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ABSTRACT

Forecast evaluation based on single predictions, each determined from an imperfectly ob-
served initial state, is incomplete; observational uncertainty implies that an ensemble of
initial states of the system is consistent with a given observation. In a nonlinear sys-
tem, this initial distribution will develop a non-Gaussian structure, even if the forecast
model is perfect. A perfect prediction (that is, forecasting the future state of the sys-
tem) from an uncertain initial observation, is not possible even with a perfect model.
Yet this irreducible uncertainty is accountable, in that it is distinct from model error.
Ensemble prediction of nonlinear systems reveals shortcomings in the traditional evalu-
ation of forecast-verification pairs with least-squared error cost functions; an alternative
evaluation of imperfect models through their ability to shadow uncertain observations is
discussed. Difficulties surrounding the construction of an ensemble of initial conditions
are considered, the implications of imperfect ensembles are noted, and the use of breeding
vectors and singular vectors is contrasted in low-dimensional] systems.

1. INTRODUCTION

While predictions founded upon less than perfect observations will always be in error, we can strive
to account for the origin of forecast errors. In particular, we can attempt to determine the extent to
which shortcomings are due (1) to misinterpreting the accuracy of the observations, (2) to model error,
or (3) to the limited computational resources available. To be self-consistent, nonlinear prediction
schemes must account for observational uncertainty both when tuning the forecast model and when
interpreting each observation from which a forecast is initiated. This may be done, for example, by
considering an ensemble of initial conditions, each of which is consistent with a given observation
(see, for example, Epstein, 1969, Leith, 1974, Hoffman and Kalnay, 1983, Murphy, 1988, Palmer,
1992, Tracton and Kalnay, 1993, Ehrendorfer, 1994 and references thereof). Item (3) in this list
differs from the others in that it is primarily a technical (or at least, a technological) constraint. To
the extent that the shortcoming of a forecasting system is due to (3), we shall say it is accountable;
the frequency of occurrence of unanticipated events can be estimated, and reduced through the
commitment of additional resources. To the extent that this is not the case, the forecast is in error,
and improvement of the model and/or the interpretation of the observations is needed. Perfect
models, given perfect ensembles (defined below), are always accountable, although in regions of great
sensitivity to initial condition, their forecasts may be of limited utility.

The importance of the role played by uncertainty in the initial condition has been recognised in
numerical weather forecasting for some time (e.g. Thompson, 1957). Below, we will restrict attention
to low-order systems where the application of nonlinear dynamical systems theory can be put to the
test using ensembles which are orders of magnitude larger than those practical in numerical weather
forecasting models. Generally, we will plot a single observable, s, and consider an ensemble of
initial conditions, each consistent with the uncertainty of an observation in state-space. Note that
as long as digital computers are involved, the effects of observational uncertainty are unavoidable
even in principle; at the very least, there will be truncation errors due to an analog-to-digital (A/D)
conversion. As the initial uncertainty in the true value of s evolves with time, we can treat the
evolution of the ensemble as a forecast by interpreting the distribution of the ensemble points as
the probability density function (PDF) of s after time ¢, which we denote as 1(s). The evolution
of 1y(s) with time for several chaotic systems is shown in the first three figures. When both the
model dynamics and the ensemble are perfect, we have an optimal forecast for a given deterministic
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system; the statistical aspect is unavoidable. Qur incomplete knowledge of the initial conditions forces
the probabilistic interpretation even when we know the exact deterministic dynamics. For chaotic
systems, ¥(s) may, or may not, “quickly” spread over the full range of s; given a perfect model, it will
eventually evolve toward an invariant PDF, 1, (s). In the absence of any knowledge of the current
state of the system, our best prediction is summarized by ¥ (s) (i.e. the climatological distribution
or equivalently, the projection of the invariant measure (“the attractor”) onto the variable we are
observing).

Initially, one may observe an exponential growth of uncertainty; while this must stop when the
uncertainty is comparable with the diameter of the attractor, saturation may occur at any finite
length scale (in particular, at arbitrarily small length scales) and persist for arbitrarily long times.
The “average exponential growth” of chaotic systems is a globally averaged rate based on infinitesimal
uncertainties; it places no a priori limits whatsoever upon operational predictability, or upon the local
-growth rates which can, and often do, correspond to decreasing uncertainty (for finite times) in chaotic
systems.

2. OPTIMAL FORECAST SCENARIO

To isolate the various limitations on predictability, first consider the optimal forecast scenario: a
perfect model of the dynamics, an exact understanding of the origin of observational uncertainty,
and a perfect ensemble of initial conditions. The perfect model scenario is a common one: we will
use, for example, the Lorenz equations (Lorenz, 1963) to predict data generated from the Lorenz
equations. For simplicity, we take the observational uncertainty to be due only to finite accuracy
- that is, we observe the true value of each variable, but only to a fixed number of digits. The
uncertainty is then due to truncation error. This effectively divides the state-space of the system
into a mesh of hyper-cubes; our observation tells us which cube the system is in, but says nothing
as to where within the cube it is. As we shall see, for systems evolving on attractors this is a serious
limitation. We lift this constraint by considering a perfect ensemble; that is, an ensemble of initial
conditions which are not only within the correct hyper-cube, but also on the attractor. To construct
such an ensemble for a specific initial condition, we follow the advice given in Lorenz (1963): we
“simply” integrate the system of interest and collect exact analogs, exact that is, to within our
measurement accuracy (points within the same hyper-cube, and also on the attractor).

Armed with this ensemble of analogs (and observations of their future trajectories), we can make
an optimal forecast for this initial observation. An example for the Lorenz 1963 system is given in
Figure 1. Time increases from bottom to top, in the lower left we see the distribution of values of
z at the initial time. All of the initial conditions which are consistent with the current observation
lie within the same cube of state-space, hénce the initial distribution in z is very sharp. Initially
(0 < t < 0.2) the distribution spreads out as might be expected from linear prediction theory. The
forecast ensemble then re-sharpens' showing true “return of skili?” until ¢ ~ 0.5; the distribution
then oscillates until ¢ = 1.5, when it bifurcates and a substantial fraction of the initial conditions
explore each lobe of the attractor. The symmetry of the system results in a false “return of skill” (i.e.
at t ~ 2.3,t =~ 3.0, and so on) as noted by Palmer (1993). Naively, it might appear surprising that
any structure should remain in the distribution at ¢ = 12, given that the leading Lyapunov exponent
A1 = 1.3 bits per unit time, and the initial conditions were known to only 8 bits.

In order to avoid the complications arising from the symmetry and near-flatness (the almost 2-
dimensional structure) of the Lorenz attractor, we shall also consider another three dimensional
system of ordinary differential equations (Moore and Spiegel, 1966) . The equations, given in the

!This reflects a finite region of state-space within which allinfinitesimal perturbations shrink with time, as established
analytically by Ziehmann (1994) for the Lorenz (1963) system, and foreseen for nonlinear systems in general by Tong
and Moeanaddin (1988). Also see Ziechmann et al. (1995), Smith (1994a,b) and Smith et al. (1996).

2See, for example, Anderson and van den Dool (1994).
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Figure 1. An optimal forecast of the evolution of a perfect ensemble of initial conditions on the Lorenz
attractor and indistinguishable under an 8-bit observation. Each horizontal curve reflects ¢(1) at a
time £, the left column for times 0 < ¢ < 6, the right for 6 < ¢ < 12. The scale for 4 is given just to
the right of the left column. '
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appendix, describe the motion of a parcel of ionized gas in the atmosphere of a star; for the parameters
chosen, the system is chaotic with A; = 0.22 bits per unit time. Figures 2 and 3 show the evolution
of several perfect ensembles under a perfect model. In Figure 2, each initial PDF is followed for one
unit of time, after which the true state of the system is observed and the PDF collapses onto the new
observation3. A new perfect ensemble is then formed for the ¢ = 1 observation, and the process is
repeated. Figure 3 is similar, however the PDF is evolved for 5 units of time between observations.
For clarity, the time of each new observation is marked by a vertical gap.

These figures show that there are extreme variations in predictability even in these simple low-
dimensional models. In Figure 2, the ensembles starting at ¢ = 0,2 and 8 are broadly dispersed
within At = 1, those at ¢t = 1,3,5 and 6 remain fairly tight. The ensemble initiated at ¢t = 7 quickly
bifurcates into two packets which remain distinct and fairly well-defined. The initial ensemble at
t = 11 in Figure 3 reveals intermittent return of skill, while the one initiated at ¢ = 16 develops
macroscopic structure (i.e. 17.5 < ¢t < 18.5) while remaining fairly coherent until ¢ = 21.

On the additional assumption that the initial conditions are chosen uniformly from those in the cube
which are on the attractor, the forecasts discussed above are optimal (perfect) in the sense that the
future ensemble distribution approximates the true probability distribution function (PDF) of the
system, given this initial observation. Unexpected events (deviations from the forecast PDF), are
accountable in that their frequency shall decrease in the expected manner as the (perfect) ensemble
size increases. Of course, if we knew the exact initial condition, then the PDF would remain a 4-
function for all time; but as the initial observation corresponds to an infinite number of potential initial
conditions, we must make probabilistic predictions for this deterministic system. The probabilistic
aspect comes only from the uncertainty in observation (there is no inexact computation with analog
forecasts).

Optimal forecast scenarios are restricted either to systems which we construct, or to those for which
observations over many Poincaré return times are available. For most physical systems this is not
possible, and it is interesting to see how a less-than-perfect model fails. The thermally driven, rotating
fluid annulus of Read et al. (1992) provides an example of particular interest and relevance. A truly
infinite dimensional system, it is believed to exhibit low dimensional, chaotic dynamics; time series
of temperature measurements from a co-rotating probe are often analysed (see also R. Smith (1992)
and L. Smith (1992)). Figures of ensemble forecasts for a radial basis function model of the thermally
driven rotating-annulus are given in Smith (1995). These forecasts are not accountable, indicating
variations in model error with initial condition in addition to variations in system sensitivity. In
addition to ensemble forecasts which spread out quickly (reminiscent of the forecast from ¢t = 0 to
t = 1 at the bottom left panel of Figure 2), there are a significant number of forecasts for which the
PDF remains coherent (as in the forecast from ¢t = 5 to t = 6 at the bottom right panel of Figure
2), but which give zero probability to the next observed temperature of the annulus (unlike those
of Figure 2). The key word here is, of course, “significant” which implies large given the number of
elements in the ensemble. For the annulus model, the ensemble is not perfect (the initial conditions
do not lie on the attractor), and thus it is not clear how to make this relation exact. Indeed, as
illustrated in Smith (1995), there exist initial conditions consistent with the observations which lie in
a different basin of attraction!

Using the annulus as a test case has significant advantages over both numerical models and meteoro-
logical observations; as a physical system, the same qualitative difficulties arise as in meteorological
observations and cannot be circumvented as they often are in numerical studies, either on purpose or
by accident; it is an infinite dimensional (fluid) system, imperfectly observed. Yet the physical time
scales over which accurate observations can be made is much greater than the (equivalent) time scale
for the atmosphere. Extensive ensemble forecasting experiments for this system are now underway

3This collapse is, of course, only in our uncertainty; the obvious analogy with quantum mechanics is useful but
superficial, since in our case the observation does not effect the state of the system, it merely (attempts to) refine our
knowledge of it.
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Figure 2. A series of optimal ensemble forecasts for the Moore-Spiegel system. Each horizontal curve
reflects 1(z) at a time ¢, the left column for times 0 < ¢ < 6, the right for 6 < ¢ < 12. The gaps
indicate that the true trajectory has been observed, and a fresh perfect ensemble has been chosen
about the new observed state. Observations are made every 2 time steps. The scale for 1 is given
just to the right of the left column.
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Figure 3. As in Figure 2, but this time the system is evolved for an extended time between observa-
tions.
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and shall be reported elsewhere. In the next section, we consider attempts to quantify predictability
through the growth rates of infinitesimals, before returning to consider practical methods of forming
ensembles in Section 4.

3. LIMITATIONS OF INFINITESIMALS

It is commonly assumed that chaotic systems are practically unpredictable except in the very near
future; in fact, they may be very predictable, except in the exceedingly remote future. The mis-
perception usually arises from a misinterpretation of the constraints implied by a positive Lyapunov
exponent. Lyapunov exponents can be understood in terms of the tangent propagator discussed in
Section 4. The largest Lyapunov exponent, A;, quantifies the growth rate of almost any infinitesimal
uncertainty averaged over the attractor; while it is commonly said that an uncertainty €(t) will grow
as €(t) =~ €(0) exp(A1t), this need be true only as both e — 0 and ¢ — co. In very simple systems we
may find uniform exponential growth, but in general, non-uniformity is the rule on strange attractors
as noted by Benzi et al. (1989).

1

The Lyapunov exponents of a system describe the “effective” growth rate of an infinitesimal pertur-
bation, their application to defining a “limit of predictability” is hampered by two facts: first, no
matter how large an infinitesimal gets, as long as it remains infinitesimal it places no limits on pre-
dictability, and as soon as it becomes finite, the Lyapunov exponents cease to describe its evolution.
Second, Lyapunov exponents, whether global or finite-time?, are average rates, and estimating an
average time by the inverse of an average rate is somewhat hazardous! Knowing the average velocity
of a journey from Oxford to central London via Reading may tell us little about the time required
to reach Readmg

3.1 Lyapunov exponents

In practice, it is easy to demonstrate that Lyapunov exponents do not restrict predlctablhty, the
Baker’s Apprentice Maps presented in Smith (1994a), all have A; > 1 bit per unit time, while the
‘majority of initial conditions may be predicted with much greater accuracy than the standard Baker’s
Map for which A; = 1. It is the inhomogeneity of the Apprentice Maps which gives rise to the en-
hanced predictability. Similarly, the intuition that an attractor with no positive Lyapunov exponents
.implies predictability is unfounded; attractors for which infinitesimal uncertainties shrink, may have
complicated macroscopic structure within which almost all finite uncertainties grow, sometimes ex-
ponentially, for the majority of initial conditions in state-space. As a global averaged rate, A; need
say nothing about the evolution of any finite uncertainty or any fixed time.

3.2 Uncertainty Doubling Times

An alternative approach to quantlfylng predictability is to estimate uncertainty doubling times, 75(x),
or more generally 7,(x), where 7, is the time required for an infinitesimal uncertainty to increase by
a factor of g. We shall assume that the initial orientation of each infinitesimal uncertainty has been
determined by the flow, that is, it is directed in the local orientation of the first global Lyapunov
vector, defined in Sectlon 4.1 below The distribution of 7, for the Lorenz attractor is shown in Smith
(1994&) and Ziehmann (1994), revealing a banded structure reminiscent of the distribution of the
Baker’s Apprentice Maps. ' ' ‘

*There are a variety of conflicting definitions for finite-time or so-called “local” Lyapunov exponents. Our meaning
is made clear in Section 4. Alternative points of view may be found in Eckmann et al. (1986), Abarbanel et al. (1991),
McCaffrey et al. (1992), Toth and Kalnay, (1995) and the references therein. Note that, as stressed by Wolf et al.
(1985) and Oseledec (1968), Lyapunov exponents cannot be defined in terms of local properties of a dynamical system.
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Figure 4. The variation in the uncertainty doubling time as shown by plotting ™ against 74 as ‘47,
also shown is 73, against Tig24 (as ‘x’). If stretching along the attractor was effectively uniform at
these time scales, the points should fall along the line y = 2z, which is shown for comparison.

Inasmuch as the 7, directly reflect the time it takes an infinitesimal uncertainty to grow, they are
more useful than Lyapunov exponents which define average rates over fixed periods of time. But
the 7, can be misleading as well. A common motivation for computing the doubling time is to
obtain a benchmark for other ¢g—pling times: if the doubling time is 3 days, one might expect an
eight fold increase in 9 days. Such a generalization implicitly assumes a time scale exists on which
T2 (X) = 27,(x). Figure 4 shows that, for the Moore-Spiegel system, this is not the case. This figure
plots To against 74, and also 733 against Tyg24, for a number of initial conditions. The observation
that these points do not lie on the line above implies that we cannot generalize from 7, unless ¢ > 32
(at least), which in turn, requires that our uncertainty can still be considered small after we have lost
an additional -5 bits. In short, the consecutive doubling times along a particular trajectory are not
independent. If we wish to know a quadrupling time, we must measure 74 directly, as it is not well
estimated by 27,. For sufficiently long g¢-pling times we expect 7,2(x) ~ 27,(x); Figure 4 illustrates
that for this simple system, 735 is not sufficiently long. This poses a fundamental limitation on the
use of infinitesimal uncertainties arising from the non-uniformity of the attractor.

3.3 Limits of Predictability

In these simple low dimensional systems, we can quantify a true limit of prediction by observing
the evolution of perfect ensembles under perfect models. Eventually, any ensemble becomes indistin-
guishable from,the, chmatology (i.e. the limiting distribution of all observed values corresponding to
the variable in question®). Once this occurs, the predlc‘mon is useless, as it retains no information re-
garding the particular observation from Wh1ch it was initiated: it tells us nothing more than drawing
" a value at random from the climatology (invariant measure). This limiting time will depend, among
other things, on the initial condition and the size of the ensemble. The time at which this prediction
loses all value, while always prior to this limiting time, will, of course, depend on the particular
application, as stressed by Murphy (1993).

We quantify the onset of uselessness by determining the time at which we can no longer reject the null
hypothesis that the evolved ensemble differs from the climatological distribution, by, for example, a
. Kolmogorov-Smirnov test. For most initial conditions, this time is much greater than the time scale

5More precisely, from ‘the projection of the invariant measure under this measurement function.
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inferred by dividing the initial uncertainty by the first Lyapunov exponent. For the systems we have
considered, we have found no strong correlation between any time scale based upon infinitesimals
and the limit of predictability due to uselessness. Observing the behavior of the ensembles in Figures
1, 2, and 3 suggests that this is to be expected. Macroscopic structure in the PDF usually develops
fairly soon after the initial time (e.g. ¢t & 17.5 in Figure 3). Once this occurs, it is inconceivable
that the future evolution (for better or for worse) could be governed by a local linearization about a
reference trajectory in any but the simplest, homogeneous systems. Practical limits of predictability
must consider finite uncertainties, and it appears that these can only be determined through ensemble
forecasts.

34 The inappropriateness of least squares

The complexity of the PDF’s also holds implications for model evaluation. Typically (e.g. Weigend
and Gershenfeld, 1993), nonlinear forecasting models have been evaluated by contrasting the root-
mean-square (RMS) error of their predictions. As an extreme example, consider Figure 1 at t ~ 4.2
where the PDF is roughly symmetrically distributed about zero; although there is no chance of ob-
serving z = 0 at this time, z = 0 is the best prediction in the RMS error sense. While perfectly viable
when the goal is simply to minimize the RMS prediction error, one might prefer a different metric
for judging between models, particularly in the development of more realistic model simulations. We
return to this point in Section 5, after considering methods of ensemble formation.

4. ENSEMBLE FORMATION

The value of ensemble forecasting in meteorology, is reflected in its adoption by both European
and American weather forecasting centers (see, for example Toth and Kalnay (1998), Palmer et al.
(1994) and references thereof). Yet the long recurrence time of both the atmosphere, and state-of-the-
art Numerical Weather Prediction (NWP) models makes the analog approach of perfect ensembles
discussed in Section 2 unrealistic. Indeed, in the case of the atmosphere, the recurrence time appears
long compared to the lifetime of the system, or for that matter, the lifetime of the Universe (see
Lorenz, 1969, van den Dool, 1994); this can hardly be considered a technical constraint.

In the absence of perfect ensembles, there remains some disagreement regarding how best to proceed.
Given the high dimensionality of the state-space and the computational complexity of the models, a
Monte Carlo approach with uniformly distributed initial conditions is not feasible; nor would it be
desirable, if the (true) potential initial conditions were distributed upon an attractor of dimension less
than that of the state-space. In this case, one could systematically compute over-optimistic estimates
of predictability due to transient behavior of ensemble points collapsing onto the attractor.

The solution chosen will depend on the precise goal of the ensemble forecaster: whether the objective
is to obtain an unbiased estimate of the PDF, to improve the forecast, to bound the forecast, to
predict the forecast skill, to estimate the probability of a particular event, or otherwise. In practice,
the problem is complicated by the desire to over-sample the more rapidly growing directions in
state-space in order to avoid underestimating model sensitivity. It has been deemed desirable when
selecting ensemble members, to preferentially sample relevant directions in state-space which are
likely to be the fastest growing. Note in passing that, whatever method is adopted, failing to take
initial conditions at random on the attractor will obscure the interpretation of the predicted PDF.
Ideally, ensemble members are weighted by the percentage of the nearby points on the attractor
which they represent (that is, the relevant fraction of the local measure); in practice, this is, of
course, unknown.
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Figure 5. Schematic illustration of the impossibility of determining the probability of an initial
condition, given only an observation and a perfect description of the noise process. Consider the
noise to be uniformly distributed with a maximum value reflected by the diameter of the circle and
the observation at its center. This would imply that all points within the circle were equally likely; but
they are not. Only the points on the attractor are conceivable as true initial conditions, and without

additional information these cannot be identified; thus a perfect ensemble cannot be obtained in this
way.

Potential orientations of initial uncertainty include:

1 Most likely static uncertainty (local distribution of points on the attractor).
2 Fastest grOWing infinitesimal displacement (instantaneous).

3 Local orientation of globally fastest growing uncertainty (infinite past).

4 Fastest growing infinitesimal displacement (fixed finite time).

5 First infinitesimal displacement past a threshold (variable finite time).

6 Most likely observational uncertainty.

e One of the above, but also consistent with the long-term dynamics ( “on the attractor”).

The basic difficulty is that while we can compute the probability of an observation % given both
the true state x and the statistics of the observational uncertainty (or “noise” process), we cannot
compute the probability of the true state being x given only the observation and the noise process,
since we do not know the local structure of the attractor. This is illustrated in Figure 5; the covariance
matrix tells us the probability that the true state lies within the circle; it cannot tell us which points
within the circle are consistent with the long term dynamics (i.e. lie on the attractor). '

Option 1 depends on the local structure of the attractor near the true initial condition, as shown
schematically in Figure 5; treating the points on the attractor as identical point masses, this option
may be interpreted as reflecting the moments of inertia of the local distribution of mass. For ex-
ample, in Figure 5 the macroscopic structure of the attractor means there are simply more points
on the attractor with displacements to the upper left and lower right of the center of the circle:
for fractal attractors, we cannot assume the probability density of the true state is uniform at any
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length scale. Option 2 reflects the instantaneous growth rates, as quantified by the local Jacobian
of the full nonlinear dynamical system. Options 3 and 4 describe breeding vectors (BV) and fixed
optimization time singular vectors (SV), respectively, which are defined by the tangent propagator
of the system. These are discussed in the next section, as is Option 5, which is equivalent to the
fixed time singular vectors, as long as the dynamics of a typical uncertainty remain well described
by the linear approximation for the entire optimization time. Option 6 takes variation in the level of
uncertainty in the measurement of different variables into account; returning to Figure 5, interpreting
the circle as a contour of equal uncertainty implies that the two variables are measured with equal
accuracy. If, for example, the variable plotted along the vertical axis were more reliably known than
the other, contours of equal uncertainty would be horizontally elongated ellipses, not circles.

The last entry in the list above (denoted by a “e”) reflects the separate requirement, for a perfect
ensemble, that the points chosen lie on the attractor. The construction of a real ensemble will reflect
the uses of a forecast, for example whether the forecaster wishes the best approximation of the true
PDF, or seeks to quantlfy the behaviour “worst case” perturbations by intentionally oversampling
the talls of the true PDF. The forecaster’s desire will determine which of the six options s\he chooses,
but its fulfilment will depend upon a consistency between the 1n1t1al perturbations chosen and the
local structure of the attractor.

4.1 Breeding Vec_toi-s and Fixed Time Singular Vectors

The two methods of ensemble formation most discussed during the Seminar are based on breeding vec-
tor ensembles (BV) and finite-time (right) singular vector ensembles (SV); they are presented in detail
elsewhere in this volume. We note that the breeding vectors used by the NMC are constructed using
finite magnitude perturbations, while the SV employed by ECMWF consider infinitesimal perturba-
tions. For the simpler systems considered in this paper, we shall treat BV as based upon infinitesimals
as well. In this case, note that the both SV and BV arise from the singular value decomposition
(SVD) of M(x(t), At), the forward tangent propagator (or linear propagator) of the nonlinear sys-
tem F(x t). In what follows, we consider a particular nonlinear trajectory x(t), —oo < t < +oc0; given
point x* = x(t*) F(x,t) deﬁnes the trajectory while M (x(t), At) maps (i.e. evolves) any infinitesi-
mal displacement y about x(t) to an (infinitesimal) displacement, y’ about x(t+ At), that is, forward

for a time At along the fully non-linear trajectory passing through x(t) at time ¢. In equations, the
SVD of M

y = M(x(t), At)y = Usvly (1)

shows that if we map vy, the first right singular vector of M, forward then its image at ¢+ At will be
in the direction of the first left singular vector, u; magnified (or diminished) by the corresponding
singular value, 01. The SV at x(t), as used by ECMWF, consider the right singular vectors of
M (x(t), Topt), where 7, is the optimization time; while for chaotic flows, the (infinitesimal) BV at
x(t) approximate the left singular vectors of M (x (t — At), At), where At is the duration over which
the perturbations are bred. Note that both depend on an optimization time.

Oseledec (1968) proved a rather remarkable result®. Assume the system of interest contains a unique
ergodic attractor: for almost any point xo on the attractor the trajectory will eventually return
arbitrarily close to the point xo. Denote such Poincaré recurrence times by tre,i(t = 1,2,.. ).
Consider the forward tangent propagator M(xe, At), evaluated along the nonlinear trajectory Wthh
returns arbitrarily close to xo after a (potentially very very long) return time At = tret;» This does
not imply that X, is on a periodic orbit; we will drop the subscript i below for clarlty, but stress
that the t,.;; are not equally spaced in time. In the limit At — oo, there exist (many) arbitrarily
close near returns, Oseledec’s Theorem tells us that at these times, the SVD of M(xo,tret,i) provides
a unique decomposition of the state-space at the point xo which reflects the local orientation of

®] am grateful to W. Jansen for clarifying this point to me.
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the globally defined Lyapunov decomposition” regardless of the particular intermediate path taken
between returns. Multiplicative-Ergodicity yields this apparently teleological connection.

At At = t,¢; the right singular vectors of M correspond to the SV at xo, the left singular vectors of
M (which by construction, also correspond to a trajectory arriving at x(f, + tret) — Xo) represent
the BV at Xo. To the extent that the first breeding vector represents the orientation it (the first BV)
would take on at xo at the limit ¢..;; — o0, it reflects the local orientation of the first “Lyapunov
Vector” or LV. Ifthe first BV were equal to the first Lyapunov Vector, then it would be an eigenvector
of M(Xe,tret), in which case the first BV and first SV (its pre-image) would both coincide with the
first eigenvector of M. Similarly, the last right singular vector of M approximates the last Lyapunov
vector (equivalently, the first LV in reversed time”). Again, if the last SV equals the last LV, then
it is an eigenvector of M and is equal to its image: the last BV. The eigenvectors of M provide a
basis which is preserved under the flow, while the right singular vectors provide an orthogonal basis
which maps into a second orthogonal basis (the left singular vectors); when M is symmetric, the
three coincide.

For the meteorological systems of interest, these Poincaré recurrence times are (more than) astro-
nomical, and lie well out of reach. As matrix multiplication does not commute, the entire trajectory
would be required in order to compute M(xX,t.e:). And if such trajectories were available, then
forming perfect ensembles would become an option. Physically, the BV (or SV) relevant for finite

uncertainties can only depend on the finite past (or future), and may be far from the long-time limit
of LV.

But is it these long time scales which are of interest? The motivation for these decompositions was to
understand the dynamics of finite uncertainties; as the linear dynamics are relevant for a time very
very short compared to t,e, the LV are not particularly relevant. We return to the question of time
scales in the next subsection, but first contrast finite time BV and SV.

What is clear is that “finite-time” breeding vectors represent those directions which have grown
most over time since initialization (i.e. M(x(t — At), At)); the singular vectors represent those di-
rections in which an infinitesimal perturbation will have grown the most at. the optimization time
(i.e. M(x(t), Topt)). The emphasis is intended to stress that both reflect the effective growth over an
interval of time, the BV in the near past, the SV in the near future: they give no information on the
manner in which this growth came about at intermediate times. The vector which has grown the
most over the interval At need not have been the vector growing the “fastest” at any time within
the period At; a similar statement holds for the Lyapunov vectors.

To say that a random infinitesimal vector “rotates toward” the (image of) the breeding vectors is
misleading, as the most magnified component of almost every infinitesimal vector (at optimization
time) will be its projection onto the first singular vector, by definition. In this sense, the local
breeding vectors “rotate toward” the first singular vectors as well. In the rare case that they do not,
- (i.e. the case that the first breeding vector is orthogonal to the first smgular vector), it is the first
breeding vector which ceases to be of relevance®.

The breeding vectors have two apparent advantages; first they appear more well defined than the SV,
which, for example, are more obviously a function of ,p;; second there is an intuitive feeling that the
breeding vectors will better describe the local structure of the attractor (the local distribution of the
measure), while the SV may point “off the attractor.” We will return to the question of optimization

- "For a discussion of Oseledec’s Theorem and this local decomposition, see Eckmann and Ruelle (1985). The term
“Lyapunov. Vectors” (LV) has many conflicting definitions. We. will consider only two well defined local orientations,
~ the first LV which reflects growth as t — oo, and the last LV which reflects growth as ¢ — —oo.

8Clearly in the rather extreme case where the first BV at xo is orthogonal to the subspace spanned by the singular
vectors with positive growth rates, then this BV will not have grown at all at the optimization time. In the even mare
extreme case where this holds as t,,¢ = 00, then this estimated ﬂrst breeding vector did not correspond to the first
Lyapunov vector at Xo.
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time below. First note that as both coordinate systems apply only to infinitesimal dlsplacements,
their relationship to the distribution of the measure at finite distances is unclear, and, in any event,
would depend both on x4 and the neighbourhood size (see Broomhead et al. 1987, 1991), results w1ll
vary with the system considered.

To test this intuition in a small number of very special cases, breeding vectors, singular vectors and
the local structure of the attractor were considered for several points in the Lorenz Moore-Spiegel
and Réssler hyper-chaos systems (equations for each system are given in the Appendlx) The points
were chosen such that an estimate of the first breeding vector was known; the first singular vector
was then calculated for several optimization times. Finally, a long integration of the system provided
an ensemble of initial conditions within either a 6-bit or 8-bit box centered upon the point of interest.
This provided an estimate of the local structure of the attractor. Thus at each point we could
compare BV, SV, and a perfect ensemble (for a given uncertainty-radius). At the initial time, it was
often the case that distribution of points on the attractor was better described by the first breedmg
vector than by the first singular vector (as quantified by the dot product of the first moment of
the mass distribution® with the first BV and with the first SV). This was particularly true for the
Moore-Spiegel system.

At optimization time, however, this was no longer the case, particularly when the first singular
value was large. For the test cases, the BV’s represent the initial distribution better than the SV;
nevertheless the perfect ensembles have sufficient projection upon the SV so that the SV tend to
indicate the direction of ensemble growth. :

These preliminary results are, for the most part, mconcluswe and a larger numerical experiment is
underway; yet the high degree to which the details of these initial results are system dependent (even
in these low-dimensional models) suggests that this approach may have only limited utility in NWP.
More important, perhaps, is the dependence upon the macroscopic structure of the attractor, and thus
the magnitude of the uncertainty - glancing again at Figure 5 shows how the most likely orientation of
a finite uncertainty depends much more on the magnitude of the observational uncertainty (indicated
by the diameter of the circle) than on the orientations of either local BV or SV.

4.2 - The Limit of Linearity

We now return to the question of optimization time of the SV. As is clear from Figure 4, the
uncertainty doubling time varies significantly with initial condition. This suggests that, for initial
uncertainties of a given magnitude, the time over which the linearization holds will vary as well; in
terms of SV ensembles, it is crucial that the linearization remains relevant at least until optimization
time, otherwise the calculated singular vectors will not reflect the directions in which higher order
terms will firs¢ become important. This does not imply one should increase the standard optimization
time; but there may be initial conditions for which a smaller optimization time must be employed;
this could be detected operationally, for example, by evaluating the quality of the forward tangent
propagator as a predictor of nonlinear trajectories for ¢t < t,,;. If these predictions are poor, a new
set of SV, based on a shorter optimization time, should be employed. Ideally, one would monitor the
local importance of higher-order terms explicitly, and adjust the optimization time accordingly. For
NWP models, this approach may prove too computationally intensive, although simpler nonlinear
models may be able to exploit it.

®Specifically, the first moment of the distribution of points. on the attractor and within the hyper-cube defined by
the observation. See Broomhead et al. (1987, 1991) and King et al. (1987) for discussions of this point.
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5. - SHADOWING AND IMPERFECT MODELS

We conclude by considering how one might choose between competing nonlinear models, and question
our knowledge of the current “limit of predictability” of atmosphere. We saw above that the optimal
ensemble forecast PDF quickly becomes highly structured, thus the evaluation of model quality
through RMS error may be far from optimal. Minimum error criteria will select models which
asymptote to the mean of the distribution of whatever quantity is being predicted, while all “realistic”
models continue to oscillate. Indeed, as soon as the uncertainty reflected by the PDF becomes
complicated, a least error criterion would reject the Lorenz equations as a good model of the Lorenz
equations! To see this, consider Figure 1 at ¢ & 4.2, a perfect model will tend to predict a value in one
or the other of the two lobes of the PDF; it will be incorrect about half the tirne Let the separation of
the lobes be 24, then the RMS penalty for the perfect model will average 1(26)2, this is greater than
that of the unphysical model which achieves §? by predicting the mean of the distribution (which
has zero chance of being correct, but a lower expected RMS error). Averaged over predictions based
on many different (uncertain) observa,tlons, thls will lead to RMS rejection of the perfect model in
favour of the unphysical model.

In practice, we have a series of uncertain observations of a system, represented schematically by the
circles in Figure 6. Typically, low order nonlinear models are evaluated by starting on the initial
observations (the solid line in Figure 6), and considering average RMS prediction error as a function
of forecast time, but having taken observational uncertainty into account in tuning the model, we
should take it into account in the initial condition as well. This suggests the following experiment.
Given a series of uncertain observations (the circles), construct a good RMS predictor (the dash-dot
trajectory) and a realistic model (the solid line) both of which start from the initial observation:
can we find an initial condition within the observational uncertainty, such that the model trajectory
passes to within the observational uncertainty of the remainder of the series (the dashed line in Figure
6)?7 Or, more quantitatively, what is the distribution of times (over different initial conditions) for
which a model can shadow the observations to within the observational uncertainty? Clearly, under
this criteria the Lorenz equations will provide an optimal model for the Lorenz equations, while the
optimal RMS predictor for a given observational uncertainty would be rejected early on.

In a mathematical context, the term shadowing has been used to reflect the extent to which there
exists some exact solution of a given set of equations which resembles a digital-solution from a digital
computer. The term (and Theorem) is also invoked in studies of parameter estimation for perfect
parametric models (see, for example, Jansen and Kriegel, 1985 and the references therein). What
we are interested in here-is quantifying how well imperfect models reflect the behaviour of physical
systems given operational observational uncertainties: the shadowing of physical observations by
imperfect models. And its use in choosing between, refining, and combining the forecasts of distinct,
operational nonlinear forecastmg systems (Snzzth and Gilmour, 1996).

And for the weather? It would be interesting to determine the distribution of maximum tlmes which
operational models could shadow the (fixed) analysis.!® Inasmuch as determining the “correct” initial
condition requires a knowledge of the future weather, such an approach would not necessarily improve
real-time forecasts. On the other hand, if the perturbations required to shift the operational initial
- condition to the “model-correct” value contained some systematic structure, this structure could be
employed to improve future forecasts. In addition, projecting these “shadowing perturbations” in
terms of SV and BV might help to resolve the question of the best operational ensemble. In any event,
the experiment would provide an estimate of the true limit of predictability of current operational
models. :

By fixed we mean after any variational data assimilation has been applied to the observations (Talagrand and
Courtier, 1987 and references thereof). Shadowing in our case is concerned with the behaviour of the model over long
time-scales (weeks, months or more) not the interaction between the model and the raw data, which is usually dynamic
over shorter time scales. :
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temperature

time
Figure 6. The shadowing dilemma. Given a series of uncertain observations, indicated by the circles,
“the dot-dashed line indicates the forecast with minimizes the RMS error. It clearly out performs the
more realistic model started from the initial observation (the solid line). What we want to determine
is whether there exists another initial condition (e.g. the dashed line), consistent with the initial

observation, for which the trajectory of the realistic model passes within the uncertainty radius of a
series of observations.

6. CONCLUSIONS

Ensemble forecasting provides a new paradigm for deterministic prediction of nonlinear systems, a
paradigm which carries many practical implications. To distinguish the complications arising from
an imperfect model and those from an inexact knowledge of the initial state, we have considered
- ensemble forecasts in an éptimal forecast scenario and discussed the importance of a perfect (“on
the attractor”) ensemble of initial conditions. Given observations from a strange attractor subject
only to truncation error, one may construct an ensemble uniformly distributed over the quantization
hyper-cube, but this ensemble is flawed in that the true states of the system will not be uniformly
distributed. The selection of initial conditions consistent with the model is a nontrivial problem, even
when the noise process is known.

As expected from the non-uniformity of strange attractors (e.g. Nicolis et al. (1983), Benzi et al.
(1989), Neze (1989), Doerner et al. (1991), Smith (1994a) and references therein), both the pre-
dictability and the model forecast skill vary widely between different initial states in chaotic systems.
For systems of physical interest, the macroscopic structure of the attractor limits the utility of statis-
tics based upon infinitesimals: the uncertainty doubling time may tell us little about the time it takes
an infinitesimal to increase by a factor of four. An “effective” (average) growth rate applied to a
specific, short time (Lyapunov exponents) tells us even less. Neither quantity need reflect limitations
to prediction of finite uncertainties: as long as an uncertainty remains infinitesimal it poses no limit
to prediction!

The ensembles considered thus far have consisted of a set of similar initial conditions evolved under
the same model. The method employed to construct such ensembles should reflect the goals of the
forecaster; the properties of (right) Singular Vector ensembles and (infinitesimal) Breeding Vector
ensembles have been discussed. Constraints due to the infinitesimals upon which these methods are
based were noted, as was the importance of variations in the relevant optimization times for each.
Finite perturbations from either method may be unphysical; if the system evolves on an attractor of
dimension less than that of the state-space, then initial conditions in all (save analog) ensembles will
lie “off the attractor” with probability one; both the size of the perturbation and its orientation are
important.
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The distinction between “bad” forecasts due to high sensitivity of the system and “bad” forecasts
due to modelling error (each depending upon the location of the initial condition) has been stressed.
In the former case the forecasts are accountable, the latter case indicates model error. Ensemble
forecasts are accountable to the extent that the PDF reflects the evolution of a particular initial
observation: if the PDF appears to be “in error”, (for example, if the verification trajectory moves
to a region of zero probability density), we can account for this event as due to the finite size of our
ensemble. Increasing the size of the ensemble should reduce the frequency of such events. Outside
the optimal forecast scenario this need not occur; in which case we have evidence that, in addition
to uncertainty, a source of error exists, either within the model or within the selection of the initial
conditions. Accounting for such errors, in particular distinguishing system sensitivity from model
error, remains a major challenge to ensemble prediction.

If a perfect model is not available, one may also make ensembles over different types of models, or
ensembles of models over uncertain parameter values using the same model structure (see Beven
and Binley, 1992). In this case, uncertainty in the initial condition combines with variation in the
sensitivity of different models (and the system) in a manner which complicates the choice of a “best”
model. In particular, minimum RMS error criteria can be discredited (as they will consistently fail to
choose the perfect model). An alternative approach is to contrast how well various imperfect models
can shadow the observations.

Whether the ensembles are formed over initial conditions, or models, or both, the time at which the
probability density function of the ensemble, ;(s), becomes indistinguishable from its asymptotic
distribution, % (s) defines the true “limit of predictability” given this triplet of observation, model
and ensemble size. The ensemble forecast can contain usable information as long as it is distinguish-
able from %o, (s), but the question of whether or not a given forecast is “useful” is a complicated
one, dependent upon the goals of the user of the forecast. What we can be sure of is that once the
image of the ensemble remains indistinguishable from 4 (s), then the forecast is useless. Yet the
time scales for the onset of uselessness are significantly greater than those suggested by simple error
growth models. The very important question as to how long is “the very-long-range,” remains with
us.

APPENDIX LOW DIMENSIONAL SYSTEMS

The numerical results discussed above were based on calculation from three low dimensional chaotic
dynamical systems:

(a) The Lorenz (1963) system

dz
L eatoy | )
dy
- = —zz+rs—y (3)
fld—tz- = zy-— bz ' (4)

with the parameters ¢ = 10, r = 28 and b = %. ‘

(b) The Moore-Spiegel (1966) system, which describes the motion of a parcel of ionized gas in the
atmosphere of a star:

dz

EZ =y (5)
dy '

i (6)
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dz 9
= = —z—(t—r+rz)y—tz (7
with parameters t = 26 and r = 100. And
(c) The Rossler “hyper-chaos” system:
dw
- = —&+y) (8)
b _ w+ az + 9)
dt z |
dy
i b+ wy (10)
dz .
o = - dy , (11)

with the parameters a = 0.25, b = 3.00, ¢ = 0.05 and d = 0.50.
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