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1. INTRODUCTION

The Nordic countries, the Netherlands, and Ireland have combined in a cooperative
research effort to develop, maintain, and improve a fully operational suite of programs
for producing accurate short range forecasts (out to 48h). They have adopted the
name ‘ the HIRLAM group’ (from HIgh Resolution Limited Area Modelling). As part
of that research effort the group have been investigating both spectral and grid-point
discretization in space and both Eulerian and semi-Lagrangian discretization in time.
In this talk we wish to report on the semi-Lagrangian aspects of this work.

Initial progress on the grid-point approaéh was reported by Kaas (1987) who de-
veloped a three time level two-dimensional semi-Lagrangian model which used sigma
coordinates for the vertical discretization. McDonald and Haugen (1992), hereinafter
called MH1, extended the semi-Lagrangian scheme to three dimensions and added the
option of using two levels rather than three to discretize in time. Later, they extended
the model to allow for the hybrid coordinate to be used for vertical discretization; see
McDonald and Haugen (1993), hereinafter called MH2.

At the same time the spectral approach was investigated first by Machenhauer and
Haugen (1987 and 1993), who modelled the shallow water equations with a three time
level semi-Lagrangian scheme. This was extended to the full three dimensional primitive
equations by Gustafsson (1991), and subsequently an improved two time level version
was reported, also by Gustafsson (1995), from here on referred to as G95.

Other groups were simultaneously developing similar models; see Staniforth and
Coté (1991) for an excellent review. For an update of subsequent progress, in grid-point
space, see Moorthi, Higgins, and Bates (1994) and references therein , and in spectral
space see Ritchie, et al. (1994) and references therein.
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The model equations are described in section 2, along with a discussion of how the
non-periodicity of the boundaries is dealt with in the spectral model. Also, we contrast
two different ways of updating the vertical velocity. In section 3 we show some forecasts
from both models and discuss their implications. In section 4 we discuss the relative

merits of the spectral and grid point approaches to numerical weather prediction.

2. THE MODEL EQUATIONS.

Unless otherwise stated the notation used in this section is conventional. See the
appendix for definitions of the symbols. As far as the vertical discretisation is concerned,
the wind v}, , temperature T}, specific humidity g, and linearised geopotential height G,
are defined at the full levels (k = 1,N); N is the total number of levels in the vertical. The
pressure pj.1/2, geopotential height ®; /5, and vertical velocities %;41/2 and é;41/2
are defined at the ‘half levels’. For the horizontal discretisation, the Arakawa C-grid
is used for the grid point model and the Arakawa A-grid is used for the computations
performed in grid point space in the spectral model.

The hybrid coordinate is defined in terms of the pressure as follows:

Pr+1/2 = Ary1/2(n) + Bryiya(n)ps (A, 0) (2.1)

where the choice of A and B defines the closeness of the system to the o coordinates
(A =0.) or p coordinates (B = 0.).

The equations of motion can be expressed as follows in hybrid coordinates.

di K,Tv . w
= = Pr+ K7) 2.2
dt;, {1+(5—1)th(10>£,+( v Ko (22)
dvk
—- = [~ fkxv = V&~ Ry, Vinp]i + (Pu + Ku)i, (2:3)
k
d l 5 A v . -
ABy, ;thnp‘ = —Dy L (34172 — 8k-1/2)5 (2.4)
k Ps
dgj,
I (P, + K, (2.5)

di,
where q is the specific humidity.
e 0, w 0 v0
acosd OX  a 08’
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and

d dg .0
FriT 7757‘7‘, (2.7)
In the temperature equation,
1
(TU)].: = [1 + (E - 1)q]\']TA', (2'8)

and

(%),\. N <%%>k' (2.9)

In the momentum equations, for consistency, ® and Vinp are defined at level &k as

N
613;‘. = @s + Rd Z (TyAlnp)y + R(l(aTl')k’ (210)
J=k+1

where a1 = [n2 and o = 1 — (Alnp/Ap)ip—1/2 for all other values of k;

: Inp, — pr_1/9 Inp;._
Pr+1/2 ‘MPk+1/2 ~ Pk—1/2 ‘TP 1/2>_ (2.11)

(Vinp) = V( Aps

In the mass equation the following short-hand notation has been used

. 1 (.&p)
Spe1/2 = — | o= : (2.12)
/ P 677 k—1/2

The terms Py , Pr and P, represent the physical processes. The terms K, , K7 and
K, represent the contributions due to added horizontal diffusive processes.

For the grid point model the implementation of the semi-Lagrangian discretization
of these equations has been described in MH2. For the spectral model, a full description
is given in G95. The latter uses the same discretization as the former, except for the
mass and temperature equations. For these, a two-time level version of the discretization
described in Ritchie et al. (1994) is used.

Because they give different forecasts, as will be shown in the next section, we repeat
here the two different methods of evaluating the vertical velocity used in MH2 and G95.
In order to compute the departure point with an accuracy of O(At?) the vertical velocity

is needed at time level n + 1/2. In MH2 this is accomplished as follows.

/2 (35" — gn—t )/2; (2.13)
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where § is updated every time step by substituting for (Inp;)"*! and D"*! in the
following equation after the semi-implicit adjustment has been completed. We will call

this a prognostic evaluation of of § in what follows.

k
. At Api [ n o\n
Bk+1/2 (lnps) +1 < +> { Z > [Dj-—i—l _ (Np)j +1/2} + (S)k.——:—_;/2} =

Jj=1

: At_\ Ap;
AB;(Inp, Y, ; i N, n+1/2 p £ AT )
jzzzl { ]( np‘)*2,,] + ( 9 > P’ |: +( ]-) Ap s oy ) (2 14)
On the other hand, in G95 the vertical velocity at time level n 4+ 1/2 is computed

diagnostically by first summing Eq. (2.4) over all levels to compute (Blnp, /Bt)r+1/2

and subsequently summing partially to obtain gnti/z .

. n+1/2
n Blnps : Ap' n
(8 );\i;g = {Bk+1/2 < ot ) + Z{ P ! Dj + (v;.Vinp, )AB; ,  (2.15)

j=1 ¢

The terms v"+1/2, p"+t1/2, (inp,)*t1/2 and D"*1/2 are extrapolated as in Eq. (2.13).

extension zone

integration area

Figure 1. The area extension zone of the spectral model.

Because it enters into our debate in section 4 we briefly discuss here the ‘bi-periodic
problem’ in the spectral model . The solution adopted is to extend the integration area.
The geometry of the area extension zone is illustrated in fig. 1. It is important to stress
that only data from the inner integration area are needed for its construction. This is

first done immediately after the analysis and the first set of boundary fields are read
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in. The extension zone is subsequently refreshed only when new boundary values are
read in, that is, every six hours in the experiments described in the next section. All
grid-point calculations (physics, non-linear dynamics, etc. ) are carried out in the inner
integration area only.

The extrapolaﬁon of gridpoint values to the extension zone is carried out in such
a way that the subsequent Fourier transforms will give a smooth representation of
the extended field in the inner area with preserved gradients normal to the lateral
boundaries. The extrapolation is first carried out along each row of gridpoints in the
x-direction and then along each column of grid point values in the y-direction. A sum
of four trigonometric functions is utilized for each one-dimensional extrapolation. The
required 4 coefficients are determined from the gridpoint values and from the gradients
normal to the lateral boundaries. Since this extrapolation procedure is arbitrary a
simple experiment to test the sensitivity to changes in the procedure is described below.

Another feature of the spectral formulation is the timing of the coupling to the
applied boundary conditions. In the conventional approach, a boundary relaxation
scheme (Davies, 1976) is applied at the end of each time step. This is how the boundary
lines are updated in the gridpoint limited area model. For a spectral limited area model,
such an application of the boundary relaxation bwould be expensive, however, since two
extra Fourier transforms would be needed. To avoid this extra expense the boundary
relaxation is performed immediately after all the other grid point computations have
been completed, as suggested by Radnoti (1995). The result is that the semi-implicit

‘4’ equation now becomes

u(t + At) + (1 + eg)At<%%G(t + At) — fo(t+ At)) = (1 - ap)Au+

ap|lup(t+ At)+ (1 + e‘(,)At<Bia%GB(t + At) — fup(t + At))} - (2.16)

where ¢, denotes the semi-implicit ‘de-centering’ coefficient, 4, the right hand side of
the semi-implicit ‘u’ equation as calculated in the inner integration area, h, an area
average of the mapfactor h., f an area average of the Coriolis parameter, ap the
boundary relaxation factor and up, vg , Gp the lateral boundary condition fields.

Starting from area-extended and spectrally truncated initial fields in spectral space,
the following sequence of calculations is carried out for each time-step of the spectral
model:

(1) Inverse Fast Fourier transforms to obtain all horizontal derivatives and other

quantities needed for the grid-point calculations are peformed.
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(2) Grid-point calculations including non-linear dynamics, determination of trajec-
tories, semi-Lagrangian interpolations, physics, and calculations of the right hand sides
of the semi-implicit equations are done.

(3) Boundary relaxation of the right hand sides of the semi-implicit equations (see
above) is carried out. The required boundary condition fields have been pre-calculated
for e.g. every 6th hour and are linearly interpolated in time to each time-step.

(4) Direct Fast Fourier transform of the right hand sides of the semi-implicit equa-
tions are done.

(5) The semi-implicit equations are solved in spectral space.

(6) Implicit horizontal diffusion and time-filtering are carried out in spectral space.

_For the forecasts described in the next section, a cosine-dependent boundary relax-
ation function was used (rather than the conventional tanh-dependent one), and there
were 6 lines in the boundary relaxation zone. In discretizing in the vertical 16 hybrid
levels were used. In the horizontal, 162 x 142 grid points were used for all forecasts, both
on the 0.5° and 0.2° grids. For the spectral integrations, fhe transform grid consisted
of the identical grid points. 7" = 300°K and p" = 800hPa. The fields at time level
n+1/2 were estimated using the filtered two level extrépolation described by Eqs. (47)
and (49) of MH2. One iteration of a trilinear interpolation is used in the trajectory
calculation. ‘

The physical paramaterization schemes are as described in Kallberg (1990). For a

summary, see Gustafsson (1991). Both models use exactly the same physics.

3. COMPARISON OF FORECASTS.

In this section we show forecasts generated by both models, first on a 0.5° x 0.5°
grid and subsequently on a 0.2° x 0.2° grid. We use the forecasts first to demonstrate
some lessons we have learned about the spectral and grid-point models and secondly to
compare and contrast their relative forecasting abilities.

For the tests on the 0.5° x 0.5° grid we use the starting analysis of 0000 UTC 10 Jan.
1993. During the first 12h of the forecast period the already deep low at (55N,22W)
in fig. 2 deepened by a further 46hPa to a record low value of 915hPa and moved to a
position at (60N,15W). This rapid deepening provides a severe test for any model. We

will use this data set to illustrate a lesson we learned about horizontal diffusion.

3a. Horizontal diffusion is needed to maintain stability in the lower atmo-
sphere.
16
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SMST SUN 10 JAN 93 00Z +000 M F‘
VT SN 10 JAN 93 007 etgr‘o

Fig. 2. The analysis of sea level pressure at 0000 UTC on 10 January, 1993.
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Historically, in semi-Lagrangian integrations, it was not found necessary to use
horizontal diffusion. This was demonstrated on a relatively coarse grid with simple
physics by McDonald (1985), and also on a 0.5° x 0.5° grid with sophisticated physics
for a reasonably active data set; see MH2. It was hoped that this would hold in general
for the following reason. If it is necessary to apply horizontal diffusion with a large time
step, as is typically the case in semi-Lagrangian integrations, then an implicit scheme
must be used in order to maintain stability. In a grid point model this is computationally
expensive. The ‘world record storm’ integration destroyed that hope. During the rapid
deepening an instability developed in the lower atmosphere near the deep low in the
grid-point forecast.

The tests described in MH2 had indicated that the following choice of damping
coefficients should have provided sufficient damping of gravity wave noise to give stable
forecasts with a time step of 20 minutes: for the ‘de-centering’ coeflicient, €, = 0.1; and
for the coeflicient of the filter for the non-linear terms, ey = 0.1. This proved not to
be the case for ‘world record storm’ data set. The 12h forecast of 2 metre temperature
produced by the grid-point model is shown in fig. 3. Severe noise has developed in the
vicinity of the deep low. Increasing €, and €y did not eliminate this noise. The forecast
produced by the spectral model which uses the same time step, the same choice of ¢,
and ey, but with implicit horizontal diffusion added (K = 2.5 x 10'*) is shown in fig.
4. The severe noise is absent. Repeating the spectral integration without horizontal
diffusion and with a spectral truncation at waves corresponding to 2 grid-lengths yields
a forecast with the same noise as the grid-point integration. We must conclude that
horizontal diffusion is needed in the latter. See fig. 5, which again shows the 12h forecast
of 2 metre temperature produced by the grid point model but now using implicit fourth
order diffusion of u,v,T and g with a coefficient of K = 5 x 10'4; (see discussion below).
As can be seen, this forecast is now noise-free and agrees well with the spectral forecast.

In the grid point model the fourth order diffusion scheme solves the equation

of o' f O\
—5?+K<?9F+6—y4 =0, (3.1)
whereas in the spectral model the fourth order diffusion scheme solves the equation
of o*f o*f otf
b =0. 2
ot +K(8:1:4 T2 ety oyt ) 7O (3:2)

Obviously, a larger value of K is required in Eq. (3.1) than in Eq. (3.2) to give the

same amount of diffusion.
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S¥=1 SN 10 JAN 93 007 +012 M F
VT SN 10 JAN 93 127 etgra

Fig. 3. The 12h forecast of 2 metre temperature starting from the analysis of 0000
UTC 10 January, 1993 using €, = 0.1 and ex = 0.1 and no horizontal diffusion. This

forecast was generated by the grid point model.
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Fig. 4. Same as fig. 3, except that the spectral model was used with a 3 grid
length wave truncation and implicit horizontal diffusion was applied with a coeflicient

of K = 2.5 x 1014,
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SMHI SN 10 JAN 93 007 +012
VT SN 10 JAN 93 127 Metgr*ol:—

Fig. 5. Same as fig. 3, except that fourth order horizontal diffusion of u,v,T, and
g has been applied with a coefficient of K = 5 x 10%.
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Although Eq. (3.2) might be considered more desirable, Eq. (3.1) was used in the
grid point model simply because it was so much easier to solve in a computationally effi-
cient manner. This points to an advantage of the spectral over the grid-point approach.
Unwanted noise is generated in numerical weather prediction models, by the orography,
by the boundaries, by the ‘physics’, or even sometimes by the dynamics. The spectral
approach provides two useful filters for attacking this problem at no computational cost.
Two grid noise can be eliminated simply by changing a parameter. Also implicit diffu-
sion of any order can be programmed very simply with, for instance, sixth order being
no more expensive than fourth order diffusion, both being ‘free’. Contrast this Wi’;h the

grid-point model where any of these filters have finite computational costs. We shall

return to this point in section 4.
3b. The spectral model is insensitive to the area extension formulation

The technique of extending initial and lateral boundary fields to obtain bi-periodic
variations in both horizontal directions was briefly described in section 2. The extrap-
" olation is carried out in a such a way that the field itself and the gradients of the field
normal to the boundary are preserved along the boundaries of the inner integration area.
In érder to test the sensitivity of the spectral forecasts to the formulation of this area
eitension, a forecast experiment, with the requirement on preserved normal gradients
excluded, was carried out. All other aspects of the spectral model integrations were
identical. The result of this sensitivity experiment is illustrated by the difference field
between +12 h pressure forecasts valid at 12UTC 10 January 1993 in fig. 6. There are
only pressure differences of the order of a few tenths of a hPa, and we may conclude
that the spectral model is rather insensitive to details in the formulation of the area
extension to obtain bi-periodic variations.

For the tests on the 0.2° x 0.2° grid we use the starting analysis of 0000 UTC 11
Jan. 1987. The meteorological phenomenon occurring on this date is the formation of
convective snow-bands over the Baltic Sea when there is a persistent cold easterly airflow
over northern Europe. For a detailed discussion see Andersson and Gustafsson (1994).
We felt that the following questions could be addressed by looking at forecasts starting
from such a data set. Can the semi-Lagrangian schemes forecast the sharp bands of
precipitation seen over the Baltic Sea and other fine details caught by the Eulerian
model using the s‘amé grid? If so, will the spectral model have problems describing such
sharp bands? We examine these issues in what follows. '

Again, for the grid point model integrations, the horizontal grid consisted of 162 x
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Fig. 6. Difference between mean sea level pressure forecasts at 0000 UTC, 10
January, 1993 + 12h produced by the spectral model with different algorithms for the

area extension. The isolines are every 0.2 hPa.
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142 grid points with a spacing of 0.2° x 0.2° and exactly the same horizontal grid was
used for the spectral model transform grid. Otherwise the models were as described in

section 2.

3c. The vertical velocity at time level n + 1/2 should be computed diagnosti-
cally.

There are two schools of thought on how to compute the vertical velocity, the
prognostic school, who advocate Eq. (2.14) and the diagnostic school, who advocate
Eq. (2.15). We had not seen any clear evidence to prefer one over the other during
our experiments on the 0.5° x 0.5° grid. However, on the 0.2° x 0.2° grid, we see
a notable difference in the sensible heat flux chart. The prognostic computation the
vertical velocity at time level n 4+ 1/2 yielded the noisy 18 hour forecast shown in fig.
7. Its diagnostic computation, on the other hand, yielded the noise-free forecast shown
in fig. 8. This noise can also be seen in the divergence field at the lowest model lévels,
but not in the upper atmosphere. The remaining forecasts shown in this section will

always use Eq. (2.15) to evaluate the vertical velocity at time level n 4 1/2.

3d. The semi-Lagrangian grid point model maintains the sharpness of the

convective fronts.

The convective snow-bands we wish to concentrate on can be clearly seen in the
satellite image, see fig. 9. The Eulerian model using a 2 min. time step and K =
0.5 x 10'3 for the fourth order explicit diffusion scheme does a good job of modelling
these bands. See fig. 10, which shows the 18h - 6h accumulated precipitation forecast.

With a time step of 6 minutes the grid-point semi-Lagrangian scheme gives a very
similar forecast. See fig 11, which again shows the 18h - 6h accumulated precipitétion
forecast. Notice that the convective band seems to have sharpened slightly over the
East coast of Sweden. For this forecast we used 4th order implicit diffusion with K =
6.0 x 10'L. It is possible to obtain a stable forecast with a time step of 7.5 minutes also.

See fig. 12, which again shows the 18h - 6h accumulated precipitation forecast.

3e. The semi-Lagrangian spectral model gives forecasts in good agreement

with those produced by the Eulerian grid point model.

Forecasts produced by the spectral semi-Lagrdngian model using the same time
step (7.5 min.), ¢, , ex and effective diffusion ( K = 3.0 x 10! ) as the grid point semi-
Lagrangian model agree very well with the Eulerian grid point model. See fig. 13, and
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Fig. 7. The 18h forecast of sensible heat flux starting from the analysis of 0000
UTC 11 January, 1987 using the prognostic computation of 5. The area shown includes

Denmark, southern Sweden, and the Baltic sea.
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Fig. 8. Same as fig.7, except that the diagnostic computation of 5§ was used.
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Fig. 9. NOAA infra-red satellite image valid at 1235 UTC 11 January, 1987.
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SMHI SN 11 JAN 87 00Z +018-
VT: SN L1 JAN 87 18Z 06-18 etgro

Fig. 10. The 1800 - 0600 accumulated precipitation forecast for 11 January, 1987,
produced by the Eulerian model using a 2 min. time step. Fourth order explicit diffusion

was applied with K = 0.5 x 101,
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SMHI SUN 11 JAN 87 00Z +018
VT: SWN 11 JAN 87 187 06-18 etgr“o

Fig. 11. The 1800 - 0600 accumulated precipitation forecast for 11 January, 1987,
produced by the semi-Lagrangian model using a 6 min. time step. Fourth order implicit

diffusion was applied with K = 6.0 x 10!,
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Fig. 12. Same as Fig. 11, but with a time step of 7.5 minutes.
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SMHI SN 11 JAN 87 00Z +018 M F
VT: SWN 11 JAN 87 187 06-18 etgr\o

Fig. 13. Same as Fig. 12, but produced by the spectral semi-Lagrangian model
with a wave truncation of 3 grid lengths and with implicit horizontal diffusion applied

with a coefficient of K = 3 x 10!1.
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compare it with fig. 10. The increased sharpness seen in the grid-point Semi-Lagrangian
forecast is absent, however.

The standard three grid length wave truncation was applied in this spectral semi-
Lagrangian model integration. This truncation is normally used in spectral models in
order to avoid aliasing of quadratic terms during calculations on the transform grid
when an Fulerian time integration scheme is used. In contrast, the semi-Lagrangian
time integration scheme treats the advection terms, the main source of this problem,
in an alias-free fashion. As a result, the three grid length wave truncation is no longer
needed, and one is free to shift the level of spectral cut-off towards shorter wave lengths,
while maintaining the same spectral transform grid.

We repeated the forecast of the convective snow-bands, but with a spectral wave-
length cut-off at 2 grid lengths instead of 3. The outcome is shown in fig. 14. The
convective snow-bands have sharpened slightly over the East coast of Sweden. It is not
clear why the grid point semi-Lagrangian model predicts sharper snow bands over the

east coast of Sweden than the spectral model run in this mode.

4. DISCUSSION

4a. The computer costs.

For the two test cases discussed above, we have shown that the spectral and the
gridpoint semi-Lagrangian limited area models give approximately the same forecast
accuracy. For the selection of which model to apply for operational weather forecasting,
computer economy is a relevant criterion. The CPU timings in seconds on a CONVEX
(C-3840 vector computer for one time-step with both versions of the semi-Lagrangian
HIRLAM model are contained in columns 2 and 3 of Table 1. As can be seen, the total
CPU-time per timestep of the two models is approximately the same; the differences are
within the accuracy of the timing measurements. The fraction of the total time spent
in Fourier transforms for the spectral model is approximately 20 %. It is interesting to
note that this extra time used by the spectral model is almost equal to the additional
time spent by the grid point model in the semi-implicit solver, the implicit horizontal
diffusion scheme, the calculation of finite difference operators in the non-linear dynamics,
the de-staggering and staggering needed for the physics, and computing the coefficients
needed to do the semi-Lagrangian interpolations for the u,v, and T points separately

on the C-grid.
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SMHI SUN 11 JAN 87 00Z +018 M F
VT: SUN 11 JAN 87 187 06-18 , etgr‘o

Fig. 14. Same as Fig. 13, but with a wave truncation of 2 grid lengths.
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COMPUTATION SPEC(CVX
Fourier transforms 4.2 (21%

GRID(CVX) GRID(CRAY)  GRID(SGI)

)

)
Non-linear dynamics 1.0 ( 5%) 2 (6%) (5%) ( 8%)
Semi-Lagrangian 3 (37%) 6 (38%) (27%) (29%)
Physics .5 (33%) 6 (33%) (51%) (48%)
Semi-implicit part 5 ( 3%) 8 (%) ( 6%) ( 7%)
Implicit hor. diff. 1(1%) 2.7 (13%) (10%) (8%)
Boundary relaxation 2 (1%) 2 (1%) ( 1%) ( 1%)
Total per time-step  19. 8(101%) 20. 2(100%) (100%) (1‘01%)

Table 1 : The CPU-time in seconds, measured on a single processor CONVEX C-
3810 computer, for the various types of calculations during one time-step of the spectral
model (in column 2) and of the grid-point model (in column 3). In column 4 is listed
the % CPU for the grid-point model measured on a single processor CRAY . In column
5 is listed the % CPU for the grid-point model measured on a single processor SGI

Challenge.

It is worth pointing out, however, that these numbers are somewhat machine de-
pendent. The identical code, which is fully vectorised, run on another vector machine,
a CRAY, tells a slightly different story. See column 4 of table 1. During the the grid-
point integration, the percentage of time spent in doing the semi-implicit adjustment
and implicit horizontal diffusion is less than on the CONVEX computer. A similar
message emerges from column 5, which gives the percentage times for a scalar machine,
the SGI Challenge. The implicit diffusion code has been somewhat optimised for the

scalar machine in the latter case. All other code is identical.
4b. The relative advantages of the spectral and grid-point methods.

The advantages and disadvantages of the spectral discretization relative to the grid-
point discretization have been discussed in the literature. See, for instance, Gordon and
Stern (1982) and Jarraud and Simmons (1983). It is interesting to review them and
to see whether developments since that date, and in particular the implementation of
the semi-Lagrangian schemes, causes us to re-appraise our opinions. Below we list the
main advantages and disadvantages claimed for the spectral method and comment on
them where we think the semi-Lagrangian schemes, or other advances, have made a

difference.

34



A. McDONALD AND N. GUSTAFSSON: COMPARING THE SL SPECTRAL . e

Advantages of the spectral method.

1. It has no linear phase error. This was regarded as probably the most important
advantage of the spectral over the grid-point method by Jarraud and Girard (1983),
an opinion formed as a result of an extensive quasi-operational comparison. Comment.
If the advection term is computed using the semi-Lagrangian approach then the linear
phase error will be the same in the spectral and grid point integrations.

2. It has no ‘coupling errors’. These originate from the inexact computation of hor-
izontal non-linear differential operators. As an example, Jarraud and Simmons (1983)
compute the horizontal Jacobian in spectral and grid point space and they demonstrate
that the latter computation is such as to ‘understimate the interactions between the var-
ious scales, and in particular the shortest scales, and to act as an effective reduction of
the resolution’. Again, Jarraud and Girard (1983), as a result of their quasi-operational
comparison confirmed this effective coarsening of the resolution. Comment. This ad-
vantage seems unaffected by the introduction of semi-Lagrangian differencing.

3. Tt has no pole problem for spherical harmonics with triangular truncation.
Comment. Using the semi-Lagrangian approach enables one to overcome this difficulty
in the grid-point model.

4. It has no aliasing problem for computation of quadratic terms. Comment. Using
the semi-Lagrangian approach removes this difficulty from the grid-point model.

5. The Helmholtz equation generated by the semi-implicit time differencing scheme
can be solved trivially. Comment. This advantage is reduced in importance once a ‘fast
solver’ has been constructed for the grid point scheme.

6. Implicit horizontal diffusion is ‘free’ and almost infinitely tunable. For instance,
high order diffusion can be used at no extra expense. Also, different diffusion coefficients
can be used for different wave numbers. Comment. In the grid-point approach sophisti-
cated diffusion schemes can be constructed. However, they are usually computationally
expensive.

7. Spectral truncation provides another powerful ‘free’ method of controlling noise
in the integration. Comment. It is possible to mimic these effects in a grid point model,
by using Raymond or Shapiro filters for instance, but at some computational expence.

8. A motivation for the development of the HIRLAM spectral model was for the
potential utilization in 4-dimensional variational data assimilation. The spectral tech-
nique offers an advantage since Fourier transforms are self-adjoint and this simplifies the

development of the adjoint models that are needed for 4-dimensional data assimilation.
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It is an additional advantage that it is rather straightforward to apply variational data
assimilation with the incremental approach, i.e. a spectral model can easily be inte-
grated with different resolutions during different iterations of the minimization process
just by changing the spectral truncation.

9. The spectral model uses the Arakawa A-grid. Grid-point models are often
written on the Arakawa C-grid. As a result, extra computations are needed on the
latter whenever quantities defined at ‘wind-points’ are needed at ‘temperature-points’
and vice versa.

10. The combination of the spectral method with the reduced Gaussian grid (Hortal
and Simmons, 1991) provides a neat solution to the problem of defining an almost

uniform resolution over a sphere.
Disadvantages of the spectral method.

1. Tt may resolve sharp features (fronts, orography) less well than grid point models.

2. The truncated spectral representation of water vapour is not positive definite
and a more elaborate negative borrowing scheme is required. Comment. Integrating the
water vapour equation with a ‘shape preserving’ semi—Lagrangian scheme in grid point
space within the spectral model overcomes this objection.

3. Spurious orographic and physical effects may result from Gibbs oscillations, with,
for instance, ‘negative mountains’ occurring at the edges of land masses. Comment.
Variational techniques for minimizing these spectral ripples over e.g. sea and coastal
areas have recently been applied successfully, see Bouteloup (1995).

4. For limited area models the non-periodicity of the boundaries causes problems
for which there is no unique solution. Comment. It was demonstrated above that this
problem is a minor one.

5. Post-processed geopotentials and sea level pressure fields from the HIRLAM
spectral model have been associated with small scale noise due to the non-linear coupling
between surface pressure, orography and model level temperature. Comment. This
problem was solved by Gustafsson (1995) by introduction of an iterative technique
during truncation of surface pressure.

6. It has been shown to be advantageous to apply horizontally varying horizon-
tal diffusion coefficients in the HIRLAM gridpoint model, e.g. to apply less horizontal
diffusion of moisture along coastlines (Jens Hesselbjerg, Danish Meteorological Insti-
tute, personal communication). Comment. This form of diffusion is no longer free of

computational cost in the spectral model.
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5. CONCLUDING REMARKS

We have investigated the forecasting of two extreme atmospheric phenomena by a
semi-Lagangian limited area model in its gridpoint as well as in its spectral formulation.
The first case was the "World Record Low” of Janunary the 10th 1993, which was
studied using a grid resolution of 55 km. The second case, which was studied with a
grid resolution of 22 km, included intensive convective snowbands over the Baltic Sea
during the cold winter of 1987. With minor variations, both models now produce very
similar forecasts for the two extreme cases studied and the computer costs for the two
model formulations are almost the same.

We have discussed advantages and disadvantages of the spectral versus the gridpoint
technique for limited area modelling. This discussion seems to point toward an ideal
model which is a composite of the two approaches consisting of a grid-point treatment
of the ‘physics’, the non-linear terms, the specific humidity and cloud water mixing ratio
equations, as well as all of the advection terms, combined with a spectral treatment of

linear derivatives, the Helmholtz equation and horizontal diffusion.
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APPENDIX

List of variables and constants.

a Radius of the earth (6.371x10% m)

Cpd Speciﬁé heat of dry air (1004.64 J kg~ 'K™1)
Cpo Specific heat of moist air (1869.46 J kg~ K1)
) Cpu/Cpa

€ R;/R,

€ De-centered damping coefficient

EN Filter coefficient |

n Vertical coordinate

i 7n -vertical velocity

f = 20sinb Coriolis parameter (s™!)

g Acceleration due to gravity (9.80665 m s™?)
K Ri/cpa
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K Horizontal diffusion coefficient

A Longitude

N Number of vertical levels

Q0 Angular speed of the earth (7.292 x1075 s~ 1)

P Pressure (Pa)

P’ Reference pressure for semi-implicit scheme (Pa)
Ps Surface pressure (Pa)

o Geopotential (g x height) (m? s~2)

®, Surface geopotential (m? s~2)

g Specific humidity (kg kg1)

Ry Gas constant for dry air (287.04 J kg=! K~1)

R, Gas constant for water vapour (451.51 J kg=! K1
F; Vertical velocity

1 Time (s)

T Temperature (K)

T Constant temperature for semi-implicit scheme(K)
T Virtual temperature (K)

0 Latitude

u Zonal velocity (m s™!)

v Meridional velocity (m s™1)
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