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1 Introduction

This paper is concerned with the predictability of the atmosphere and oceans on timescales
of days to decades. A variety of phenomena will be discussed, from individual weather
events through weather regimes and El Nifio, to decadal ocean-atmosphere fluctuations
and climate change. However, no matter what timescale or phenomenon is being consid-
ered, we shall be studying processes which are believed to be fundamentally chaotic.

A chaotic system can be defined as one whose evolution is sensitive to initial conditions.
However, this is not to say that the unpredictability associated with this sensitivity is only
of importance for initial-value problems. For example, determining the impact on climate
of doubling CO; is not primarily an initial value problem. Nevertheless, the fact that
the climate is chaotic has fundamental implications for the predictability of this type
of question. Just as initial conditions for a weather forecast are not perfectly accurate,
and hence can only be specified completely in terms of some probability distribution, so
also the formulation of a climate model (associated with the physical parametrisations
in particular) is only approximate, and again can only be specifed completely in terms
of some stochastic distribution. The instabilities that amplify uncertainties in the initial
state, may also amplify uncertainties in model formulation.

We start in section 2 with a discussion on predictability of initial value problems. As
suggested above, a fundamental quantity in this discussion is the forecast probability den-
sity function (PDF). The evolution of this PDF can be described in the first phase of the
forecast by linearised dynamics. The semi-major axes of the PDF are given by the dom-
inant singular vectors of the linear evolution operator (using the so- called Mahalanobis
inner product). We relate these singular vectors to more familiar quantities associated
with eigenmode growth on the one hand, and to Lyapunov exponent growth on the other.
We also discuss the relationship of singular vectors and so-called breeding vectors.

In section 3, we apply the methodology developed in section 2 to study predictabil-
ity associated with a variety of phenomena on timescales ranging from days to seasons.
In particular, the singular vector instability of individual extratropical weather systems,
and of the coupled ocean-atmosphere El Nifio/Southern Oscillation, is studied. For ex-
ample, we demonstate the endemic upscale energy cascade associated with extratropical
predictability, and indicate that this effect is much less predominant in the tropics. In
doing this a new interpretation of the Charney-Shukla paradigm for large-scale tropical
predictability is given.

In section 4, we discuss the predictability of forced problems (predictability of the
second kind). Explicit examples are given using both the Lorenz 3-component model,
and the global circulation models (GCMs). We develop a basic nonlinear paradigm for
analysing the response to an external perturbation. The basic notion is that the influence
of a weak external forcing is greatest in regions of phase space where the system is partic-
ularly unstable; however, the response of the system is greatest in regions of phase space
where the system is particlarly stable. The extratropical response of the atmosphere to
extratropical sea surface temperature (SST) anomalies is discussed using this paradigm.

In section 5, the predictability of natural fluctuations of the climate system on decadal
timescales is discussed on the basis of a number of GCM integrations. One fundamental
question concerns the relative contribution of the atmospheric and oceanic dyamics in
contributing to observed decadal variability. It is found that, even on decadal timescales,
the role of purely internal atmospheric variability is not negligible. This itself implies that
the predictability of decadal fluctuations may not be strong. However, in addition, it is

suggested that the role of the extratropical oceans is basically to redden the spectrum
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of atmospheric variability, eg by increasing the typical residence time of the atmospheric
state vector within a weather regime. As such, decadal atmospheric variability linked
directly to decadal SST variability may not itself be strongly predictable.

In section 6, the nonlinear paradigm discussed earlier is applied to the problem of
climate change. We assess whether or not the observed warming of the atmosphere can
be attributed to the greenhouse effect. It is suggested that the observed warming over the
past few decades can be largely interpreted in terms of an increase in the frequency of one
of the dominant regimes of the extratropical flow. Singular vector analysis suggests that
this regime may be most sensitive to forcing in the tropical west Pacific warm pool region.
This therefore may be the most critical area for understanding how enhanced COy may
- influence global climate. The predictability implications of this analysis are discussed.

In section 7, some remarks are made about the rationalisation of climate and weather
prediction models.

In this paper, we shall make some use of low-dimensional chaotic models. This does not
imply that I think that the climate necessarily has a low-dimensional attractor. Rather,
for some purposes, I believe the use of relatively simple models can be helpful to illustrate
basic processes. On the other hand, as (singular vector) calculations in the body of the
text suggest, there are other circumstances where comparison with a turbulent fluid may
be more appropriate.

2 PREDICTABILITY OF THE FIRST KIND

2.1 The forecast probability density function

As mentioned in the introduction, we can distinguish two basic types of prediction. Fol-
lowing Lorenz (1975), predictions of the first kind are initial value problems (eg medium-
range weather forecasts with an atmosphere model, or seasonal forecasts with a coupled
ocean-atmosphere model). Predictability of the first kind is therefore concerned with the
question of how uncertainties in the initial state evolve during the forecast and limit its
skill.

The predictability of a system is strongly dependent on its stability properties. If the
system is particularly unstable, then any uncertainty in the initial state that projects
significantly onto one of these instabilities will severely limit the skill of an initial-value
forecast. Let us try to be more precise. Suppose we represent the uncertainty in the initial
condition for a prediction of the first kind in terms of a PDF in some finite m-dimensional
phase space. For example, for each direction in phase space, let us assume this PDF to be
normally distributed about our best estimate of the initial state. The standard deviation
of this normal distribution will, in general, vary with direction. However, we can define a
metric on the phase space (local to the initial condition) so that the standard deviations
are independent of direction (see section 2.7 for a more explicit description of this). With
respect to this metric, the PDF will now be isotropic, and isopleths of the PDF will bound
an m-dimensional ball (see Fig 2.1a).

A quantitative measure of predictability can be defined in relation to the properties
of the evolution of this initial PDF. In the early part of the forecast, error growth is
governed by linear dynamics. During this period, initially spherical isopleths of the PDF
will evolve to bound an m-dimensional ellipsoidal volume (see Fig 2.1b). The major axis of
the ellipsoid corresponds to a phase-space direction which defines the dominant instability
of that part of phase space. The ratio of the standard deviation of the PDF along this
major axis, compared with the initial standard deviation, is a measure of the amplification
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Figure 2.1: Schematic evolution of the probability density function (PDF) of forecast error.
Initially (a) the analysis error distribution is isotropic (with respect to the appropriate Maha-
lanobis metric). During the linear stage of evolution (b), the error ball evolves into an ellipsoid.
A vector pointing along the major axis is shown in (b), and its pre-image at initial time is
shown in (a). The weakly nonlinear stage of evolution is shown in (c). During this phase, there
is significant agreement between the evolution of the vector in (b) and the principal direction in
which the distance of an isopleth of probability from the mode of the distribution is maximal. In
the strongly nonlinear stage of evolution (d), the relationship between the PDF and the evolved
directions of the major axes of the linear ellipsoid breaks down. Total loss of predictability (e)
occurs when the PDF essentially covers the attractor.

rate associated with this dominant instability (and indeed is a measure of the [ norm
of the operator which maps initial perturbations to forecast perturbations). In addition
to this major axis direction, there may be other orthogonal directions in which the initial
PDF has amplified significantly; these clearly define secondary directions of instability.

Belore giving a quantitative description of this linear stage, we show (schematically)
three further stages in the evolution of the forecast PDF. The growth of the PDF between
Fig 2.1b and Fig 2.1c could be described as ‘weakly nonlinear’. In Fig 2.1c the PDF has
deformed from its ellipsoidal shape in Fig 2.1b. From the centroid of this PDF, one can
define directions D; for which the distance from the centroid to a chosen isopleth of the
PDF is maximised. During the weakly nonlinear period, the evolution of the major axis
directions E;, from Fig 2.1b to Fig 2.1c will be close to the directions D;.

The growth of the PDF after Fig 2.1c can be described as ‘strongly nonlinear’. In
particular, for the PDF in Fig 2.1d, there may be no correspondence between the dominant
directions D; (defined as above) and the directions corresponding to evolution of the major
axis directions in Fig 2.1b. For example, it might be that one of the dominant directions
shown in Fig 2.1d arose from the evolution of a minor axis direction in Fig 2.1b. Although
the evolution of the PDF is strongly nonlinear, predictability has not necessarily been
lost at the stage corresponding to Fig 2.1d. Rather, predictability is lost when the PDF
isopleth has evolved to cover the entire attractor (¢f Fig 2.1e).

It should be noted that the timescales associated with the ‘linear’, ‘weakly nonlinear’
and ‘strongly nonlinear’ phases of evolution depend on which isopleth of the PDF one is
considering. An isopleth of small probability will bound a larger volume at initial time
than an isopleth of large probability. Consequently, the timescales will be shorter for the
small-probability isopleth. In practice, for numerical weather prediction, there is evidence
that errors of about one standard deviation of the analysis error PDF evolve linearly for
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2-3 days, and that the ‘weakly nonlinear’ phase lasts until about day 7 of the forecast (see
section 3.3).

2.2 Singular Vectors

Let us try to quantify further the linear stage of evolution of the forecast PDF between Fig
2.1a and Fig 2.1b. Let us suppose our basic system is described by the (m-dimensional)
nonlinear evolution equation

X
— =MX] (2.1)

Consider a small perturbation x of the state vector X. For sufficiently short time intervals,
its evolution can be described by the linearised approximation

dx

— =M .

dt X (2 2)
of (2.1). M, = %—g— |x() is the linear evolution operator evaluated on the nonlinear

trajectory X (¢).
Equation (2.2) can be written in the integral form

x(t) = L(t, to)x(to) (2.3)

In practice, we estimate L in (2.3) by splitting up the trajectory into many short quasi-
stationary segments. For each segment we can write

L(tz’, tj) = elti—ti) M (24)

(Because the full trajectory segment is time-varying, we cannot, in general, write L(t, %)
in terms of the operator exponential.)

The operator L(¢,1o) is referred to as the forward tangent propagator; it maps small
perturbations along the (nonlinear) trajectory from an initial time ¢y to some future time
t. For the application to weather prediction, if x(o) is the typical error in the initial
conditions for a weather forecast, then (2.2) and (2.3) hold for approximately 2-3 days of
integration time.

We now define an inner product (x;y), which in turn defines a metric on the tangent
space. Following the discussion above this inner product is not arbitrary, it is defined
so that the PDF of the initial conditions is isotropic. As discussed in section 2.7, the
atmospheric PDF appears reasonably isotropic using an inner product based on total
perturbation energy. Using (2.3), the perturbation norm at time ¢ is given by

()] = (x(£);x(t)) = (x(to); L"Lx(to)) (2.5)

where L* is the adjoint of L with respect to the energy inner product. Note that if L is
represented in matrix form, then L* is just the matrix transpose of L.

Unlike L itself, the operator L*L (sometimes referred to as the Oseledec operator, eg
Abarbanel et al, 1991) is easily shown to be symmetric. Hence its eigenvectors v;(to) can
be chosen to form an orthonormal basis (assumed complete) in the m-dimensional tangent
space of linear perturbations, with real eigenvalues o? > 0 (eg Noble and Daniel, 1977)
i.e.

(L*L)vi(to) = olwi(to) (2.6)
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At future time ¢, these eigenvectors evolve to »;(t) = Lw;(tg) which in turn satisfy the
eigenvector equation

(LL*)Vi(t) = O',?lli(t) (27)
From egs. (2.5) and (2.6),

lw:(* = (vi(to); L"Lw; (ko)) = of (2.8)

Since, by completeness, any x(t)/||x(¢0)|| can be written as a linear combination of the
set w;(t), it follows that

LIGTA

m“"”‘(t°>¢°(||x<to>n

Following the terminology of linear algebra, the o;, ranked in terms of magnitude, are
called the singular values of the operator L and the vectors ;(t) are called the singular
vectors of L. Maximum energy growth over the time interval ¢ — ¢y is therefore associated
with the dominant singular vector: vy (to) at initial time, and »4(¢) at optimisation time.
Following the discussion above, the »;(t) define the directions of the axes of the forecast
PDF ellipsoid, with #(t) defining the major axis, v5(t) the second major axis, and so
on. The directions at initial time that evolve into these axes are given by w1(to), ¥2(to)
respectively. The amplification of the PDF standard deviations associated with these
directions are given by the o;.

As far as I am aware, a discussion of singular vector growth in meteorology was first
given by Lorenz (1965).

(2.9)

2.3 Correspondence with ‘Normal’ Mode Instability

Singular vector analysis is in some sense a generalisation of classical normal mode in-
stability analysis. This can be made explicit by linearising about a stationary solution
of (2.1), so that normalised eigenvectors §; of M; with eigenvalues y; give rise to modal
solutions £;e#(=%) of (2.2). The integral operator L(t,t,) can be written as elt=t)Mi,
with eigenvectors £; and eigenvalues e(t—to)#:,

For application to atmosphere-ocean dynamics, the linear evolution operators associ-
ated with realistic basic state flows are never normal (ie L*L # LL") because of vertical
and horizontal shear (eg Farrell and lIoannou, 1996). Now, it is common meteorological
parlance to call any modal eigenvectors as ‘normal’ modes. However, for any meteorolog-
ical basic state these eigenvectors are not eigenvectors of a normal operator (and hence
not normal). In future we refer to such eigenvectors as ‘eigenmodes’ (hence the quotation
marks in the title of this sub-section). However, irrespective of normality, eigenvectors g,
and eigenvalues 6; of the adjoint operator L* satisfy the biorthogonality condition

(s — 07 )(mi5€:) = 0 (2.10)
where ‘cc’ denotes complex conjugate. This condition ensures that the eigenvalues of
an eigenvector/adjoint eigenvector pair that are not orthogonal, must form a complex
conjugate pair. The magnitude of the inner product (g;;§;) for such eigenvector pairs

equals the cosine of the angle, ¢, they subtend in phase space.
If an initial disturbance comprises a linear combination of the eigenmodes §; so that
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Figure 2.2: This diagram illustrates schematically the crucial difference between eigenmode and
singular vector growth, and the relationship between singular vectors and adjoint modes. See
text for details.

x(t) =3 i et th) (2.11)

2

then from the biorthogonality condition (2.10)

ci = (g;;%(t0))/ (m;;€;) (2.12)

From (2.11), the fastest growing eigenmode will ultimately dominate the linear combi-
nation. Hence for sufficiently long optimisation times, the dominant singular vector at
optimisation time will correspond to the most unstable eigenmode. (Since the singular
values are real, whilst the eigenvalues are complex, there is an arbitrary phase factor that
has to be defined to make this correspondence precise.)

In order to maximise the contribution of the first eigenmode at optimisation time, ¢
in (2.11) should be as large as possible. If x(%p) equals £, then from (2.12), ¢; = 1 which
could be highly sub-optimal. In fact, if x(¢o) projects onto #;, then ¢; is maximised and
is given by the projectibility factor 1/(cosay) (Zhang, 1988).

Hence, for indefinitely long optimisation time, the dominant singular vector, at initial
time, is determined by the first adjoint eigenmode, whilst the dominant singular vector
at optimisation time is determined by the first eigenmode itself. The singular value will
depend on both the e-folding time of the dominant eigenmode and its projectibility. For
finite optimisation time, the dominant singular vectors will no longer project onto individ-
ual eigenmode solutions (and their adjoints), and the amplitude of finite-time instabilities
need not be bounded by properties of the dominant eigenmodes alone.

Fig 2.2 illustrates schematically the crucial difference between eigenmode and singular
vector growth, and the relationship between singular vectors and adjoint modes. An
idealised 2-D system has two very non-orthogonal decaying eigenmodes &, and £,. We
take £; to have the larger real eigenvalue component. The adjoint eigenmodes g, and 7,
are shown with ,,5, orthogonal to £,,£; respectively (according to the biorthogonality
condition 2.10). A normalised vector ¥, is shown parallel to 5,. Its time evolution can
be estimated by mapping the tip and tail of »g along the £ and €, directions (shown as
dashed lines ) using the modal decay rates. The sequence of vectors »,, n = 1,2, ... giving
the time evolution of v, increases in amplitude up to some finite n = N and is aligned
almost entirely with £, for large n. The projection of »,, onto £, for large n is much larger
than that associated with the evolution of a second normalised vector p, which is initially
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aligned along &;. The sequence w»,, n = 1,2,... describes singular vector growth over a
long time interval. The transient growth of the singular vectors in such systems was first
noted by Orr (1907), and a review of this process in plane parallel shear flow (and its
relationship to wave overreflection) is discussed in Lindzen (1988).

2.4 Correspondence with Lyapunov Exponent Growth

If, instead of linearising about a stationary flow, let us consider the other extreme of
linearising about a (time-evolving) trajectory portion which is sufficiently long to approx-
imately cover the entire climate attractor.

Specifically, if we apply the forward tangent propagator N times from to so that

x(tn) = L(tn, ta—1)X(tn-1) (2.13)

with t, — t,—1 = At a unit time interval, then according to the Multiplicative Ergodic
theorem of Oseledec (1968), the eigenvalues of the Oseledec matrix

[L(ta, to), L(tn, to)]5 (2.14)

are independent of initial conditions as n — oo, and hence are invariants of the dynamical
system. The logarithms of these eigenvalues are the Lyapunov exponents [;.

It is straightforward to see that the singular values o; of the propagator L(t,,t) are
related to the Lyapunov exponents by the equation

ls = limn oo [-71; In o (2.15)

From this, some authors (eg Abarbanel et al, 1991) define the local Lyapunov exponents
li(t1,10) of the attractor between t; and ?; as

1
li(tl,to) = mlna'i(tl,to) (216)

The corresponding singular vectors can therefore be referred to as local Lyapunov vectors,
although it should be noted that this terminology is not universal (eg Toth and Kalnay,
1996).

2.5 Projection Operators

Singular vectors are, in general, not modal. For the application in section 3.2, their shapes
evolve not only in geographical space but also in their spectral distribution of energy. As
we shall see for extratropical weather systems, this spectral evolution describes, in a linear
context, the upscale energy transfer associated with turbulent processes. In order to study
this upscale energy transfer more explicitly we introduce a spectral projection operator
Pin, n,] Where [n1,n5] denotes the total wavenumber interval ny < n < ng. Py ny) 18

defined as

Plono)Xn = Xn if ne[ng,ny]
Py najXn = 0 otherwise (2.17)
Here x, is the wavenumber n component of the spherical harmonic expansion of the

(atmospheric) state vector. If we wish to find perturbations, initially constrained to be
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in [n3,n4), with maximum energy in [n1,ny), these are given by the singular vectors of
Plny,n2]LPng ny- A similar projection operator can be applied to study singular vectors
whose energy is optimised to a specific geographical area (for applications, see Buizza and
Palmer, 1995; Hartmann et al, 1995).

2.6 Numerical Solution

When systems with a large number of degrees of freedom (eg 0(10%) or more) are consid-
ered, the eigenvalue problem (2.6, 2.7) cannot be solved using direct methods. However,
iterative techniques provide an alternative possibility if the adjoint propagator has been
coded. The power method, whereby a random initial vector is operated on repeatedly
by L*L, is an example. A more sophisticated technique such as the Lanczos algorithm
(Strang, 1986) is required if more than the largest singular vector is required. More re-
cently, calculations with the Jacobi-Davidson method (Sleijpen and van der Vorst, 1995)

has proved both efficient, and allowed estimation of generalised eigenvectors (see section
2.7 below).

2.7 Singular Vectors and Eigenvectors of the Forecast and Analysis Error
Covariance Operator.

We discussed above the notion that there is a natural inner product defined such that
the PDF of the initial state is isotropic with respect to this metric. In this section we
shall show this more explicitly, and give evidence that the total energy is a reasonable
approximation to this preferred inner product.

Consider an initial state of an operational weather forecast, determined by the oper-
ational data assimilation system. We can think of this initial state as a point X in the
phase space of the numerical weather prediction model. Now, as mentioned, a complete
operational data assimilation system should be able to determine not only the initial state,
but also an estimate of the probability that the initial state is in error by a given amount.

To make this idea more precise, let us consider the (linear) vector space Tx tangent
to X, and let du denote the probability that the error lies in a small volume at the
point e'eTx(ie ;i is a measure on Tx). Here we shall use some elementary tensor algebra,
with the convention that repeated indices imply summation. Let us assume that the
operational analysis is our best unbiased estimate of truth, so that at initial time

m! = /e’d,u =0 (2.18)

The covariance of analysis error associated with this measure is given by the contravariant
second-rank tensor

CY = /eiejdp (2.19)

The linear transformation (2.3) between Tx(,) and Tx(; can be written (in index form)
as

& = Lief | (2.20)

which takes analysis errors e’ to forecast errors é'. In terms of this linear mapping, the
covariance matrix is transformed as a second rank tensor to the forecast covariance
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CH = LF;1};,C% (2.21)

Now we are going to define a metric g;; which defines the (scalar) inner product
s = gty (2.22)
between any two vectors z* and y’. There are many choices of inner product possible;

however, we shall single one out as being special. It is the metric in which the analysis
error covariance tensor is isotropic, ze is defined so that

C“gjk — &) ‘ (2.23)
the right hand side being the Kronecker delta. This can be written equivalently as
O = g¥ (2.24)
where
g7 gik = 6% (2.25)

defines the inverse or contravariant metric.
With this choice of metric, the forecast error covariance operator can be written

Ck = kL (2.26)
Equation (2.26) can be expressed in matrix form
C=LL" (2.27)
where
L%, =L (2.28)

is the adjoint propagator. Hence with the specific choice of metric (2.24), the eigenvectors
of C are precisely the evolved singular vectors of L. The vectors at initial time which
evolve into these directions at the forecast time are given by the corresponding initial
singular vectors of L. This choice of metric is sometimes known as the Mahalanobis
metric (eg Mardia et al, 1979).

How do we define a metric in practice? Three simple choices are based on the enstro-
phy, energy and streamfunction squared. The spherical harmonic spectrum of typical 48-
hour enstrophy and energy-norm singular vectors are shown in Fig 2.3 at initial (dashed)
and at final (solid) time. The enstrophy spectrum (Fig 2.3a) of the enstrophy SVs are red
at initial time, blue at final time. Because of the large enstrophy amplification, values at
initial time are multiplied by 40 to plot them on the same scale as final values. (However,
Fig 2.3b, which has no rescaling, shows that there is little energy amplification associated
with these enstrophy SVs.) By contrast, the energy spectrum (Fig 2.3c) of the energy
SVs peaks at sub-synoptic scales at initial time and at synoptic scales at optimisation
time.

We now want to compare these spectra with spectra of analysis error. As a surrogate
for a set of analysis error fields, let us take the differences between analyses made during
periods when the ECMWTF operational system and some (potentially operational) experi-
mental system were being run in parallel. We have chosen two different periods when such
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parallel tests were being made. The first corresponded to the testing of an experimental
model formulation, the second to the testing of an experimental analysis methodology (3-
dimensional variational data assimilation, 3DVAR). Twenty one analysis difference fields
were taken from each period. The total horizontal wavenumber spectra of the energy,
enstrophy, and streamfunction squared difference fields associated with the northern ex-
tratropical component of these difference fields are shown in Fig 2.4a-c respectively. It is
clear that in terms of energy, the difference field is indeed almost white. By contrast, the
enstrophy spectrum is blue and the streamfunction squared spectrum is red. (Molteni
et al, 1996, have demonstrated that these results can be replicated using difference fields
from operational analyses from different operational centres.) Comparing 2.4 with 2.3 we
can rule out enstrophy as a suitable metric (the initial enstrophy singular vectors have
no amplitude on small scales, whilst the analysis errors have all their enstrophy on small
scales). A streamfunction metric would also be ruled out (although not shown, an initial
streamfunction singular vector is strongly peaked at high wavenumbers). Only the energy
metric shows some consistency between singular vector and analysis error structure.

A more accurate estimate of inner product is, in principle, available from the SDVAR
data assimilation system. In 3DVAR a cost function J based on both data and a first
guess error, is minimised. The second derivative, or Hessian, of the cost function gives
a measure of the analysis error covariance. In terms of the Hessian, the singular vector
computation becomes equivalent to a generalised eigenvector problem. In 3DVAR the
Hessian is known in operator form (Fisher and Courtier, 1995). Tests are in progress,
using the Jacobi-Davidson scheme, to estimate the corresponding singular vectors using
this Hessian. Further generalisation, in which the background error covariance in the

Hessian is flow dependent, will be possible with the development of Kalman filter schemes
(Bouttier, 1993).

2.8 Correspondence with breeding vectors

Toth and Kalnay (1993, 1995) have discussed a technique which they use to generate
initial perturbations for the NMC model. The technique is referred to as ‘breeding’,
and is simply described. A random initial perturbation is generated with a specified
amplitude, characteristic of a typical uncertainty in the initial state. Two integrations are
run over a specified cycle time (eg 12 hours). The first is an integration of the operational
weather prediction model from the operational initial state. The second integration is
made using the same model, but is initialised by adding the perturbation to the operational
analysis. At the end of the integration period, the difference between the two integrations
1s renormalised using the specified amplitude. The process is repeated for the next cycle
time using the renormalised perturbation to generate the perturbed initial state.. The
process is repeated ad infinitum. Toth and Kalnay (1995) call the breeding vectors,
local Lyapunov vectors. Clearly they are not entirely local, depending on the history of
evolution of the breeding vector. A more accurate description would be in terms of the
local orientation of the global Lyapunov vectors (L. Smith, personal communication).

It is claimed that the breeding method mimics the analysis cycle that is used to
generate operational initial conditions. As a result, it is argued that analysis errors will
tend to rotate into the direction of the breeding vector. As discussed in section 3.3 below,
the singular vectors form the basis for the calculation of initial perturbations for the
ECMWF ensemble prediction system. How do the growth and spectrum of the breeding
vectors compare with the singular vectors?

In order to discuss this question, I would like to show some results from a set of
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Figure 2.3: (a) Average enstrophy (s~2) spectrum of the first 16 enstrophy-SVs at initial (dash,
x40 10'6) and final (solid, x10%6) time, (b) average energy (per unit mass) spectrum (m? s2)
of the first 16 energy-SVs at initial (dash, x40) and final (solid, x40) time, and (c) average
energy spectrum of the first 16 energy-SVs at initial (dashed, x40) and final (solid) time, for 6
April 1994. From Molteni et al (1996).
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Figure 2.4: The mean 2D total wavenumber spectrum of analysis difference fields in terms of a)
energy, b) enstrophy, ¢) streamfunction variance. This mean has been calculated over 42 analysis
difference fields, based on experimental operational analysis code and the operational suites
at ECMWF. The experimental suites involve both different model formulations and different
analysis technique (R. Gelaro, personal communication).
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Figure 2.5: The growth of orthogonal perturbations produced by the breeding method (solid
line) and the singular vector method (dashed line), over a typical 12 hour period, based on
the T21L3 quasi-geostrophic model of Marshall and Molteni (1993) (J. Barkmeijer, personal
communication).

integrations of a 3-level quasi-geostrophic model (as formulated by Marshall and Molteni,
1993). In these integrations, the spectrum of breeding vectors has been compared with
the spectrum of singular vectors over a 12 hour cycle time (for the breeding method)
and a 12 hour optimisation time (for the singular vectors). These calculations have been
performed by J. Barkmeijer (personal communication).

Fig 2.5 shows a typical spectrum for the singular vectors and the breeding vectors.
The spectrum of the breeding vectors is very flat. The fastest growing perturbation grows
by a factor of 1.4, the 200th perturbation grows by a factor of 1.1. In fact there are
typically between about 250 and 300 growing directions as determined by the breeding
method. By contrast the dominant singular values are much faster growing, and decay
more rapidly with singular vector number. The fastest growing singular vector grows by
a factor of 9.3, the 200th perturbation is actually decaying. In fact it can be shown that
because of the flat spectrum, even small amounts of nonlinearity prevent the breeding
vector from converging to a Lyapunov vector.

It can be asked whether the dominant singular vectors and breeding vectors correlate
with one another. In general they do not. At initial time the singular vectors are domi-
nated by sub-synoptic scales, whilst the breeding vectors are dominated by synoptic scales
(for stationary basic states they would be given by the synoptic-scale eigenmodes). As
such their spatial correlation is close to zero. At optimisation time, the singular vectors
evolve towards synoptic scales and the correlation with the dominant breeding vectors
increases, though only to values of about 0.2 (in the T21QG model).

Using these results, and those from the last section, I believe that it is possible to
make the following conclusions about the relationship between the breeding vectors and
the PDF of analysis error. Firstly, since the spectrum of breeding vectors is extremely
flat, there is no particular reason why the analysis error should project more onto the
leading breeding vectors. Of course, if one had enough breeding vectors (and if they
were suitably orthogonalised) then any perturbation, including the analysis error, should
project into the space spanned by these vectors. However, it appears from the results
above that the number of such vectors would have to be a significant fraction of the phase
space dimension.

In fact, in my opinion, even if the spectrum of breeding vectors was in fact much
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steeper, it is questionable whether the analysis error would ever rotate into the direction
of a leading breeding vector. The reason for this is to do with the role of observations in
the analysis cycle. As discussed eg by Hollingsworth (1987) and Daley (1991), operational
analyses blend observations with a first-guess field in a scale-dependent manner. On large
scales, the observations carry more weight than the first guess field, whilst on small scales
the first guess carries more weight than the observations. Therefore, in my opinion, to
represent the role of observations, one would require, within each breeding cycle, the
breeding vector to undergo a phase-space rotation (and not just a renormalisation as
is actually done). This phase-space rotation would continually “frustrate’ the breeding
vector’s attempt to rotate towards some dominant Lyapunov direction.

The NMC assumption that analysis errors rotate into a selection of preferred directions
can be compared with the ECWMF philosophy in which (cf section 2g) it is assumed
that there are, in fact, no preferred phase-space directions for the analysis error (ie with
respect to a suitable inner product, the PDF of analysis error is relatively isotropic). This
assumption has been verified for local European forecasts by Barkmeijer et al (1993).

There is one other important difference between the breeding and singular vector
methodology. The singular vectors are computed over the period in the immediate future
of the initial analysis, whilst the breeding method refers to the period leading up to the
initial analysis. This is why singular vector perturbations define, amongst all the a prior:
equally-likely initial directions, those which give rise to the largest possible forecast error.

Nevertheless, perturbations using both breeding vectors and singular vectors have
proven useful for medium-range ensemble prediction. It is possible that differences be-
tween the two techniques becomes less important as one evolves towards the ‘strongly
nonlinear’ PDF regime (see Fig 2.1).

3 EXAMPLES OF SINGULAR VECTORS

3.1 A baroclinic singular vector

Fig 3.1 shows the dominant singular vector calculated using the ECMWF primitive equa-
tion model (Simmons et al, 1989; Courtier et al, 1991), for a 3-day trajectory portion
made from initial conditions on 9 January 1993, at three levels in the atmosphere (200
hPa, 700 hPa and 850 hPa) at initial and optimisation time. The figure illustrates some
features which bear qualitative resemblance to an idealised baroclinic eigenmode (Char-
ney, 1947; Eady, 1949): the disturbance clearly amplifies as it propagates through the
region of maximum baroclinity (where north-south temperature gradients are strongest),
and the disturbance shows evidence of westward tilting phase with height, consistent with
a northward flux of heat.

On the other hand, the figure also clearly illustrates the non-modal nature of the dis-
turbance. At initial time the disturbance is localised near the north Atlantic jet entrance
region; at optimisation time the disturbance has propagated downstream to Europe. At
initial time, maximum disturbance amplitude is located in the lower troposphere, whilst at
optimisation time maximum amplitude is located in the upper troposphere at the level of
maximum winds (c¢f Farrell, 1989). Finally, the horizontal scale of the initial disturbance
is noticeably smaller at initial time than at optimisation time.

As discussed in section 2, singular-vector structure can be related to the Orr (1907)
process for transient growth (in asymptotically stable flows). As discussed in Lindzen
(1988), the Orr mechanism essentially operates in shear flow from a critical layer. The
vertical structure of the singular vectors underpins this relationship. For example, under
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Figure 3.1: Streamfunction of the dominant atmospheric singular vector calculated using a
primitive equation numerical weather prediction model for a 3-day trajectory portion made
from initial conditions of 9 January 1993 at three levels: 200 hPa a) d), 700 hPa b) e), 850 hPa
c) ). a)-c) - initial time. d)-f) - optimisation time. Contour interval at optimisation time is 20
times larger than at initial time. From Buizza and Palmer (1995)
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certain assumptions (steady zonally symmetric basic state flow which is slowly varying
in the vertical) the wave-action E/(w — kug) of a linear disturbance with energy E,
zonal wavenumber k and frequency w will be conserved as it propagates vertically on the
background flow ug. Optimal energy growth will tend to be associated with propagation
from a region of small intrinsic frequency ( near the baroclinic steering level, to a region
of large intrinsic frequency (such as might occur near the jet level).

The horizontal-scale evolution of the singular vector is explored further in Fig 3.2 which
shows the energy distribution of the singular vector at initial and final time, as a function
of total wavenumber. Fig 3.2a shows the spectral distribution of the disturbance shown
in Fig 3.1 peaking near the truncation limit at initial time (dashed line) and at about
wavenumber 10 at optimisation time. This upscale energy transfer can occur because the
basic state (unlike those in many idealised calculations) is itself an unrestricted solution
to the equations of motion, and, in particular contains scales comparable with those in
the disturbance field. This allows triad interactions between the disturbance field and the
basic state.

Fig 3.2b,c shows the spectral distribution of two further singular vector calculations
made using the same trajectory. In these calculations, the spectral projection operator
(2.17) has been applied both at initial and optimisation time. For both calculations, the
operator at optimisation time maximises energy between wavenumbers 0 and 10. The
initial perturbation is constrained to wavenumbers 0-10 in Fig 3.2b and to wavenumbers
11-20 in Fig 3.2c.

The results are quite dramatic. Constraining the perturbation to have the same energy
distribution in wavenumber space at initial and final time (which an eigenmode solution,
if it exists, must have), severely restricts perturbation growth. On the other hand, con-
straining the perturbation at initial and final time to have energy in nom-overlapping
wavenumber intervals hardly restricts energy growth at all (see Hartmann et al, 1995, for
more details).

These calculations illustrate, in a linear context, the ‘butterfly effect’ in its original
sense (Lorenz, 1963b), ie that small-scale initial disturbances can ultimately have an
overwhelming influence on large-scale disturbances. This is in addition to the commonly
perceived meaning of the butterfly effect that small-amplitude initial disturbances will
ultimately have an overwhelming effect on large-amplitude disturbances. (In fact, Lorenz
refers to the influence on the weather of a flap of a sea-gull’s rather than a butterfly’s wings.
In view of the location of the initial singular vectors over the west Atlantic ocean, rather
than, say, over Amazonia, this original metaphor is in this case fortuitously appropriate!).
The upscale cascade associated with the butterfly effect has been modelled in a turbulent
rotating fluid context by Lilly, 1983 and Metais et al, 1994 (see also section 3.2).

The accumulation of initial energy towards the truncation limit suggests that a signif-
icantly more accurate estimation of singular vector growth should be obtainable using a
higher resolution model. In fact studies using a T42 resolution tangent model confirm this
(Hartmann et al, 1995; Buizza et al, 1996). With this resolution, a significant fraction of
perturbation energy is located at subsynoptic scales at initial time, cascading to synoptic
scales at optimisation time (see also section 3.2). One practical consequence of this result
is that the predictability of synoptic scale weather may be determined more by uncer-
tainties in the initial state on scales much smaller than the disturbance itself, and less
by uncertainties on the scale of the disturbance. In particular, the notion that the pre-
dictability of synoptic scale weather is determined by the e-folding time of a characteristic
eigenmode is incorrect (confirming earlier results of Farrell, 1990).

As mentioned, although the structures of these baroclinic singular vectors are not
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Figure 3.2: Energy distribution of 3-day singular vector from 9 January 1993 as a function of
(total) wavenumber. Dashed - at initial time (x20). Solid - at optimisation time. a) For singular
vector shown in Fig 3.1 b) For singular vector with energy optimised for wavenumbers 0-10, and
constrained to wavenumbers 0-10 at initial time. ¢) For singular vector with energy optimised
for wavenumbers 0-10, and constrained to wavenumbers 11-20 at final time. From Palmer et al
(1994).
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modal, their geographical locations are more prevalent in regions of strong baroclinity.
Fig 3.3a for example, shows the ‘Eady index’

_ f du
o5 = 031 (3.1)

based on the a winter mean static stability and wind shear (from ECMWF data; for
details see Buizza and Palmer, 1995). (Of course the functional relationship between
the wind shear, Coriolis parameter and static stability in 3.1 are not particular to the
Eady model). Fig 3.3b shows the location of the dominant singular vectors at initial time
(based on their vorticity maxima) from daily calculations over a whole winter. It can be
seen that the singular vectors tend to be positioned in regions of strong Eady index, over
the east Asian/west Pacific region, the northeast American/west Atlantic region, and the
northern subtropical African region. The tropics and southern hemisphere extratropics
also appear in these northern winter statistics, though to a lesser extent.

3.2 Pseudo-Inverse Analysis

In terms of the singular vectors, we can decompose the forward tangent propagator L as,

L=Uxv~ (3.2)

where V contains the initial singular vectors, U the final singular vectors, and ¥ is a
diagonal matrix with elements o;. Within the subspace spanned by the dominant singular
vectors, we can define the inverse

Lt=vxlu (3.3)

In terms of the full phase space, L™! is related to the Moore-Penrose pseudo-inverse (for
more details, see Buizza et al, 1996).

By operating on a given forecast error field with the pseudo-inverse operator, an es-
timate of the unstable component of initial error is obtained. Some examples of this
pseudo-inverse field are shown in Buizza et al (1996) based on a 30 singular vector trun-
cation, and a 36-hour forecast error. By adding this estimate to the initial analysis, a
much superior forecast can be obtained, not only at 36 hours, but throughout the entire
medium-range. It should be noted that the pseudo-inverse component of initial error may
be small compared with the total error. Indeed, associated with the non-invertibility of
the full operator L, the forecast error will be insensitive to estimates of initial error in
strongly decaying directions.

This technique is closely related (but not identical) to the sensitivity analysis technique
(see section 3.5) in which the forecast error is integrated (backwards) using the adjoint
model itself (see Rabier et al, 1996; Buizza et al, 1996).

3.3 Comparison of tropic.ﬁl and extratropical singular vector growth: a paradigm
for tropical predictability.

It 1s clear from numerous studies that the large-scale tropical circulations are much more
strongly coupled to the underlying SST than are large-scale extratropical circulations. As
such, the prospects for extended-range prediction in the tropics are greater than for the
extratropics. Charney and Shukla (1981) were one of the first to rationalise this disparity
in behaviour between the tropics and extratropics. These authors argued that, from a
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Figure 3.3: a) Distribution of dominant singular vectors for a winter season. The position of
a singular vector is denoted by a black dot at the vorticity maximum at initial time. b) Eady
index (3.1) based on seasonal mean flow. From Buizza and Palmer (1995).
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Figure 3.4: Total wavenumber spectrum of mean energy the dominant 18 48-hour singular
vectors a) optimised over the tropics, b) optimised over the northern hemisphere extratropics.
The initial spectrum (x40) is given by the dased lines, the final spectrum is given by the solid
lines. The tangent propagator for these calculations had a T42 resolution.

dynamical point of view, the principal relevant difference between the large-scale tropical
and extratropical flows lay in their instability properties. The absence of generic large-
scale exponentially growing eigenmodes in the tropics makes more reproducible the effects
of slowly-varying lower boundary conditions associated, for example, with SST anomalies.

Whilst these considerations are clearly important and relevant, they cannot be con-
sidered complete. For example, the tropical flow is convectively unstable, and these in
turn contribute to the growth of synoptic-scale disturbances, eg associated with tropical
cyclones. However, it is known that inevitable errors in the initial conditions for atmo-
spheric seasonal integrations associated with tropical synoptic and subsynoptic flow, do
not infect the planetary scale circulations in the same ubiquitous way that is found in the
extratropics.

It is manifestly impossible to describe this difference in upscale energy cascade using
modal instability theory. On the other hand, as we have seen in the last section, singular
vector analysis is able to describe, within a completely linear framework, the inverse
cascade process associated with extratropical baroclinic growth.

Let us compare the spectrum of singular vectors calculated for extratropical and trop-
ical growth respectively. Fig 3.4 shows the spectrum of the first 18 singular vectors for a
particular (but typical) 36-hour period based on the T42 tangent model. Fig 3.4a shows
growth optimised for the tropics; Fig 3.4b shows growth optimised for the extratropics.
The solid line shows the energy of the singular vectors at optimisation time, the dashed
lines show the energy at initial time (multiplied by a factor of 40 to make them more
visible on the diagram).

The singular values for the extratropics are larger than those for the tropics. In
addition, the spectrum of tropical singular vectors is considerably more modal than the
extratropical spectrum. The spectrum peaks in the large synoptic scale, and therefore
indicates that error growth at these scales will not be dominated by error growth from

smaller scales.
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Figure 3.5: Wavenumber spectrum of kinetic energy of a laboratory turbulent fluid forced at
an intermediate wavenumber, for various rotation and stratification values. From Metais et al
(1994).

These results appear consistent with studies of inverse energy cascades in fully-developed
turbulence models, in which the Coriolis parameter is varied. Fig 3.5 (from Metais et al,
1994) shows the spectrum of kinetic energy in a stratified turbulent fluid forced at an
intermediate wavenumber (shown by the heavy arrow), for various rotation rates and
stratifications. Results show that in a strongly rotating regime, the energy spectrum is
an increasing function with increasing scale. However, in the nonrotating case, the energy
decreases with decreasing wavenumber. The influence of rotation appears to be associ-
ated with the dimensionality of the associated turbulence fields, and this dimensionality
determines the upscale cascade.

Hence, singular vector analysis is apparently able to distinguish between the differ-
ent cascade processes in low and high rotation rate regimes, and this, as much as the
intrinsic modal instability properties of the flow, may be important in distinguishing be-
tween the different predictability regimes in the tropics and extratropics. This may be
important in understanding the predictability of ENSO. Sarachik (1990), for example,
discussing an intermediate coupled ocean-atmosphere model of the tropical Pacific (see
section 3.6 for more details) notes that ‘..whenever the [model’s| mean state is unstable,
the resulting cycle is perfectly regular: instability (in this model) is therefore related to
perfect predictability’. Sarachik then notes that ‘..This paradigm of ENSO predictability
is radically different from our classical concepts of mid-latitude predictability’. However,
Sarachik does not explain why there should be two paradigms: one for the tropics, the
other for the extratropics. A possible explanation could be given in terms of the modality
of the associated singular vectors. In contrast with tropical singular vectors, the extra-
tropical singular vectors are profoundly non-modal and perturbation growth is therefore
susceptible to the ‘butterfly effect’ (¢f above). As discussed above, this non-modality and
associated upscale cascade can cause extratropical weather forecasts to fail before the
timescale set by any characteristic e-folding rate.
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3.4 Singular Vectors for Ensemble Forecasting

Singular vectors are used as the basis of initial perturbations for medium-range ensemble
forecasting. The basic rationale for thisis that we cannot sample explicitly, analysis uncer-
tainties in all the phase space directions, the dimension of a numerical weather prediction
model (at least O(10°)) is too large. Hence we sample explicitly directions in which anal-
ysis error is likely to occur and can lead to significant departures from the unperturbed
forecast. In the linear regime these are given by the dominant singular vector directions.
Hartmann et al (1995) have shown that up to about day 7, perturbations using singular
vectors have significantly larger spread than unstable synoptic-scale perturbations. This
would suggest that the ‘weakly nonlinear’ timescale (¢f section 2.1) lasts until about day
7.

Other directions (for example associated with decaying perturbations) can in principle
be taken implicitly into account in an ensemble forecast by giving the unperturbed forecast
a higher than average a priori weight compared with other members of the ensemble.

Fig 3.6 shows two examples of ensemble forecasts made from initial conditions one
week apart. The thin lines show the spread of the members of the ensemble forecast
relative to the unperturbed control forecast (using a correlation measure of spread). The
thick line shows the skill of the control forecast (using a correlation measure of skill). The
examples illustrate the desirable occurrence of low spread indicating high skill, and high
spread indicating relatively poor skill.

Obviously one cannot make any definitive conclusions based on just two results. The
interested reader is directed to a more complete description and validation of the ECMWF
ensemble prediction system in Molteni et al (1996).

3.5 Weather Regimes, Singular Vectors and Sensitivity Patterns

The concept of weather regimes is a long standing one (c¢f Grosswetterlagen; Hess and
Brezowsky, 1977), and is based on the notion that the large-scale flow may evolve around
various recurrent configurations. This notion was made more precise in modelling studies
(Reinhold and Pierrehumbert, 1982) who related the onset, maintenance and decay of
regimes to interactions of the large-scale flow with synoptic-scale variability. The existence
of such weather regimes in the real atmosphere has been inferred through observational
studies (eg Hansen and Sutera, 1986, 1995; Mo and Ghil, 1988, Molteni et al , 1990,
Cheng and Wallace, 1993, Kimoto and Ghil, 1993), though the existence of unambiguous
multimodality is still a matter of debate (Wallace et al, 1991). In many observational
studies, (eg Yang and Reinhold, 1991; Dole and Gordon, 1983 and Toth 1992), it is
suggested that baroclinic instability sets the timescale for the transition process betweeen
regimes. This timescale is much shorter than a typical residence timescale (on the order
of weeks). This two-timescale behaviour is consistent with the regime structure in the
3-component Lorenz model (see Fig 4.3 below).

Fig 3.7 shows two of the large-anomaly cluster centroids found by Mo and Ghil (1988)
(3.7a and 3.7b) and by Molteni et al (1990) (3.7c and 3.7d). Despite different clustering
algorithms, Figs 3.7a and ¢ correspond to one another quite well (as do Fig 3.7b and
d). The regime centroids have significant projection onto opposite phases of the Pacific
North/American (PNA) pattern (Wallace and Gutzler, 1981), though also have structure
over the Atlantic and EurAsia (¢f section 6 on climate change). By convention, the PNA
index of the fields in Fig 3.7a and c is positive, the PNA index of the fields in Fig 3.7b

and d is negative. For future reference, Molteni et al (1990) refer to Fig 3.7¢ as cluster 2,

105



PALMER, T.N: PREDICTABILITY OF THE ATMOSPHERE AND OCEANS...

a)

=

Q

(o

O 27

: ;

QO

(&

=

« 23

£ 3

(o}

c

< 32
L]
]

b)

= i

Q 19

Q

O 2

. L}

o 8

S 2

> 27

©

£

o

c

< | _ 2

1 500 hPa height
0 ' T ' T ' T T T 1
0 2 4 6 8 29 10
Day '

Figure 3.6: Ten-day ensemble forecast dispersion as measured by anomaly correlation between
500 hPa geopotential height of control and perturbed forecasts, over Europe (light lines). Skill

of 10-day control forecast (heavy line), a) forecasts from 30 October 1993, b) forecasts from 13
November 1993. From Palmer et al (1994).

106



PALMER, T.N: PREDICTABILITY OF THE ATMOSPHERE AND OCEANS...

Figure 3.7: Anomalies corresponding to the centroids of clusters 1 and 2 (a and b) found by Mo
and Ghil (1988), and of clusters 2 and 5 (c and d) found by Molteni et al (1990). In a) and b),
shading indicates statistical significance at the 95% confidence level.
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and Fig 3.7d as cluster 5.

Regimes can also be found in atmospheric model integrations. Fig 3.8a shows the
PDF from a 100 consecutive winter sample of a 1200 perpetual-winter integration of a
3-level T21 quasi- geostrophic model (Marshall and Molteni, 1993; Corti, 1994; Palmer et
al, 1994). The PDF is estimated in a phase-space plane spanned by two of the dominant
empirical orthogonal functions of the model (shown in Fig 3.8b). During this chosen
‘century’, the PDF is bimodal along an axis that corresponds to fluctuations in the North
Atlantic Oscillation.

As shown in Palmer (1988), low-frequency intraseasonal variability is stronger over
the PNA area during periods when the atmosphere resides in negative PNA states, than
positive. Consistent with this, medium-range forecasts are more skilful during positive
PNA periods (Molteni and Tibaldi, 1990). On longer timescales, it has been found from
both modelling and observational studies (Von Storch, 1988; Chen and Van Den Dool,
1996) that there is less low frequency intraseasonal variability over the PNA region during
warm-phase ENSO winters than cold-phase ENSO winters.

Evidence of variations in the instability characteristics of positive and negative PNA
states was discussed in Palmer (1988), who found that the growth of linear perturbations
in a barotropic model depended strongly on the sign of the PNA index of the basic-
state flow. However, it was noted that the difference in these growth rates could not be
explained in terms of differences in the eigenmode growth associated with the basic states.
Molteni and Palmer (1993) compared the growth rates of the fastest-growing eigenmodes
and the optimal singular vectors for the cluster 2 and cluster 5 flow in the barotropic
model. For the most unstable eigenmode (which is stationary in both cases) there is little
difference in growth rates for the two basic states. On the other hand, the dominant
singular values are quite different. In particular, for 8-day optimisation, the dominant
singular value for the cluster 2 flow is almost a factor of 2 smaller than that of the cluster
5 flow. The streamfunction of the final dominant singular vector for an 8-day optimisation
is shown in Fig 3.9 for the cluster 2 and cluster 5 basic states.

There are two important approximations that have been made in these calculations.
The first 1s the use of a barotropic model. The second relates to the fact that we have
chosen stationary basic states which are not themselves solutions of the equations of
motion. With regard to the second approximation, the error involved in using a stationary
basic state should at least be smallest for those states corresponding to observed cluster
centroids, since, by construction, these are, in some ensemble sense, closest to stationary.

The approximation involved in using the barotropic model is actually not as bad as
might be imagined at first sight. According to results in Molteni and Palmer (1993), 8-day
singular vectors of a realistic time-varying baroclinic basic state are (at final time) more
accurately represented by a time-averaged barotropic basic state than by a time-averaged
baroclinic basic state. The reason for this is that the instability of a time-averaged
baroclinic flow will tend to overly dominated by the baroclinic instabilities which relate
directly to the meridional thermal contrasts. Moreover, since the Rossby-wave structures
of such time-averaged flows are under-represented, the upscale cascade process discussed
in section 3.1 is weak. As a result, singular vectors from time-averaged baroclinic flows
tend, at final time, to be dominated by smaller scales than would occur with a time-varying
flow. By contrast singular vectors from time-averaged barotropic basic states (which also
evolve through upscale energy evolution) are dominated at final time by larger, more
realistic scales. :

It is of interest to ask, however, how one might go about calculating regime instabilities

without using such approximations. Let us represent the regime centroid by the a given
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Figure 3.8: a) 2-D cut of the PDF from 100 consecutive winters of a multi-decadal integration in
the T21L3 quasi-geostrophic model of Marshall and Molteni (1993). b), ¢) The model empirical
orthogonal functions, used to define the axes in a). From Palmer et al (1994).

109



PALMER, T.N: PREDICTABILITY OF THE ATMOSPHERE AND OCEANS...

Figure 3.9: 500hPa stream function of dominant barotropic day-8 singular vector at day 8 for
(a) cluster 2 and (b) cluster 5 of Molteni et al (1990). From Molteni and Palmer (1993).

normalised large- scale pattern E(z,y, z). One possibility is to compute the pseudo-inverse
of E(z,y,z) using the dominant singular vectors, for a variety of finite-time trajectories.
A less computationally demanding, but largely equivalent calculation can be achieved
with a single integration of the adjoint model. Suppose we want to find a perturbation,
with unit norm at initial time, and maximum projection onto the given pattern F at
final time. In symbols, we want a perturbation e at ¢ = ¢y which at ¢t = to + At = 1
maximises < Le, E > [/ < e,e >. This perturbation will be given at t = ¢, by e = L*E.
We can refer to e as the sensitivity pattern (¢f Marchuk, 1974; Cacuci, 1981; Rabier et
al, 1995) for FE, and the growth ||Lel|/|le|| as the instability index of E. Such work is
currently in progress using a three-level quasi-geostrophic model whose climatology, as
shown above, has realistic regime structures (Susanna Corti, personal communication).
These calculations could be of particular interest in studying the sensitivity of observed
climate change patterns (see section 6).

3.6 Singular vectors from a coupled tropical ocean-atmosphere model

ENSO appears to be predictable up to a year or so in advance using relatively simple
coupled models of the atmosphere and ocean (Zebiak and Cane, 1987). According to
Miinnich et ol (1991), long-term variability of ENSO is intrinsically chaotic (independent
of the chaotic nature of weather itself). The skill of ENSO forecasts made with coupled
ocean-atmosphere models is seasonally dependent (Cane et al, 1986; Webster, 1995).
Typically, seasonal forecasts beginning in spring tend to be less skilful than forecasts
beginning, for example, in autumn. This is sometimes referred to as the ‘spring barrier’
effect.

Blumenthal (1991) has analysed the behaviour of the eigenfunctions of a linear Markov
model approximation to a nonlinear coupled ocean-atmosphere model. He finds that in
summer, the eigenfunction best describing ENSO has larger eigenvalues than at other
times of year. In spring this ENSO eigenfunction is least orthogonal to other modes, ie
is associated with large projectibility (see section 2). Both types of error growth (modal
and non-modal) are implicit in singular vector analysis which has been performed on this
Markov model by Xue et al (1994).
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Figure 3.10: Dominant singular values for 3-month (solid), 6-month (dashed) and 9-month
(dashdot) from the Battisti (1988) intermediate coupled ocean atmosphere model. The basic
state trajectory is a climatological annual cycle. From Chen et el (1996).

We show some results of a singular vector analysis applied to the coupled ocean-
atmosphere model of Battisti (1988). Preliminary results were described by Palmer et
al (1994), more extensive results are given in Chen et al (1996). A similar study has
been performed independently by Moore and Kleeman (1996). The ocean component
of the model used here is a single vertical mode tropical Pacific basin anomaly model,
governed by linear shallow water wave dynamics. The nonlinear thermodynamics are only
active in a surface mixed layer. The atmospheric component is a thermally -forced steady
linear model with single vertical mode (Gill, 1980). Air-sea interactions are nonlinear:
given by surface wind stress, heat flux, and sea surface temperature, SST. The number
of independent degrees of freedom in the coupled model is reduced to 420 by considering
only the equatorial oceanic Kelvin mode, and first 3 symmetric Rossby modes. With such
a reduction, singular vectors can be computed using conventional matrix algorithms. For
these calculations, the inner product is based on the spatial variance of the SST anomaly.

The first results have been made using a climatological basic state flow. Perturbation
growth is strongly dependent on the annual cycle in the Pacific, and on the duration of
the integration. Fig 3.10 shows the dominant singular values for 3-, 6-, and 9-month
optimisation times. (The optimisation time is greater eg than in section 3.1 because of
the longer predictability time associated with ENSO.) The maximum singular vector for
the 6-month integration ranges from 6 for the April start, to less than 3 for the October
start. The results point to a period of greater sensitivity during the boreal spring and
sumimer.

In contrast with the sensitivity of the singular values, the pattern of both initial and
final state singular vectors are relatively insensitive to the month in which the initial
perturbation is applied, and to the duration over which the error is allowed to grow.
For example, Fig 3.11 shows the SST of the singular vectors (at initial and optimisation
time) for 6-month optimisation based on starting conditions for January, April, July and
October. The initial pattern consists of an east-west dipole spanning the entire tropical
Pacific basin, superimposed on a north-south dipole in the eastern tropical Pacific. The
pattern at optimisation time resembles the ENSO mode.
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Figure 3.11: SST associated with dominant 6-month singular vector at initial (left) and final
(right) time, for a) January, b) April, ¢) July, d) October starts. The basic state trajectory is a
climatological annual cycle. From Chen et al (1996).
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Figure 3.12: Dominant singular values for 3-month (light solid) and 6-month (dashed) from
the Battisti intermediate coupled ocean atmosphere model. The basic state trajectory is a free
integration of the model without climatological annual cycle. The NINO3 index from the basic
state trajectory is shown as the heavy solid line. From Chen et al (1996).

Of course, in keeping with the other results discussed in this section, it is likely that
these singular vectors will depend on the state of ENSO itself, as well as on the annual
cycle. In order to understand this further, singular vectors have been calculated with
respect to a ‘free trajectory’ of the Battisti model which includes ENSO variability but
(for this integration in particular) has no annual cycle. In fact, when the Battisti model
is Tun freely, the extrema of the model (NINO3) SST anomalies range from over 2C in
the warm phase to less than -1C in the cold phase. The solid line in Fig 3.12 shows a
timeseries of Nino 3 SST anomaly from year 9- year 12 of a model climate integration.
Also shown are the dominant 3- and 6- month singular values associated with singular
vector calculations made using this freely evolving basic state. It can be seen that the
growth rates do indeed depend on the state of ENSO in the basic state trajectory. For
example, largest growth occurs during the transition phase between the cold and warm
event. A secondary maximum is associated with the trajectory portion starting near the
peak of the warm event.

The dependence of the dominant singular value on ENSO is of relevance when we
consider the decadal variability of ENSO predictability. In particular, as discussed by
Balmadesa et al (1995), the ‘spring barrier’ effect is more prominent in the 1970s than
in the 1980s. In order to study whether there is any decadal variability in the dominant
ENSO singular values, Y-Q. Chen (personal communication, 1995) has estimated the
mean and standard deviation of the dominant singular values over the periods 1960-1975
and 1975-1990 respectively. Results indicate that there is a less significant annual cycle in
the dominant singular values in the period 1975-1990 than in the period 1960-1975. This
is consistent with the fact that ENSO itself was more active in the latter period.
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4 PREDICTABILITY OF THE SECOND KIND.

4.1 Uncertainty in forcing

In section 2, initial value problems were referred to as predictions of the first kind. In a
prediction of the second kind, we estimate how (the attractor of) a given dynamical system
responds to a change in some prescribed parameter or variable. The response of climate
to doubling CO., or of the stratosphere to an increase in CFCs, or of an atmospheric
GCM to a prescribed change in SST, are all predictions of the second kind. Uncertainties
in such predictions may arise from the accuracy in the prescribed change itself, or from
uncertainties in model formulation. (In practice, of course, many forecasts do not fall
exclusively into either of these two categories).

Even though predictions of the second kind are, by construction, not sensitive to initial
conditions, the underlying instabilities of the flow play an important role in determining
the associated predictability. To see this, let us apply the singular vector analysis discussed
in section 2 to a forced problem. Consider then the generalisation of (2.2) to

dx
- = M;x + £(¢t) (4.1)

As before, we let us integrate this equation over the finite time interval [¢;, o). Using the
tangent propagator L(¢,%o) (¢f equation 2.3), then the solution to (4.1) can be written as

x(t1) = L{ts, to)x(to) + /tt L(t, 5)£(s)ds (4.2)

From (4.2) it can be seen that the effect of an initial error x(ty) can be replicated by
the action of the impulsive forcing f(¢) = x(£)6(t — to). Hence, the maximum response
||x(t1)|| from such a normalised impulsive forcing occurs when f(t) = vy (2o)6(¢ —1o), where
vy (tp) is the dominant singular vector at initial time associated with the interval [t;, to].
More generally, if f(¢) is a normalised impulsive forcing f(t) = x(s)6(t — s), t1 < s < to
then the maximum response ||x(¢1)|| can be induced by choosing x(s) to be the dominant
initial singular vector for the interval [t;,s]. Putting this together we can see that if f(¢)
is any spatially normalised forcing, then the maximum response at ¢; will be obtained by
setting f(t) = wp, 4(t), the dominant initial singular vector over the interval [t4, t].

Now let us interpret the forcing f(¢) as an uncertainty in model formulation which, for
the sake of argument, we shall assume arises principally from the physical parametrisa-
tions. We have argued that a complete specification of the initial state would include not
only the best estimate of the initial conditions, but also a probability distribution of the
error associated with that best estimate. Similarly, given the inherent uncertainties in
parametrising sub-gridscale processes, a complete specification of the diabatic tendency
in a grid box should include not only our best estimate of the diabatic tendency (ie the
parametrised tendency), but also a probability distribution of the error associated with
that estimate.

When considering the probability distribution of parametrised diabatic tendency, it is
certainly not permissable to ignore the first moment. This first moment can be thought
of as defining what is generally referred to as ‘systematic error’. However, in addition
to its systematic component, the parametrised diabatic tendency will certainly have a
stochastic component of error. Consider, for example, the parametrisation of convective
heating in terms, say, of resolved moisture fluxes or temperature profiles. If convectively-
driven mesoscale circulations occur on scales which are not substantially smaller than the
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resolution of the model, then the usual assumptions of a quasi-equilibrium of convective
heating elements within a grid box will fail. This failure will generate a second moment

of the PDF.

The basic message behind (4.2) is that the system response to forcing errors depends
very much on the convolution of this forcing with the dynamical instabilities of the flow
itself. This can be seen clearly if we put f(s) = f, x(¢5) = 0 so that

X(tl) = ,C(t]_, to)fo (4:3)
where
t1

Lt to) = / L(t,, s)ds (4.4)

to

4.2 A simple chaotic model paradigm for predictability of the second kind

As a simple example of the impact of a fixed forcing on a heterogeneous attractor, consider
the Lorenz (1963a) model

X = —agX + oY
VY = —XZ+rX-Y
Z = XY-bZ (4.5)

Singular values for the Lorenz model have been computed by a number of authors (eg
Mukougawa et al, 1991; Abarbanel et al, 1991; Trevisan, 1993). Fig 4.1 shows the distri-
bution of exponents of dominant singular values for two choices of the trajectory length.
For relatively long trajectory portions, the distribution of singular values (expressed as an
equivalent exponent) is relatively narrow and is clearly asymptoting to the appropriate
largest Lyapunov exponent (here about 1.5). For short trajectory portions the distribu-
tion of maximum exponents is broad, varying from negative values (ie decaying singular
vectors) to values over one order of magnitude greater than the fastest growing Lyapunov
exponent.

Let us now examine some time traces of one of the state variables of the modified
Lorenz model

X = —oX +oY + fo
Y = —XZ+rX-Y+f
Z = XY-bZ (4.6)

as the time invariant forcing fy increases from zero (see Fig 4.2). Notice that the X values
do not simply translate to larger values as fp increases, rather the probability that the
state vector resides in the regime with positive X increases, and the probability that the
state vector resides in the regime with negative X decreases. The X-values of the regimes
themselves are largely unchanged.

Fig 4.3a shows the state vector PDF of the Lorenz model (4.5) computed from a long
integration. It is effectively symmetric with maxima corresponding to the centroids of the
butterfly-wing regimes. Fig 4.3b shows the PDF of (4.6) with non-zero fy; the PDF is now
biased to one of the regimes; however, the phase space position of the regime centroids

remains essentially unchanged.
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Figure 4.1: The distribution of the largest singular value,o, (shown as its exponent In o) for the
Lorenz model (4.5) for two trajectory lengths L (L=50, L=2). Each distribution is normalised
to unity. From Abarbanel et al (1991).

This behaviour can be understood in terms of the heterogeneity of finite-time singular
values on the attractor. In particular, at the regime centroids (PDF maxima for the state
vector time averaged over the fast oscillation time scale) the singular values are rather
small, corresponding to the fact that the attractor is rather stable in this part of phase
space. On the other hand, in other parts of the attractor, particularly near the origin,
the singular values are particularly large, corresponding to a very unstable saddle point
instability. In the Lorenz model (4.5), the outset (eg Thompson and Stewart, 1991) of the
saddle is symmetric with respect to the two Lorenz regimes. In the modified model (3.2)
it becomes biased towards one of the regimes.

A statement of these results in general terms leads to the following nonlinear paradigm
(Palmer, 1993). The influence of a weak forcing fy on a nonlinear system (such as the
climate) is greatest in regions of phase-space where the dominant singular value is large.
On the other hand, the response of the system to fy is greatest in regions where the local
PDF is a maximum, and singular values are small. To first order, the response to fy will
be a change in the value of the PDF at the maxima.

This analysis is broadly consistent with recent studies of systematic errors in weather
prediction and climate models. For example, as shown by Molteni and Tibaldi (1990),
medium-range systematic errors tend to have large-scale equivalent barotropic structures
which correspond reasonably well with the regime structures discussed in section 2. In or-
der to understand how such errors arise, ie what systematic forcing errors these structures
are most sensitive to, we need to estimate either a pseudo-inverse or a sensitivity gradient
of that error pattern over an ensemble of trajectory portions, that, together, cover the
climate attractor. Such studies are underway (see section 3.5 and section 6).

116



PALMER, T.N: PREDICTABILITY OF THE ATMOSPHERE AND OCEANS...




PALMER, T.N: PREDICTABILITY OF THE ATMOSPHERE AND OCEANS...

a.)15 ' e 15
124 ¥
9 L g
67 - 6
3 L 3
> 0 Lo
~3] -3
~6- L 6
~9 L~ g
-12 L —12
~15 ——— -15
~15 -12 -9 -6 -3 0 3 6 3 12 15
X
b) 1512 8 s -3 9 3 6 9 12 15
12 )
9- L9
6 L 6
5 %
> 0- )
~3 L3
-6 L —6
-9 L _g
-12 - <12
-15 — -15
-15 =12 =9 -6 -3 0 3 6 9 12 15

Figure 4.3: PDF of the Lorenz model in the X-Y plane, low-pass filtered to remove oscillations
around a regime centroid (a) from the unforced model (b) with a constant fo.
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It should be noted that this paradigm is very hard to prove from first principles; even
the notion of existence and uniqueness of a PDF is hard to establish. Nevertheless below
we shall use the paradigm as a possible means of interpreting climate variability.

4.3 Application to atmospheric forcing by tropical SST anomalies

Up to now I have imagined f; to represent a model uncertainty. However, we can apply
the paradigm more generally. Consider a prediction of the second kind, mentioned earlier;
the response of an atmospheric GCM to imposed SSTs. Fig 4.4 a,b shows the 1000hPa
temperature and 500hPa height difference in the wintertime climate of (a recent version
of) the ECMWF model using firstly SSTs from the El Nifio winter 1986/87, and secondly
using SSTs for the winter 1988/89.

Applying the nonlinear paradigm, the forcing associated with the imposed SST changes
will have increased certain atmospheric regimes, and decreased others. Fig 4.4c shows the
impact of the SST changes on the climatic frequency of the Molteni et al (1990) regimes.
These frequency statistics have been based on 5-day mean 500hPa height fields. It can
be seen, comparing 1988/89 with 1986/87, that the frequency of both clusters 1 and 2
have decreased, and the frequency of cluster 5 has increased. This change in frequency
corresponds to what actually occurred.

Note from Fig 4.4a, the 1000hPa high latitude zonal mean temperature difference is
positive. The reason for this is not that the SST forcing has a high latitude zonal mean
positive component, it is that the temperature difference reflects the change in frequency
of the cluster 2 and 5 regimes. We will return to this basic idea in section 6.

Fig 4.5b shows the time-mean 200hPa response of the UKMO GCM to a relatively
small warm SST anomaly in the western Pacific, as shown in Fig 4.5a. Again, there is a
PNA like response in the northern hemisphere. It can easily be seen that this response
would also have significant projection onto the Molteni et al regimes.

However, why should the imposed west Pacific SST differences have changed the fre-
quencies of the Molteni et al regimes so effectively? Now Fig 4.6a shows the dominant
stationary eigenmode of the time-averaged climatological flow in a barotropic model (from
Zhang, 1988). Fig 4.6b shows the adjoint of this eigenmode. As discussed in section 2,
these can be thought of as final and initial singular vectors (respectively) for an indefi-
nitely long trajectory, in the approximation where we treat the trajectory as stationary
(see remarks above on the relationship between this approximation and the barotropic
model approximation). The eigenmode structure (very roughly) approximates the differ-
ence field between cluster 5 and cluster 2 (having a negative PNA index). The adjoint
eigenvector has no correspondence to the eigenmode itself, but rather has most of its
structure in the tropics and subtropics, over Indonesia, south-east Asia and the Indian
Ocean. _

From this perspective, the PDF's of the dominant extratropical regimes may be most
sensitive to external forcing from the tropical western Pacific area.

A second application of the nonlinear paradigm concerns the predictability of the
monsoons. As discussed in Palmer (1994), the break and active phase of the Asian summer
monsoon can be thought of as representing regional flow regimes in which the ITCZ has a
predominantly oceanic or continental position. Intraseasonal monsoon variability can be
thought of as comprising essentially chaotic fluctuations between these regimes. During
warm-phase ENSO years, the PDF of the oceanic regime is enhanced leading to a greater
probability of a poor overall monsoon. During cold-phase ENSO years the PDF of the
continental regime is favoured, leading to greater probability of a good monsoon. In this
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Figure 4.4: a), b) Difference between DJF 1000hPa temperature and 500hPa height (respec-
tively) from two (3-member) 120-day ensembles of the T63L19 ECWMF atmosphere model.
The first ensemble was run with observed SSTs for the winter 1986/87, the second ensemble
was run with observed SST's for the winter 1988/89. ¢) Cluster frequency of pentad fields with
the DJF period for 1986/87 ensemble (left hand bars) and 1988/89 ensemble (right hand bars).
Clusters are based on Molteni et al (1990) analysis.
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Figure 4.5: a) Idealised West Pacific SST anomaly. b) 200hPa height response of the UKMO
GCM to the imposed anomaly in a). Contour interval 2 dam. From Palmer and Mansfield
(1986).

Figure 4.6: a) Streamfunction of dominant stationary barotropic eigenmode based on climato-
logical winter mean basic state. b) Streamfunction of adjoint of the eigenmode shown in a).
From Zhang (1988). '
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picture, the predictability of seasonal-mean monsoon fluctuations to imposed external SST
anomalies is only partial, a result demonstrated in GCM ensemble integrations (Sperber
and Palmer, 1996).

One simple consequence of the picture put forward is that if the circulation patterns
are dominated by a few basic regimes, and if the system basically responds to weak forcing
through changes in regime frequency, then the EOF's of the system will match the patterns
of these regimes no matter how long a timescale they are computed over. Hence, the fact
that the PNA and NAO patterns emerge as dominant EOFs on weekly, seasonal, and
multi-decadal timescales is entirely consistent with the nonlinear paradigm put forward
here.

We will return to the paradigm put forward here in section 6 when we discuss climate
change.

5 PREDICTABILITY OF INTERDECADAL FLUCTUATIONS

5.1 Internal atmospheric variability

A basic theme underlying this paper is the chaotic nature of climate. Much of this derives
from the atmosphere. The ubiquitous growth of atmospheric perturbations, as revealed
by singular vector analysis above, together with the underlying nonlinear structure of
the atmosphere, suggested, for example, by potential vorticity diagnosis, (eg the wave-
breaking and wave, mean-flow interaction processes illustrated in Hoskins et al, 1985), is
itself supporting evidence of chaotic variability.

Since chaotic processes are inherently aperiodic, a spectral analysis of a chaotic time
series will reveal power over a range of timescales, possibly strongly removed from the
principal timescale of the dominant instability process (Lyapunov exponent timescale).
For the atmosphere, it is possible that chaotic variability associated with the ‘fast’ baro-
clinic timescale, together with the ‘medium’ timescale processes associated with regime
dynamics, may generate a significant component of ‘long’ timescale, interannual and inter-
decadal fluctuations. One could define the word ‘significant’ through an f-test, comparing
the fraction of low-frequency variance explained by internal atmospheric chaotic dynam-
ics, with the fraction of variance explained by ‘external’ forcing (eg from the ocean). From
a practical point of view, if chaotic variations are significant, then the predictability of
the atmosphere will be limited on these timescales.

Simple model estimates (eg James and James, 1989) suggest that internal chaotic
processes could be significant even on decadal timescales. In order to be able to have a
more quantitative estimate, one needs to resort to more comprehensive models. To start to
address these questions I will show results from some decadal timescale integrations made
using the UKMO unified model (D. Rowell, personal communication). These integrations
were made as part of a coordinated study using a number of GCMs worldwide. Results
are based on an ensemble of 6 integrations in which the model was run for 45 years with
observed prescribed SSTs from 1948-1993 using the UKMO GISST (Folland and Rowell,
1995) data set. The ensemble members differ only in terms of their initial conditions.

Figs 5.1 and 5.2 show the percentage of variance of simulated surface pressure that
can be attributed to the time-varying SST's for seasonal and decadal averages. This diag-
nostic was estimated by taking the ratio of the temporal variance of the ensemble-mean
fields, to the total variance of all surface pressure fields within the ensemble. The tempo-
ral variance of the ensemble mean is assumed to be attributable to the underlying SST
variability, hence in regions where the ratio is large, we can assume that the influence of
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Percentage variance due to SSTs. DJF mean pmsl.
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Figure 5.1: Percentage of variance for DJF due to SSTs based on analysis of surface pressure
from a 6-member ensemble of 45-year integrations of the UKMO GCM made with observed

specified SSTs. Top panels :

seasonal mean fields. Bottom panels: running 10-year average of

seasonal mean fields. (D. Rowell, personal communication).
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Figure 5.2: As fig 5.1 but for JJA.
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time-varying SST dominates over internal atmospheric variability. Figs 5.1 and 5.2 show
results for DJF and JJA respectively. For each figure the top panel shows results for inter-
annual fluctuations (7e seasonal means), the bottom panel shows results for interdecadal
fluctuations (7e based on 10-year running means of a given season).

Results for seasonal timescale fluctuations are consistent with many previous studies.
In particular, over much of the tropics, the total ensemble variance is dominated by the
effects of SST variability, whilst in the (more chaotic) extratropics the percentage is gen-
erally smaller. In the extratropics, the maximum percentage occurs over the north-east
Pacific and is probably associated with the PNA response to El Nifio SST anomalies. In
summer, the percentage of variance in the north Pacific is smaller, consistent with a re-
duction in tropical-extratropical teleconnectivity associated with weak potential vorticity
gradients.

Interestingly, the percentage of variance of the decadal fluctuations explained by SST
variability is, in many areas, smaller than that associated with seasonal fluctuations. In
winter, for example, there are localised regions over the Indian Ocean, eastern Pacific,
tropical Atlantic and so on, where the percentage of variance exceeds 60%, but in other
areas, such as the north Atlantic, it appears negligible. This latter result might cause
surprise to some people, given the debate about the role of the thermohaline circulation
on atmospheric decadal variability. In summer, the percentage of SST-explained variance
of decadal fluctuations is somewhat larger in the extratropics. Of course, one has to bear
in mind that these results have been obtained by integrating with SSTs over a specific 45
year period.

5.2 The role of the oceans on decadal predictability

Although the results in Figs 5.1 and 5.2 suggest that internal atmospheric dynamics can
explain a considerable amount of the observed decadal variability (especially in winter),
there is modelling evidence that ocean dynamics might enhance the amplitude of decadal
fluctuations. For example, Manabe and Stouffer (1996), have studied the geographical
distribution of the standard deviation of 25-year mean surface air temperature from 1000
year integrations of three different models: a coupled GCM, an atmospheric GCM coupled
to a ocean mixed layer model, and an atmospheric GCM with fixed SSTs. Results show
that over continents, the standard deviations in all three runs are broadly comparable.
Over much of the oceanic regions, the coupled and mixed layer models produce comparable
standard deviations which in turn are larger than the fixed SST run. Over specific regions
such as the Denmark Strait and in some regions over the circumpolar ocean of the Southern
Hemisphere, the standard deviation of the coupled model is larger than the mixed layer
model.

There are in fact reasons to suspect that the influence of the oceans on the atmosphere
may be somewhat larger than suggested in Manabe and Stouffer (1996) analyses. In
particular, if the feedback from the transient eddies onto the mean flow is an essential
component in accounting for the impact of mid-latitude SST's on the atmospheric flow (see
below), then this impact might be under-represented in a model in which the transient
eddy covariances were weak. It is known that low-resolution GCMs, and the R15 GFDL
GCM in particular (Held and Phillipps, 1993) does suffer from excessively weak eddy
momentum fluxes. Secondly, if eddy-mean-flow interaction is important, then if observed
SST anomalies are added to a model in which the storm track position has systematic
error, the potential impact of midlatitude SST anomalies may be underestimated. In
fact significant interdecadal midlatitude air-sea interaction has been found in a coupled
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GCM integration by Latif and Barnett (1994). In this case, the atmosphere model was
integrated at T42 resolution, and, moreover, the SST anomalies were ‘in balance’ with
the dynamics of the overlying atmosphere model.

On the other hand, just because the ocean may contribute to decadal atmospheric
variability, this does not mean that the oceanically-forced component is predictable.

For example, according to diagnosis of experiments by Palmer and Sun (1985), the
atmospheric circulation can respond to prescribed midlatitude SST anomalies near the
western ocean boundaries through processes which intimately involve baroclinic eddies. In
broad terms, by warming SST, for example near Newfoundland, the baroclinic gradient
near the climatological region of cyclogenesis is weakened, which reduces storm-track
activity. Through wave-mean flow interaction processes (diagnosed using the E-vector),
the mean flow over and immediately downstream of this region is weakened throughout
most of the depth of the troposphere. By weakening the mean flow, the heat loss from
ocean to atmosphere is reduced and the SST anomaly can be maintained. However, as
simple mixed- layer ocean models suggest (eg Daly, 1978) if the surface wind forcing is
weakened over the North Atlantic, then SSTs will warm (cf Bjerknes, 1964). Hence there
is the possibility of a weak positive feedback between ocean and atmosphere over the
north Atlantic.

The net effect of this feedback is to redden the spectrum of atmospheric variability by
making atmospheric weather regimes (eg associated with the North Atlantic Oscillation
in the case of Atlantic SSTs, the PNA pattern in the case of Pacific SSTs) somewhat more
stable. However, there is no evidence from these experiments to suggest that the regime
transitions are themselves any more predictable through coupling to an ocean. Indeed,
if such transitions are ultimately associated with fast baroclinic processes, it is unlikely
that coupling to the oceans would alter the predictability timescale of these transitions.

An initial study of coupled-model ensemble experimentation appears to support this
view about decadal predictability. Fig 5.3a (from Griffies and Bryan, 1996) shows 200 year
of linearly detrended anomalous yearly-averaged thermohaline circulation (THC) index
from a run of the GFDL coupled model. Also shown is the time series after a 10-year low
pass filter has been applied (thick solid line). Fig 5.3b (also from Griffies and Bryan, 1996)
shows the THC index for a 9-member ensemble made by adding atmospheric perturbations
at year 500 of the main run. Although the THC index clearly has substantial variability
on multi-decadal timescales, its predictability appears to be determined by the overlying
chaotic atmospheric variability, which is much shorter than the dominant THC timescale.

5.3 A simple chaotic ‘coupled’ model paradigm for decadal fluctuations and
predictability

To explore these ideas further, I want to put forward another simple extension of the
Lorenz model. As before, the basic Lorenz model (4.5) describes the atmosphere, now it
is coupled to a simple ocean model, which here is simply a storage device. The ‘coupled
model’ equations are:
. t [
X = —cX+4oY+ a/ X(the Pt gy

o)
t

- _XZ+rX-Y+a / Y (t')e P61 gy

-0

Z = XY -bZ (5.1)
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Figure 5.3: a) 200 years of linearly detrended anomalous yearly averaged thermohaline circula-
tion index from the central portion of a coupled GCM experiment (thin solid line). The time
series after a 10-year low-pass filtering has been applied is also shown (thick solid line). b) a
9-member ensemble of yearly averaged anomalous thermohaline circulation index from the cou-
pled model. The ensemble starts from year 500 of the climatology. (From Griffies and Bryan,
1996.)
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Here o and f crudely parametrise the midlatitude ocean SST and mixed-layer depth
respectively. We presume that o is small, so that the storage terms do not destroy the
chaotic nature of the dynamical system. If the state vector has resided in one regime of
the Lorenz attractor over the period A~! preceding the current time, then the storage
effect will generally increase the probability that the system stays in that regime. If the
state vector has made a regime transition during the time 3~ preceding the current time,
then the storage term will have little effect on the subsequent evolution.

Interested readers can experiment for themselves by noting that (5.1) can be readily
transformed into a 5th order set of ordinary differential equations by introducing two addi-
tional independent variables to represent the ocean storage terms. The (linear) dynamical
equations that govern the storage variables are reminiscent of the schematic model put
forward by Hasselmann (1976) for obtaining a red noise output from a stochastic white
noise atmospheric input. However, unlike the Hasselmann model, the ocean is coupled to
a deterministic ‘atmosphere’ and hence partially stabilises this atmosphere.

One interesting aspect of (5.1) is that even though $~! may be just a few Lorenz time
units, the storage terms can induce substantial variability on a timescale of hundreds of
Lorenz time units. For example, Fig 5.4a shows a timeseries of the X component of (4.5)
with a running mean of 50 Lorenz time units applied to X. It should be noted that the
regime centroids are at about X = 49. Fig 5.4b shows the same timeseries but from (5.1)
(with o = 0.12, 8 = 0.3). This reddening is found in the surface air temperature spectra
in Manabe and Stouffer’s (1995) study.

The intrinsic predictability of the ‘coupled’ model (5.1) is governed by the internal
dynamics of (4.5). This can be seen in Fig 5.4c where two extra integrations are made by
adding extremely small perturbations to X at t=400. The predictability timescale O(10
time units) is much shorter than the low-frequency timescale O(100 time units) apparent
in Fig 5.4b. This appears to be consistent with the predictability of the THC index in
Griffies and Bryan’s (1996) study, shown in Fig 5.3.

It is worth noting that a model such as (5.1) could never be considered a representa-
tion of ENSO. For example, the tropical atmosphere is not, by itself, chaotic, and internal
atmospheric dynamics alone cannot account for the Southern Oscillation (Dix and Hunt,
1995). Moreover, it is well known that ocean dynamics are essential for the ENSO mech-
anism, and therefore cannot be represented by a simple storage effect.

6 Climate change

6.1 The vertical and horizontal structure of observed climate change

In this section I would like to make some remarks about the predictability of climate
change, bearing in mind the nonlinear paradigm put forward in section 4. To do this I want
to focus on a very specific aspect in the validation of GCM climate change integrations. At
first sight it might appear that this aspect is rather too specific for an overview discussion
on predictability of climate change, but in my opinion it is symptomatic of how climate
may respond to weak imposed perturbations.

The original IPCC (1990) report notes an apparent discrepancy between observations
of decadal variability and GCM simulations of the impact of doubled CO,. Fig 6.1 (repro-
duced from the IPCC report) shows observed temperature anomalies in the troposphere
and lower stratosphere based on Angell (1988). IPCC notes that ‘in the upper troposphere
(300-100hPa), Fig 6.1 shows that there has been a rather steady decline in temperature

128



PALMER, T.N: PREDICTABILITY OF THE ATMOSPHERE AND OCEANS...

a=0 =0
runmean=50
6.0 T
4.0
20 ) 4
f
f \ i i
oM [
v‘!
o.o-*\fp\ /! V)/\/\ Aj 4
TR VAR I
WS 3 ) i
l'/ (" X [‘
20} W .
40 |
6.0 . . . .
100.0 300.0 500.0 700.0 900.0
a=12 =3
runmean=50
5.0 T
40} ) /\ ‘ J\
R ﬁ .[1’
J / ¥
2 o
(A !
201 [
b
0.0 wf\/\
2.0 r
-4.0 |
6.0 . : . :
100.0 300.0 500.0 700.0 900.0
a=12 =3
runmean=50
6.0
40 |-
200
0.0
_2'0 L
4.0
-6'900.0 300.0 500.0 700.0 900.0

Figure 5.4: Time series of the X-component of the modified Lorenz model (5.1) with a) a =
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0.12, 8 = 0.3 in which very small perturbations are introduced at t=400.
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Figure 6.1: Observed temperature anomalies in the troposphere and lower stratosphere from
1958- 1989, based on Angell (1988). a) annual global values for 850-300hPa. Dots are values
from Spencer and Christy (1990). b) 300-100hPa. From IPCC (1992).
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since the late 1950s and early 1960s, in general disagreement with model simulations that
show warming at these levels when the concentration of greenhouse gases is increased’.

To reiterate, the basic notion of the nonlinear paradigm in section 4 is that the system
response to a small external forcing will, to first order, alter the residence frequency
associated with naturally-occurring atmospheric regimes. Changes to the geographical
structure of the regimes would be a second-order effect. This paradigm arises because
the regions of phase-space in the vicinity of the regime centroids are relatively stable.
The dominant instabilities are, in part, likely to be associated with saddle points of the
system. An imposed time-invariant forcing would have the effect of biasing the outset of
these saddles towards one or more of the regimes.

Fig 6.2 shows the geographical distribution of change in surface temperature between
the 1950s and 1980s, as reported in IPCC (1992). The increase in surface temperature is
largest in winter, where it is concentrated over North America and northern Eurasia, and
is partially offset by cooling over the North Atlantic and the North Pacific.

The tendency for hemispheric-mean lower tropospheric temperatures to be warm dur-
ing periods in which the PNA index is positive has already been noted by Gutzler et al
(1988). For example, Fig 6.3 shows the 1000-500hPa thickness anomalies associated with
the PNA 500hPa height teleconnection patterns. At the surface, the temperature anoma-
lies associated with these thickness patterns will tend to be accentuated over land relative
to the ocean, because of the smaller heat capacity of the active land surface. These pos-
itive land surface temperature anomalies will therefore dominate over the negative SST
anomalies if a zonal mean temperature anomaly is calculated.

More particularly, the observed change in (northern winter) mean temperature is con-
sistent with an increase in the frequency of the regimes shown on the left hand side of
Fig 3.9, as suggested by the nonlinear paradigm outlined in section 4. One further con-
sequence of this is that, just as the horizontal structure of decadal change should reflect
the horizontal structure of the regime centroids, so also the vertical structure of decadal
change should reflect the vertical structure of the regimes. Now, to some degree of ap-
proximation, the regimes themselves have an equivalent barotropic structure, with the
equivalent barotropic level at about 300hPa. From the hydrostatic relationship, if there
is a tendency for warming below the equivalent barotropic level, then there should be
a tendency for cooling above this level. This is what Angell observes, as shown in Fig
6.1. (It can be noted that this figure is constructed from radiosonde data which has a
land bias. However, according to our discussion above, most of the observed warming has
occurred over land regions. Hence it is likely that, according to our nonlinear paradigm,
the temperature in the upper troposphere will be cooler in a radiosonde-based estimate of
hemispheric mean temperature, than in a satellite-based estimate with its more uniform
coverage.)

If this interpretation of the upper tropospheric cooling is correct, then one can ask the
following question.

6.2 Is the observed surface warming due to the greenhouse effect?

If the analysis in the preceeding section is correct, then the answer to this question is, in
large measure, no. The greenhouse effect is a purely radiative mechanism, whilst much
of the observed warming is, according to our nonlinear paradigm, the result of changes
in large-scale dynamics in which certain regimes have become anomalously populated. In
this picture, the warming is a property of the anomalous surface temperature associated
with the regimes in Fig 3.7a,c.
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Figure 6.2: Observed surface temperature anomaly for the decade 1981-1990 relative to the
1951-80 average (a) annual average (b) winter average. From IPCC (1992).
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PNA

Figure 6.3: 1000-500hPa thickness anomalies associated with the PNA 500hPa height telecon-
nection pattern; for winter months only. From Gutzler et al (1988).

However, this does not imply that the observed surface warming is not associated with
increases in CO,. To see this, consider first a more parochial argument. If it is anomalously
warm over London, then the chances are that the winds have a more southerly than normal
component. If it is persistently warmer over London then the chances are the winds are
persistently more southerly. This may or may not be due to enhanced CO,. However, if
one wants to know whether the fact that London is warmer is due to enhanced CO, then
one must ask whether enhanced CO; will cause the wind to be more southerly.

Hence, similar to the ‘London’ argument, if one wants to know whether the fact that the
hemispheric mean temperature anomaly has been persistently positive is due to enhanced
CO,, then one should ask whether enhanced CO, will increase the probability of the
regimes in Fig 3.7a,c being observed. The question then arises; how could such an increase
in the PDF of these regimes be most effectively achieved? Certainly, the adjoint analysis
that we have discussed in this paper suggests that the most effective way to force an
increase in the frequency of a regime is not a,chleved by a forcing which projects directly
on the regime’s geographical structure.

Precisely this question arose in section 4.2 in trying to understand what processes
model systematic error was most sensitive to. One way to study this is through the
sensitivity analysis described in section 3.5. We can imagine taking an atmospheric model
trajectory over, let’s say, a decade. For every trajectory segment say of order 10 days or
so, we can compute the sensitivity of the positive PNA regime by integrating the regime
backwards with the adjoint model. Each trajectory segment will have its own sensitivity
pattern. By compositing over many different trajectory segments we get a mean sensitivity
for the regime of interest.

Such a calculation is currently in progress (Susanna Corti, personal communication).
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However, the adjoint eigenmode results shown in Fig 4.4 already gives us an approximate
idea of the difference between the sensitivity structure and the regime structure. In
particular, Fig 4.4 suggests that extratropical quasi-stationary Rossby wave patterns are
likely to be sensitive to forcing in the Indonesian area. This result is consistent with
the SST anomaly experiment shown in Fig 4.5, where a localised SST anomaly of about
1K could induce a substantial extratropical response, not altogether different from the
positive PNA regime patterns shown in Fig 3.7.

Hence, even though we might only be interested in anthropogenic changes in hemi-
spheric mean temperature, the large-scale (nonhnear) dynamics of the atmosphere appear
to lead us to focus attention onto the possible impact of enhanced CO; on key physical
processes in specific localised sensitive reglons of the globe the very antithesis of the
global greenhouse effect. E

It can be noted that in fact SSTs have mcreased over the west Pacific and Indian
Ocean over the last few decades. Fig 6.4a (from Latif et al, 1996) shows the linear trend
in SST (deg C/yr) over the period 1949-1991, Fig 6.4b shows the percentage of variance
that this linear trend explains. It can be seen that the trend over the West Pacific and
the Indian Ocean explains a relatively large part of the observed variance in SST in those
areas.

Now what has this discussion to do with the predictability of climate change? Ac-
cording to these ideas, if we are to be able to simulate accurately the global atmospheric
response to enhanced CO,, it may be necessary to simulate very accurately how CO,
influences the atmosphere in very specific regions of the globe (specifically over the warm
pool area), and perhaps less accurately elsewhere. At present, uncertainties in basic ra-
diative flux parametrisations in the warm pool area certainly exceed the basic 4W/m?
associated with radiative effect of doubled CO,. :

Despite these remarks, the predictability of .climate change may be greater in the
.northern summer. In summer, the role of regime dynamics may be weakest, and the
radiative greenhouse mechanism may be most significant. Moreover, according to the
results of Wallace et al (1996) the amorphous component of hemispheric temperature
-change has its largest amplitude in summer..

Let us conclude this section by asking why the IPCC GCM 51mulat10ns have not reph-
cated the Angell observations? It is possible that the large-scale dynamics of many GCMs
. is still inadequate, and that the simulated warming in the 300-100hPa region is a manifes-
tation of this inadequacy. For example, stationary-wave amplitudes in many GCMs are
still poor, although recent diagnoses have suggested that weather regime structure does
exist in the latest generation of atmospheric climate models (Haines and Hannachi, 1995).
My guess is that as models improve, particularly in their representation of low-frequency
atmospheric variability, the vertical structure of the response of GCMs to observed CO,
will correspond more and more closely to the observed vertical structure of warming. (Of
course I am aware that there are other complicating factors in discussing these. issues,
related to the observed depletion of ozone and enhancement in sulphate aerosols.)

7 Unification and rationalisation of climate and weather pre-
diction models. |

In this f)aper the notion of predjctability‘has been reviewed, incornpletely, on timescales
of days, seasons and decades. .In domg so we have used both simple and comprehenswe
models. Simple models are useful in order to formulate hypotheses and to study basic
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Figure 6.4: Spatial distribution of linear trend coefficients of observed SST (degrees C / decade)
for the period 1949-1991. b) Variances explained in SST by the linear trends. From Latif, et al
(1996).
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mechanisms, but quantitative assessment of predictability can only be achieved with com-
prehensive model studies. On timescales of days, the comprehensive models were based
on those used for numerical weather prediction; on timescales of decades, global climate
models were clearly most appropriate.

One of the successes of our subject in recent years has been the blurring of divisions
between these two classes of model. Models that were primarily developed as weather
prediction models are now used for climate prediction. Indeed some institutes develop
unified models which are used for both climate and weather forecasting in equal measure.

At ECMWF, I have long taken the view that if a weather prediction model is to
be successful in predicting blocking activity, for example, it should be able to simulate
blocking activity satisfactorily in terms of its own climate. Similarly, it would seem
reasonable to expect that a coupled model used for forecasting El Nifio should be able to
simulate El Nifio variability in climate mode. '

However, the converse is also true. As IPCC (1990) state, ‘..confidence in a model
used for climate simulation will be increased if the same model is successful when used
in a forecasting mode’. This conclusion is consistent with the analysis of the climate pre-
dictability problem in section 7, where it was suggested that in order that climate change
be predictable, errors in flux representation must be locally less than 4 W/m? in regions
such as the warm pool. Tolerable errors elsewhere might exceed 4W/m? significantly.
This moves the persective of climate change away from the global point of view, towards
the local point of view. In my opinion, the best way to reduce these local flux errors is
through comparison with detailed observations over the relevant area, eg from the TOGA
COARE experiment (Webster and Lucas, 1992). However, such data are only made over
limited periods of time, and therefore only cover specific synoptic situations. A compar-
ison of COARE fluxes with some mean climatology from a long integration of a climate
model is clearly inadequate. In comparing model with data, the model should be run in
forecast mode. Short-range forecast errors in fluxes can then be compared directly with
the observations, and the impact of revisions to the model physics (eg to cloud parametri-
sation schemes) can be readily validated. By validating the model for predictions of the
first kind, we should have improved the model’s rehablhty in making predictions of the
second kmd ~

In addition to these concerns, we need to be able to pool modelling resources in
order to test hypotheses in a fashlon in which problems of model dependence can be
minimised. The Atmospheric Model Intercomparison Project (Gates, 1993) is a good
example of collaborative research that highlights the successes and limitations of the
current generation of models.

However, it has been more difficult, on the basis of these 1ntercomparlson studies, to
provide corrective prescriptions that Wlll reduce the overall level of model bias. In my
opinion, a fundamental question that the climate community needs to address, is whether
we can achieve the required level of model accuracy for reliable climate prediction through
the development of a diverse range of GCMs, maintained on an individual institute basis,
or whether resources should be pooled into the detailed investigation and development of
a smaller subset of proven models. I have my views (Palmer and Webster, 1995), I would
like to hear yours!
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