diagram over 19 days in September 1994, for an ensemble formed of fields taken at random
among analyses in the September months over the past 10 years. The diagram is close to perfect, but obvi-
ously this “climate ensemble” yields no skill whatsoever above climatology.

3. SKILL OF THE ENSEMBLE

As suggested in the introduction, there is no well established way of looking at the skill of an ensemble
forecast. A first possibility is to consider the ensemble as a collection of individual deterministic forecasts,
and to look at the skill of each of them. This is a tempting and apparently natural approach. A second
approach is to consider the ensemble as what it truly is, that is, a statistical estimation of the state of the
real atmosphere.

In the first approach, one can for example compute the skill of the best and of the worst ensemble members
and compare it to the skill of the control forecast. This is shown in figure 3 for each day of February 1995,
at day 1 and 6 over Europe. The measure of skill is the root mean square error (RMSE). It can be seen that,
in the very short range, the skill of the best ensemble member is practically the same as the skill of control.
This should be expected in the linear range with the present system, as the control forecast is computed
from the best available analysis. In the medium range, the RMSE of the best ensemble member is around
0.7 the RMSE of control. Expressed in terms of forecast range, the best ensemble member over Europe is
roughly as skilful as an average day 4 control forecast. It should also be noted that there are large varia-
tions from day to day.

The mean values relative to control for day 1 to day 10 are shown in figure 4. The ratio for the best member
seems to tend to an asymptotic value between 0.6 and 0.7. This value is compatible with what can be
expected from an ensemble based on a control forecast with a spread around that control forecast similar to
its RMSE. A simple example proposed by P. Courtier (personal communication) illustrates this point. Let
us consider an ensemble in a one-dimensional space, with two members o+6 and 0—0, where o is a cen-
tred symmetric random variable of standard deviation ¢ and density d, the “analysis” being always equal
to 0. The best of the two ensemble members defines a random variable B which is centred. The variance of
B is then

o, = f_)w (et o) (@) de+ [ (x-0) d(x) dr

Assuming d normal, this yields

o,° = 26" (1-2//2m)

It may seem disappointing that one should not expect the best ensemble member to be much more skilful
than the control on average. However, this rather suggests that the first approach is not the correct one, and
that an ensemble forecast should not be seen as a collection of conventional forecasts. This has serious
implications for the forecasters, because it means that questions such as “which ensemble member should I
go for in today’s forecast?” are simply not appropriate, and lead nowhere.
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Z 500 940901 - 940919 (19 ensembles)

5 “Climate" EUROPE, 84 grid points

Percent

1 35 7 91113151719 21232527 29 31 33

15 “Climate N. HEM, 642 grid points

Percent

1357 911131517192123252729 3133

Fig. 2: Talagrand diagram for 19 days in Sepfember 1994, for a "climate ensemble” (ensemble formed of real
analyses taken at random in previous September months)
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Fig. 3: Time series of RMS error of the best and of the worst ensemble members relative to the RMS error of control,
day 1 and day 6, 500 hPa height over Europe, February 1995.
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The ensemble is a source of probabilistic (statistical) information, and what should be expected from an
ensemble system is a statistical estimation of any quantity describing the real atmosphere. The answer to
users’ questions, including forecasters’ questions, will always be of a statistical nature: “the probability of
having more than 100 mm precipitation over the coming 7 days is 20%”, or “the probability of the trough
developing into a cut-off low at day 7 is 75%”, etc... The challenge is to get from the ensemble a statistical
information which is as sharp and as reliable as possible.

Going back to the question “which ensemble member should I go for in today’s forecast?”, it supposes that
one or some ensemble members should be correct over the whole area of interest and at all forecast ranges.
This could perhaps be expected from an extremely large ensemble, but with the present system it is much
more realistic and pertinent to expect that some ensemble members will be accurate at some forecast day
over some location, and other ensemble members will be accurate at some other time and place, etc..., so
that the probabilistic information will indeed be reliable all the time.

Let us look at an example to illustrate the skill of an ensemble forecast in a statistical way. The scatter plots
in figure 5 show a verification of various ensemble forecasts valid on 1 April 1995. The range of the pre-
dicted ensemble values is plotted against the analysed value for each grid point over Europe. The four scat-
ter plots are for the ensembles at day 1, 6 and 10, and for a “climate ensemble” as used in figure 2, all
verifying on the same day. Most of the day 1 grid point ensemble forecasts are highly accurate, i.e., they
give a sharp and reliable estimation of the real value. However, at a few grid points the ensemble forecasts
are not so sharp, even at day 1. The degradation from day 1 to day 6 and 10 is clearly seen. For that partic-
ular day, the ensemble at day 10 is at best marginally more skilful than the “climate ensemble”.

4. VERIFICATION OF DERIVED PRODUCTS

One important aspect of the EPS is the forecast of probabilities of meteorological events, e.g. the probabil-
ity of precipitation to occur in a defined period. Skilful medium-range prediction of probabilities of
weather events certainly would be of great value to end users if used adequately in decision making proc-
esses.

The two main properties of probabilistic forecasts are reliability and sharpness. Reliability indicates the
correspondence between forecast probability and the observed frequency of occurrence of an event. It is
best depicted in graphical form, in a so-called reliability diagram, as shown in figure 6. The reliability
curve is constructed by splitting the range of forecast probabilities into intervals (or a set of discrete values
as usually in the case of subjective probability forecasts), counting the observed occurrences of the event
in all forecast probability classes and plotting the relative frequency of occurrence in every class against
the interval centre. For perfect reliability the points in this curve lie on the diagonal. Points below the diag-
onal indicate that probabilities were over-forecast, points above the diagonal mean under-forecasting. The
example in figure 6 is the reliability curve for the day 6 forecast of the event 850 hPa temperature anomaly
less than -4 degrees, verified against analyses over Europe, for spring 1995. It shows quite good reliability,
however, high probabilities were predicted slightly too frequently, whereas low probabilities were under-
forecast. In other words, the EPS was slightly too confident in predicting this event.

The histogram plotted next to the reliability diagram in figure 6 shows the relative distribution of forecasts
in probability intervals, which reflects the sharpness of the forecast. A probabilistic forecast is sharp if it
often predicts probabilities close to 0% or 100%. A reliable probabilistic system which has minimum
sharpness will always predict a probability equal to the sample climate frequency of occurrence of the
event (which is a non trivial forecast).
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Fig. 5: Scatter plots of analysed values versus ensemble range, 850 hPa temperature over Europe valid on 1 April
1995, at day 1, 6 and 10 and for a "climate ensemble” as used in figure 2.
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Fig. 6: Reliability diagram for day 6 EPS probability forecasts of 850 hPa temperature cold anomalies of more than
4 degrees for spring 1995. Verification against analysis over the European area. Numbers next to reliability
points indicate the absolute number of cases (forecasts) in the probability interval. Horizontal lines denote
the levels of sample (dotted) and long term (dashed) climatologies. The small histogram shows the relative
distribution of forecasts in probability intervals (sharpness).
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A widely used measure of accuracy of probabilistic forecasts, which takes account of both reliability and
sharpness, is the (half) Brier score, BS (Brier, 1950). BS is the mean square error of the probabilistic fore-
cast, whereby the observations have either the value 1.0 for occurrence of the event or 0.0 for non-occur-
rence. BS does not take into account how close the observed values are to the threshold of the defined
event. The score is 0 for a perfect and 1 for the worst possible set of forecasts. Note that these extreme val-
ues can only be obtained by a categorical forecast, i e using exclusively probabilities 0 and 1. Since BS is
strongly dependent on the sample climatology of the event, comparison between scores from different
samples is not very meaningful.

To answer the question of skilfulness of a probabilistic forecast a score obtained by a reference forecast is
needed for comparison. A possible reference is a forecast which uses only observed long term climatolog-
ical frequency as forecast probability. A skill score can be computed which expresses the relative improve-
ment of the forecast against the reference score. Such a skill score is 1 for a perfect forecast, 0 for a
probabilistic forecast which is no more accurate than a trivial forecast using long term climatology, and
negative for even worse forecasts. In the reliability diagram in figure 6 Brier score and skill score are indi-
cated in the title. BS = 0.123 compares to a climate score BScl = 0.184, yielding a skill score of BSS =
0.325, i.e. a 33% improvement in accuracy against a climatology forecast.

In addition, isolines of Brier score are plotted in the diagram to help understand the relation between the
position of points in the reliability curve and the contribution of the sub-samples to the overall score. The
minima (good BS) are in the bottom left and top right corners, and relatively low values stretch along the
diagonal. This illustrates that high reliability contributes towards good overall scores. However, since the
overall score is the sum of sub-sample scores weighted by their relative frequency (depicted in the adjacent
histogram), also some sharpness, i.e. relative concentration of forecasts at high and low probabilities, is
needed to yield a good score. The degree to which sharpness can be realistically achieved depends on the
climatological likelihood of the event. Forecasts for very rare events will naturally concentrate strongly in
low probability classes, and generally it is quite hard to achieve high skill, as defined here, for such events.

In figure 7, the evolution of reliability with forecast range, for 850 hPa temperature cold anomalies of more
than four degrees, verified against analyses, for spring 1995, is depicted. While reliability remains quite
good over the entire forecast range, sharpness (see histograms) declines due to increasing ensemble spread.
As discussed above, this leads to a reduction in skill score, despite almost identical reliability curves. Nev-
ertheless, the 10-day scores show that there is still significant advantage of the EPS over a climate estimate
of probabilities. ‘
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