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1. | INTRODUCTION

The quality of medium-range forecasts has been shown to depend crucially on the initial conditions in a number
of predictability studies (e.g. Molteni et al, 1996). The adjoint technique (Le Dimet and leagrand, 1986)
provides us with a tool to directly investigate the sensitivity of a forecast aspect to the initial conditions. Adjoint
equations have been used for a wide range of sensitivity problems. The sensitivity to model parameters has been
investigated, for instance by Hall (1986), Marais and Musson-Genon (1992), Rinne and Jirvinen (1993). The
sensitivity of one aspect of the forecast to initial conditions has been the subject of various studies (Errico and
Vukicevic, 1992; Rabier et al, 1992; Errico et al, 1993a; Langland et al, 1995; Qortwijn and Barkmelijer,
1995). | |

In a previous paper (Rabier et al, 1996), the sensitivity of forecast errors with respect to the analysis was
investigated using this adjoint tech;iique. The gradient of the energy of the day 2 forecast errors provided a
sensitivity pattern which could be interpreted as a sum of rapidly growing components of analysis errors. An
analysis modified by subtracting an appropriately Scaled vector, proportienal to the gradient, provided initial
conditions for a “sensitivity integration” which could be used to diagnose the effect of initial-data errors on
forecast errors. Statistics for the month of April 1994 have characterized the sensitivity patterns as small-scale,
middle or lower troposphere structures tilted in the vertical. The general pattern of these structures is known to
be associated with the fastest possible growth of perturbation (Farrell, 1990). When used as initial
perturbations, an improvement in the skill of not only the short but the medium—range forecast as well was

obtained.

These sensitivity Integrations were run with subjectively scaled gradient perturbations. Further experimentation
was performed with an objective scaling factor optimizing the reduction of forecast errors for perturbations
proportional to the gradient. However, the impact on the forecast performance was fairly small as both

objectively and subjectiVely chosen factors were found to be very close.

More importantly, it might be argued that perturbations obtained from the gradient are by no means a unique
combination of fast-growing components of analysis errors. The current study aims at broadening the relevant
optimization problem. Instead of seeking the most efficient perturbation needed to cancel part of the day 2

forecast error, a range of “sensitive” perturbations of the analysis obtained by a minimization algorithm will be
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investigated. Firstly, information gathered over several seasons of gradient computations is described. The basic

properties of the sensitivity gradient and factors influencing its structure are discussed in section 2.

In section 3 variations on the way an "optimal” perturbation is obtained are investigated. Firstly, the influence
of the choice of inner-product on the gradient of two-day forecast errors is studied. Secondly, the benefit of
performing a few steps of a minimization algorithm is investigated. In section 4 the choice of three steps of
minimization is justified on the basis of a comparison with observations. There are some limitations in deriving
sensitivity perturbations that could correct analysis and subsequent forecast errors as shown in section 5. The
performance of model integrations based on the revised operational sensitivity calculations, performing three

steps in the minimization, is discussed in section 6 followed by concluding remarks in section 7.

2. SENSITIVITY GRADIENTS

2.1 Seasonal variation of sensitivity gradients

Following the definition of sensitivity gradients in Rabier et al (1996), the gradient of two day forecast errors
depends on the forecast errors and on the stability of the flow through the adjoint operator R *. The comparison
of the sensitivity between summer (Fig 1a) and winter (Fig 2a) shows quite a large difference in the magnitude
and the horizontal distribution. Whereas the day-2 rms-forecast errors for the two seasons (Figs 1b and 2b)
exhibit only a modest increase in winter compared to summer, the sensitivity in winter is almost a factor of 3
larger than in summer. The obviously important relation of the sensitivity to the stability property of the -

troposphere can be inferred from the “Eady index’

o -031 L M

N dz

where f is the Coriolis parameter, N is the buoyancy frequency and —Z—u is the vertical wind-shear

4 .
(300/1000 hPa).

As the Eady index approximates the maximum growth rate of baroclinic waves, it provides a suitable measure
for the baroclinicity of the flow, as shown for example by Hoskins and Valdes (1990). In winter (Fig 2c) the
areas of maximum instabilities are found over the mid-latitude oceanic regions of the Northern Hemisphere. In
the Pacific both the maxirmum of instabﬂjty of the flow and the maximum values of sensitivity are located in the
Western Pacific where cyclones are mostly in their early developing phas;e.‘ Consequently the day-2 errbré
downstream in the exit area of the mid-latitude Pacific-jet are related to the sensitivity in the centre of the jet and

further upstream, with maximum sensitivity in the entrance area of the jet.

In the Atlantic the displacement of errors relative to the major instability zone is smaller than in the Pacific,

mainly as a consequence of weaker westerly flow. Therefore the spatial separation of forecast errors and
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a) JJA 1994 RMS of Temperature Sensitivity (~730 hPa) b} D2 RMS-Error JJA 1994 500 hPa

c) JJA 1994 EADY-INDEX

Fig 1 For summer 1994: Root mean square sensitivity gradients of temperature at model level 23 (~730 hPa) (a), root
mean forecast errors for day 2 at 500 hPa (b) and the Eady index (see text for details) (c). Contour intervals
are K (a), dam (b), day-! (c).
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a) DJF 1994/95 RMS of Temperature Sensitivity (~730hPa) ~ b) D2 RMS-Error DJF 1994/95 500 hPa

c) DJF 1994/95 EADY-INDEX

Fig2 The same as Fig 1 except for winter 1994/95.,
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sensitivity is not as clear as in the Pacific. However, a large part of the sensitivity is still found well upstream

of the day-2 forecast errors.

There are two reasons why only a small sensitivity can be seen in relation to the subtropical jet in winter. The
atmospheric activity and day-2 rms-forecast errors are certainly fairly small here in the sub-tropics and the
sensitivity calculations have been based on the day-2 forecast errors of the Northern Hemisphere limited by a

southern boundary of 30 degrees north that cuts right through the middle of the subtropical jet in winter.

In the summer (Fig 1c) the major zones of large wind-shear and related baroclinic growth are found over land
areas and the implied growth rates are smaller than in winter. In a consistent way large values of sensitivity can
be found mainly at high latitudes, with maxima over the Rocky Mountains and North-East Canada. Some
secondary maxima of sensitivity can also be seen in association with the subtropical jet that has a more northerly

position in summer compared to winter.

2.2 Influence of model change on sensitivity gradients

As the six hour forecast is used as a background field for analysing the observational data, it is not surprising
that a change in error characteristics of the model employed in data assimilation has a noticeable influence on
the final analysis. In December 1994 the prognostic cloud scheme and a modified gravity wave drag scheme
were tested in parallel to the operational model version including a rerun of the data assimilation and medium-
range forecasts. For this period the new system improved the forecast skill in many aspects. In particular, the
short-range forecast errors for wavenumbers that describe the synoptic scale (total wavenumber larger than 8)

were noticeably reduced.

The sensitivity calculations performed in parallel for the two systems showed a change in the sensitivity that is
consistent with a reduction of errors in the baroclinic waves. Fig 3 a shows a time-pressure cross section for the
Northern Hemisphere sensitivity (rms-values) of day-2 operational forecast errors to the initial vorticity. Days
with maximum sensitivity in the operational suite were found on 8, 14, 17 and 20 December. The same maxima
can be seen in the new system (Fig 3b), however there has been a general reduction of sensitivity throughout this
period. In particular the low level sensitivity (below 700 hPa) is consistent with a reduction of the low level
temperature errors in the short range forecast. It therefore seems that the analysis errors have been reduced by

using a first guess of the low level flow that is more realistic by using the prognostic cloud scheme in the model.

3. OPTIMAL SENSITIVITY PERTURBATIONS
Results presented in the previous sections confirmed the usefulness of the sensitivity gradient. It helped to

diagnose where analysis errors might produce large forecast errors. However, in Rabier et al (1996), it was
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a) 9412 Control NH rms of vorticity grad
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Fig 3 Time-pressure cross-section of root mean squaré sensitivity gradients of vorticity for the Northern
Hemisphere. For the operational model and data assimilation system (a), for a system with modified physics
(b).

Units: 10-6s-1,
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mentioned that this sensitivity gradient was dependent on the choice of inner-product, which could affect the

results. This will be illustrated in the following.

3.1 Inner-product choice
One can formulate the sensitivity problem in optimisation terms. Let C be the matrix defining a relevant inner-

product <x,y>_ = x 'Cy. This inner-product also defines a norm | x| 3 = x ICx for any field x.

By definition, perturbations of the form (‘ka = aVJ wherew is a scalar, and V/_is the gradient of J with respect
to the inner-product<.,.>_, optimize the first order change in J for a given norm of the perturbation |&x “II? = N

(see Bouttier,1993 for another derivation of this property).

Writing the diagnostic function

J(x % = YM(x D) -x;HTAME 2 -x[%)

where x “ is the analysis at time 0, M represents the integration of the operational model for up to time
T=2 days, xT“'f is our reference atmospheric state at time T taken as the operational analysis and A is a matrix
defining an innmer-product. The approximate first-order change with respect to [0x?%| in J is
& = M/’ Ox YAM(x %) —xT"f) where M’ s 18 the tangent-linear model of a simplified model M,. This
simplified model is a lower resolution model (T63L31), run with reduced physics (Buizza, 1993). &x ¢ is an
increment to the analysis. The problem of maximising- &J under the constraint |5x "Hg = N can be written in
terms of the Lagrangian L:
L = M/ 8x TAM(x %) -x;%) - Mdx" C 8x°-N)

where . is a scalar lagrangian multiplier. Setting the spatial derivatives of L with respect to 8x ¢ and A to zero

yields

M TAMx®-x[%) - 24 C 8x* = 0
ox  C d6x% =N '

The second equation is simply the constraint, while the first equation can be rewritten as

L ¢t TG D5 = L,

Sxd =
YY)
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A perturbation proportional to the gradient will then clearly solve the optimization of 8.J under the fixed-norm
constraint. The choice of inner-product will affect the result of this optimization problem, as it enters the

definition of the constraint.

From a statistical point of view, the ideal inner-product should reflect the uncertainties in the analysis. However,
this is niot easily available and some simpler inner-products have to be considered for the time being. The inner-
product usually used at ECMWF (for sensiﬁvity studies and singular vector computations) is what is called the
“energy” inner-product, which is proportional to u 2+y 2 for the wind field, and T?and (lnps)2 for the mass field
which is a fair first approximation to the ideal one, as discussed in Molteni et al (1996). Of course, this “energy”
inner-product cannot reflect the dependency of analysis error on either the particular metéorological situation or
the geographical location for instance, but it is thought to be globally relevant for the isotropic part of the errors.
By using the inner-product defined by the analysis error covariance matrix, one would give a relevant weight to
all components of the perturbations, taking into account their likelihood. This inner-product is known to give
very small-scale sensitivity structures (see Rabier et al, 1996). The question which might be asked is how these
structures would be changed, by using a different inner-product. It was chosen to answer this question by
selecting an “enstrophy”-like inner-product , which is proportional to (? +D 2 for the wind field. All coefficients
of the matrix A defining the “energy” inner-product were multiplied by nx(n+1), where n is the total wave-
number to get a B matrix defining the “enstrophy” inner-product. Going from the “energy” gradient to the
“enétrophy” one then amounts to dividing all components by n(n+1) because of the relation VJ, = B LAV u-

The gradient obtained in such a way will then be much more large-scale. For diagnostic purposes, one can scale
the gradients obtained with both inner-products and add the following perturbation field as a perturbation to the
analysis. Figs 4 and 5 show the time evolution of the increments based on these gradients for the 6 April 1994
case discussed in Rabier et al (1996). The scaling factor waé chosen to give a good improvement in 2-day
forecasts. The initial increments (panel a) are much broader for the “enstrophy” inner-product calculation (Fig 5)
than for the “energy” inner-product calculation (Fig 4). One can also notice that the amplitudes are much larger

with an rms value of 8.37 m compared with an rms value of 0.41 m for the “energy” increment.

However, these perturbations of different scale evolve to a similar structure after an integration of 48-hours
(panel ¢, in Figs 4 and 5). The large-scale “enstrophy” perturbations also improve the quality of the forecast to
the same extent as the “energy” perturbations, as can be seen in F1g 6. Note the larger rms differences from the

operational OI, for the “enstrophy” increments in panel b (Fig 6).

Although both initial perturbations are “optimal” for the sensitivity problem under investigation (with respect
~ to different norms) and they both considerably improve the forecast, one might prefer to investigate the first one

more for diagnostic studies. As a matter of fact, if this type of sensitivity study is also aimed at hinting at
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(a) CNT-Ener(1) T+0 (2m)
rms
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{b) CNT-Ene'r(1) T+24 (10m)
ms 2.46

{c) CNT-Ener(1) T+48 (15m)
rms 8.48

15.52

rms
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(e) CNT—Ener(1 ) T+96 (25m)
ms 24.66

180°

() CNT-Ener(i) T+120 (30m)
N rms  37.13

180

Fig 4 Difference between the sensitivity integration started from the analysis perturbed by a scaled gradient with
respect to energy inner-product and the control forecast for forecast ranges day 0, day 1, ..., day 5 for 6 Aprit
1994. Units: gpm. Note the different contour intervals used in the panels (shown in brackets): day 0, 2 m;
day 1, 10 m; day 2, 15 m; day 3, 20 m; day 4, 25 m; day 5, 30 m. '
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(@) CNT-Ens(1) T+0 (2m) (b) CNT-Ens(1) T+24 (10m)
rms 8.38 _ rms 6.16

{c} CNT-Ens(1) T+48 (15m) (d) .CNT-Ens(1) T+72 (20m)
rms 9.72 ' ms 15.78

{e) CNT-Ens(1) T+96 (25m) () CNT-Ens(1) T+120 (30m)
rms 24.97 rms . 36.38

Fig5 Difference between the sensitivity integration started from the analysis perturbed by a scaled gradient with
respect to enstrophy inner-product and the control forecast for forecast ranges day 0, day 1, ..., day 5 for
6 April 1994. Units: gpm. Note the different contour intervals used in the panels (shown in brackets): day 0,
2 m; day 1, 10 m; day 2, 15 m; day 3, 20 m; day 4, 25 m; day 5, 30 m. ’
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Fig6 Forecast scores for 6 April 1994 (anomaly correlation and root-mean-square error for the Northern
Hemisphere). Scores are shown for the control forecast (solid line), the energy-based gradient sensitivity
integration (dashed line) and the enstrophy-based gradient sensitivity integration (dotted line). :
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possible analysis errors, the energy-based increment is much more likely to represent part of this analysis error

both in terms of scale and amplitude.

Following this line of thought, the sensitivity problem will be further extended: let us now investigate a range
of perturbations of the analysis which might both represent part of the analysis error fairly well and improve the
forecast substantially. These perturbations might no longer be “the most sensitive” perturbations, but will still

be called “sensitive” if they grow reasonably fast and significantly affect the forecast performance.

3.2 Influence of number of iterations

A slightly different optimization problem will then be addressed: find a perturbation 6x ¢ minimizing the forecast
error squared norm

JOx % = VaM(x?) + M’ _dx “~xHTAMx ) +M’ 5x *-x;F).

The minimization, using the Quasi-Newton algorithm, proceeds in the following way: the initial gradient of J
with respect to the inner-product <.,.>, is (VJ), = A vy STA(M(x ) —xT":f . The first step will be to find a
perturbation 8x, = - (VJ), bringing a decrease in J. The new value of J and of its gradient (VJ), is
recomputed at the updated point x * + 8x,". The next step is then to find a perturbation dx," = -a, H,(VJ),
where H1 is an approximation of the inverse of the hessian (second derivative) of the cost-function J, and so
on ... In Appendix B, a parallel is drawn with the Lanczos algorithm, which illustrates how the minimization
quickly converges towards the space spanned by the leading singular vectors of the tangent linear model. If one
performs a sufficient pumber of such iterations, the minimum of J will be reached. This minimum is obtained

for &x® = —(M/ST A M’s)'1 M/ST A(M(x ")—xT""f) (in the case of a non-singular M/s).

Ten steps of the minimization algorithm were performed in the 6 April 1994 case, which is not sufficient to find
the minimum. Figure 7 (panel a), shows the increments produced after 3 steps of minimization while Fig 8
(panel a) shows the increments produced after 10 steps of minimization. Comparing panel a in Figs 4, 7 and 8,
one can notice that new increments appear at different locations during the course of the minimization. The
effect of the minimization is also to modify the amplitude of the increments. vHowever, it does not drastically
change the horizontal scales associated with these increments. After a few days of integration the three sets of

perturbations evolve into a similar pattern.

In terms of forecast skill, performing a few steps of the minimization algorithm provides slightly better forecasts
(see Fig 9). It then seems beneficial to perform a few steps of the minimization algorithm in order to describe
more accurately certain components of the analysis error. A similar approach was used in Zupanski (1995).
After 10 iterations his resulting estimate of the analysis improved the forecast substantially but was clearly too
large to be realistic. The question is then which number of iterations would be desirable. As the purpose is to

find some “sensitive”, fast-growing components of the analysis error, three iterations would be a relevant choice
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(a) CNT-Hter(3) T+0 (2m) (b) CNT-lter(3) T+24 (10m)
rms 0.92 rms 3.41

(c) CNT-lter(3) T+48 (15m)
rms 9.43 rms 15.85

(e) CNT-lter(3) T+96 (25m) () CNT-iter(3) T+120 (30m)
rms 23.83 rms 35.45

180 L:hg

Fig 7 Difference between the sensitivity integration started from the analysis perturbed by the increment based on
3 iterations and the control forecast for forecast ranges day 0, day 1, ..., day 5 for 6 April 1994. Units: gpm.
Note the different contour intervals used in the panels (shown in brackets): day 0, 2 m; day 1, 10 m; day 2, 15
m; day 3, 20 m; day 4, 25 m; day 5, 30 m.
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(a) CNT-iter(10) T+0 (2m) {b) CNT-iter(10) T+24 (10m)
rms 2.66 rms 5.18

(d) CNT-iter(10) T+72 (20m)
rms 10.12 rms 17.12

(e) CNT-iter(10) T+96 (25m) {f) CNT-iter(10) T+120 (30m)
rms 26.69 rms 39.51 .

Fig 8 Difference between the sensitivity integration started from the analysis perturbed by the increment based on
10 iterations and the control forecast for forecast ranges day 0, day 1, ..., day 5 for 6 April 1994. Units: gpm.
Note the different contour intervals used in the panels (shown in brackets): day 0, 2 m; day 1, 10 m; day 2, 15
m; day 3, 20 m; day 4, 25 m; day 5, 30 m.
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Fig9 Forecast scores for 6 April 1994 (anomaly correlation and root-mean square error for Northern Hemisphere).
Scores are shown for the sensitivity integrations based on the first iteration of the minimization (equivalent to

energy-based scaled gradient, solid line) the third iteration (dashed line), the fifth iteration (dotted line) and the
tenth iteration (dash-dotted line).
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in our case, with a ten-fold increase in rms for the perturbation during the first 48 hours of the forecast. In
comparison, the first iteration and fifth iteration perturbations were growing respectively by a factor of 20 and

5 during the same period. Some justification of this choice will be discussed in the following sections.

4. COMPARISON WITH OBSERVATIONS

The fit to the observational data is one criterion which can be used to discriminate between different
perturbations to be added to the analysis.For any given perturbation dx * the goal is to compare the likelihood
of two atmospheric states: the (initialised) analysis x “ and the modified analysis x +dx ¢. The fit to the
available data will be evaluated for atmospheric states of the form x “+cdx #, which is for points in the direction

of the perturbation Ox “.

For any «, the fit to the observations y is measured by the quantity

J (o) = (H(x*+0dx®) - y)T R7(H(x “+adx %)-y)

where H is the observation operator projecting a model state onto the observation vector y and R is the
observation error covariance matrix. For more details on the computation of this cost-function currently used

in the 3D-Var system at ECMWF see Andersson et al (1995).

It is assumed that the tangent-linear hypothesis is valid, which means that H(x “+0dx %) « H(x%) + «H /dx 4

for small perturbations adx °.

J (a)is then a quadratic function of «:
J () = (H(x“)+aH ’8x 2-y)T R W(H(x %) +oH ! 8x ¢-y)

J (@) = (H(x%)-y)" R \(Hx %) -y)+2(H 5x )" R (H(x *)-y)
+ a¥(H'6x 9T RTH dx ¢

Let us denote ¢, the minimum of this parabola . The atmospheric states projecting on the line with origin x ¢
and direction dx ¢ with a projection of the form x ¢ + ¢, dx @ are optimizing the fit to the observations along

this line. @, can be found by expressing a condition of nil derivative J ! L) =0

dx " H'T R™\(H(x)-y+a, H'8x%) = 0
®x*" H'™ R H®xay=-8x" H'T R"\(H(x*-)

As « is expressed as a function of the random variable y, its variance can be computed. If one denotes «, the

coefficient describing the projection of the true atmospheric state x * onto the line with origin x ¢ and direction

200



KLINKER, E. ET AL: SENSITIVITY OF FORECAST ERRORS.....

0x ?, one obtains for the variance of (L%

02 = (@0 = 3x" H'™ R H' 6297

This means that the larger the curvature of the parabola, the more accurate the location of the state best fitting
the observation in that direction. The parabola J (), through its minimum and its curvature, contains useful
information for comparing the two atmospheric states we are interested in:x  and x° + 6x°. The way this
parabola can be built is to compute J, for afew « ‘s (three values are enough) and then fit a parabola between

these values.

The fit to the observations for the analysis x ¢ is given by J (¢=0) = 41512.1, taking into account all the

observations over the globe on the 6-hour window centred on 940406, 12Z.

Table 1 indicates, for each relevant direction Ox ¢, the fit to the observations for x ¢ + &x ¢ (i.e. @=1), the
coefficient o, such that x“ + o, Ox ¢ minimizes the fit to the observations in the direction dx ¢, and o, the

standard-deviation of error associated with oy

Ox? enstrophy <..> energy <..> energy <..> energy <..> energy <..>
scaled gradient scaled gradient 3 iterations 5 iterations 10 iterations

J (a=0) 41512.1 41512.1 41512.1 41512.1 415121

J (a=1) 44087.8 41514.3 41399.5 41409.1 41733.7

¢, optimal -0.06 048 1.02 0.61 0.39

O, 0.02. g 014 0.10 0.05 0.03

¢.=0 (Analysis)  yes yes no ’ no no

“fits the data”

a=1 no no yes no no

(Increment) “fits

the data”

Table 1: Fit of different atmospheric states to observations.

Comparing only the different J ‘s obtained in this table, one notices two major points. The first one is that the
scaled gradient obtained with the “energy” inner-product fits the observations better than the one obtained with
the “enstrophy” inner-product. ‘The second point is that, among the increments presented in this table, only two
exhibit a better fit to the data than the control J_(«=0): the increments obtained after 3 and 5 iterations, the best

results being obtained after 3 iterations.
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One can consider the (arbitrary) critérion: x “fits” the observations if it is less than 4 standard-deviations away
from the state best fitting the observations. The last two lines in the table show when the analysis and modified
analyses meet this criterion. Then, along the 5 directions studied, the analysis x * fepresented by «=0 fits the
observations only twice. This is not unreasonablq, knowing that the analysis was not an accurate description of
fhe atfnospheric state, as can be judged by the quality of the subsequent forecast. As far as the increments are
concerned, it is only for 3 iterations that the increment fits the obseryations (although the first iteration was on
the edge). In this particular direc;ion (3rd column in the table), the increment almost exactly fits the state best

representing the data, whereas the analysis is more than 10 standard-deviations away.

The conclusion of these computations is that, among the perturbations computed in this study, the one
corresponding to three iterations of the minimization algorithm is the only one moving the analysis significantly
closer to the observations. Consequently further experimentation with this choice of sensitive increments has

been performed in the following.

5. LIMITATIONS IN THE DERIVATION AND USE OF SENSITIVITY PERTURBATIONS
5.1 Influence of the simplified low-resolution model on the quality of the increments
The limits of the method are investigated in a simpﬁﬁed situation in which it is assumed that the analysis error

is known. Tt will then be possible to judge the quality of the increments produced by the minimization method.

The operational analysis is supposed to be the “true” atmospheric state x " for 20 September 1994." Another
analysis x ¢ is obtained by performing the optimal interpolation on the same date, but removing one observation
(an AIREP in the middle of the Pacific Ocean). Furthermore the operational model M is assumed to be perfect,
so that the divergence of the forecasts started from x* and x'’ actually measures the forecast-error as an

evolution of the analysis error.

Figure 10 shows the “analysis error” x “-x  for the stream function field at model level 13 (roughly 300 hPa).
Oneclearlysees theimpact of removing theobservationlocatedat 180W,40N. After2 days, theforecasterror M(x *) -M(x )
is shown in Fig 11 for the same field. The error pattern has moved eastwards and northwards towards the North-

Eastern Pacific and Westem Canada.

As already explained in the previous sections, the mini'mizaﬁon of the forecast error is done with a simplified
physics low-resolution model denoted M . The cost function in this case writes

J(8x %) = <M(x “)+M ' T, dx-M(x ", M(x%) +M' ! Ox%-M(x > where M / , denotes the tangent—hnear of
M_. Figure 12 shows the increments obtained after three iterations. These should be compared to the analysis
error in Fig 10. The pattern of the analysis error, with a dipole located at 40N, 180W is reproduced fairly well

by the increments. However, the horizontal scale of the increments is too large and there is a spurious signal over
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Stream Function 940920 J1 Exp-Cnt (OH)
~ 180° '

90°'W

90°E

Fig 10 Difference between the analysis x" and the “true” atmospheric state xt, for the streamfunction field at
model level 13 (roughly 300 hPa). The contour interval is 5x105 m2s-1,

90°w

Stream Function 940920 J1 Exp-Cnt (48H)
~ - 180° —

90°E

Fig 11 Difference between the forecast started from the analysis x" and the forecast started from the “true”

atmospheric state xt, after 48 hour integration of the operational T213L31 model, for the streamfunction
field at model level 13 (roughly 300 hPa). The contour interval is 5x105 m2s-1,
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Stream Function 940920 J1 lter-03 Full Phy
180°

qu)/\
)

90°E

920°W

Fig 12 Increments obtained after three iterations of the minimization of the two-day forecast error obtained with
the full T213L.31 model started from the analysis X", for the streamfunction field at model level 13
{roughly 300 hPa). The contour interval is 2x104 m2s-1.

Str,earri Function 940920 J1 Iter-30 Full Phy
180°

90°E

90°wW

Fig 13 Increments obtained after 30 iterations of the minimization of the two-day forecast error obtained with the
full T213L31 model started from the analysis x°, for the stfeam/func,tion field at model level 13 (roughly
300 hPa). The contour interval is 5x104 m2s-1. ‘
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the Western Pacific. One should note the size of the increments, which is roughly a tenth of the actual analysis
error. This result after three iterations looks like a good estimate of part of the analysis error. Proceeding with
the minimization produces increments with a larger amplitude as can be seen from Fig 13, after 30 iterations.
However, the noise does not disappear and its amplitude increases. This is clearly detrimental for extracting the

relevant signal out of the structure of the increments.

The influence of using M, instead of M in the minimization on the quality of these increments can be
investigated as follows. Let us now assume that the simplified model M_ is perfect. It is then the divergence
of the forecasts started from x ¢ and x’, and using the model M_ which measures the forecast error. This
forecast error is shown in Fig 14. One can compare the actual forecast error produced with the full T213 physics
model M in Fig 11, with that obtained with the T63 simplified physics model M in Fig 14. The high resolution
model clearly gives a larger forecast error than the low resolution one. However, the structure of the forecast
error is quite similar, apart from some large positive errors over Western Canada which are only present when

the high resolution model is run.

Minimizing J,, = <M(x%) + M’ 8x° - M(x), M(x®) + M’  .8x® - M(x)> is the next stage, for
which no approximation is involved due to the consistent use of model version M _obtained to define the forecast
error. The increments obtained after three iterations (not shown) are quite similar to the ones obtained after three
iterations of the minimization of J,,. Performing more steps of the minimization algorithm for J M, provides a
better description of the analysis error. The increments obtained after 30 iterations (not shown) compare better
to the actual analysis error than the results obtained after 30 iterations for the minimization of J,,. In particular,

there are no spurious maxima, apart from the relevant dipole at 180W.

It then seems beneficial to perform more steps of minimization in the case when the model used in the
minimization is the same as the one used to simulate the “forecast error”, whereas it is not beneficial when the

models are different.

The minimization of J u, Was extended to 60 iterations. The result is comparable to the one obtained after
30 iterations as far as the structure of the increments is concerned. However, the amplitude comes closer to that
of the analysis error (not shown). The full convergence of the minimization was not achieved after 60 iterations,
which means that the &x ¢ such that M’ , 0xt = (M(x)-M(x)),ie 0x? = -M ! ;I(Ms(x “)-M (x ")) was not
reached. In any case, inverting the M / , over 48 hours is ill-conditioned because of the diffusion included in the
model. It could not be expected to retrieve the analysis error perfectly. For a discussion of this problem, see

Thépaut and Courtier (1991).

205



KLINKER, E. ET AL: SENSITIVITY OF FORECAST ERRORS . ..

90°wW

Stream Function 940920 J1 H48 Simpl. Phys.
} - 180°

90°E

Fig 14 Difference between the forecast started from the analysis X" and the forecast started from the “true” -

atmospheric state X, after 48 hour integration of the model with simplified physics, for the streamfunction
field at model level 13 (roughly 300 hPa).The contour interval is 5x10 m2s-1, o
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The conclusion of this section is that mr% iterations of the minimization algorithm provide a reasonable structure
of the fast-growing part of the analysis error, even if the model used in the minimization is not perfect. However,
it cannot be expected to get an accurate description of the analysis error by performing a full minimization,
because of the discrepancy between the model M_ and the model M. Even if the same model was used, the full

analysis error could not be retrieved because of a loss of conditioning due to diffusion in the model.

Furthermore, in a more realistic context of uncertainty in the definition of the forecast error (which is the case
in practice, as it is defined as the discrepancy between the forecast and the verifying analysis, which is not
perfect), information can only be extracted along the unstable directions. As a matter of fact, one can write the
forecast error as er = Reo + &, where e, is the error in the initial conditions and &, 1s the noise associated
with errors in the verifying analysis. If one wants to invert this expression dx, = -R “I(Rea +g,) to find the
perturbation in the initial conditions cancelling the forecast error, one clearly amplifies the noise in contracting
directions of the tangent-linear operator. For an eigenvalue of 1 (néutral direction, neither stable nor unstable),
the uncertainty in the estimate of the analysis error 0x will be the same as the uncertainty 'sT in the forecast

€ITOor.

52 Linear and non-linear error evolution

The sensitivity calculations are performed under the assumption that the first 48 hours of forecast time are
dominated by linear growth of relatively small analysis errors. It has been shown that this is a reasonable -
assumption. This was shown in the case of a barotropic model by Lacarra and Talagrand (1986), in the context
of large-scale baroclinic instability by Rabier and Courtier (1992) and in the framework of a mesoscale model
by Errico et al (1993b). One way of verifying the linear behaviour is to follow the growth of a pair of small
perturbations that are identical apart from the sign. After 48 hours of integration time (top row of panels in
Fig 17) the negative perturbations, plotted with the sign reversed (left panel), have evolved into a structure that
is almost identical to the structure of the evolved positive perturbations (middle panel). The correlation between
the day-2 forecast errors (right panel) and the evolved perturbations is fairly high, indicating that a large part of

the forecast errors can be adequately described by the unstable growth of analysis errors.

The linear evolution of the perturbations continues for at least another day of integration time until, by day-4,
(middle row of panels in Fig 15) differences between the negative and positive perturbation growth show up.
In particular the evolution of the positive perturbation (middle panel) over the East-Atlantic into a strong
negative deviation from the control is a much weaker feature in the negative perturbation run (left panel). In the
North-East Pacific the linear growth continues for a few more days and is still present by day 6 (bottom row of
panels in Fig 15). However, west of the North-American coast the evolved perturbations at day-6 do not

contribute to a consistent reduction of forecast errors in that region as perturbations and forecast errors have
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950423 Hter{-3)-CNT T+48 (7Tm) 950423 CNT-lter(+3) T+48 (7Tm) D+2 500 hPa Z CNT-IA 950423 (15 m) |
rms 5.78 rms 5.91 rms 25.70

-

950423 Iter(-3)-CNT T+96 (12m) 950423 CNT-lter{+3) T+96 (12m) D+4 500 hPa Z CNT-IA 950423 (25 m)
rms 9.25 .

rms 11.17 . rms 46.17

950423 iter(-3)-CNT T+144 (20m)
: ms 19.88 ms 22.95

Fig 15 Evolution of negative (left column) and positive (middle column) sensitivity increments and evolution of
control forecast errors (right column). Forecast ranges are from top to bottom panel: 2 days, 4 days and 6
days. Units: m.
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.a) T106 all waves t72 RMS-diff j1-j0 950519/t0/950521 500 hPa
rms 1.21
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b) T63 all waves t72 RMS-diff j1-j0 950519/t0/950521 500 hPa
rms 0.84

Fig 16 Root mean square values of evolved sensitivity incremeﬁts after 3 days of integration time. The model
resolution used is T106 in (a) and T63 in (b). Units: dam.
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Fig 17 Verification scores for control forecasts (CONT) and sensitivity integrations (SENS) for the Northern

Hemisphere. Model resolution T106 and T63. Top panel anomaly correlation, bottom panel root mean square
errors.
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developed out of phase. It therefore seems that for this area analysis errors further upstream, which project onto

the unstable sub-space, are only partly responsible for forecast errors in the medium range.

Over western Europe, where the sensitivity perturbations seemed to affect the non-linear error growth after day-4,
a much larger impact could be seen on the medium-range forecast errors. In particular, over the West-Atlantic
and Europe the forecast errors and the evolved perturbations are in phase, indicating a substantial reduction of

errors in the integration with positive perturbations.

6. MODEL INTEGRATIONS WITH SENSITIVITY PERTURBATIONS

6.1 Comparison between T106 and T63 integrations

An important influence on the growth rate of initial perturbations during a model integration could be expected
from the horizontal resolution of the model used for the sensitivity integrations. Experience in some cases that
were investigated in 1994 based on sensitivity gradients had showh that a change from T106 to T213 increased
the perturbation growth even though the spectral resolution of the initial perturbations was T63 in both cases
(Rabier et al, 1996). For these cases, subjectively scaled sensitivity gradients were used to perturb the analysis.
The experimentation presented here is based on using perturbations from three steps in the sensitivity

minimization procedure.

Figure 16 shows local rms values of the perturbations for three cases after 72 hours of integration time for the
two resolutions of T63 and T106. In almost all areas the perturbations have grown to larger amplitudes in the
T106 integration than in the lower resolution run. The T106 version of the model shows more details in many
areas as well. The difference in perturbation growth is summarized in the Northern Hemisphere rms value. From
an initial value of 0.12 dam the perturbations grow by a factor of 7 to .84 dam in the T63 integration and by a
factor of 10 to 1.21 dam in the T106 integrations.

Of course the question remains whether the increased perturbation growth improves the forecast performance
as well. Some improvement of the T106 control forecast (J0i0-T106) compared to the T63 (J0i0-T63) control
forecast can be seen from the verification scores for the Northern Hemisphere (Fig 17). The scores show that
the initial T63 perturbations add more skill to the forecast in the high resolution environment than in the low

resolution model.

6.2 The choice of sensitivity calculations in the operational suite

During summer 1994 the experimental program related to the sensitivity of forecast errors to initial conditions
concentrated on the use of the two day-lagged gradient J48 based on the 48 hour forecast errors, J48. See
Appendix for definition of the different gradients. The improvement in the short and medium-range forecast skill

based on the modification of the initial conditions using the J48 gradient could not be achieved by the use of a
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gradient based on the 24 hour forecast errors, J24. A better performance was noticed from a gradient J48/24
based on the difference between today's day-1 and yesterday's day-2 forecast. Therefore, it was decided to retain
the J48 and the J48/24 gradient in the operational suite, both based on the Northern Hemisphere. The additional
gradient calculations performed on the European area did not prove to be useful as medium-range forecast errors

for Europe frequently originate further upstream over North America or even the Pacific.

The success of correcting errors in the initial conditions led to further research in the direction of a possible
application in real forecast mode. A waiting time of 48 hours, as required for modifications of the initial
conditions based on J48, is normally not compensated by a gain of forecast skill of at least 48 hours. A relatively
small waiting time of 12 hours could be achieved by using the inconsistency between the 0z and 12z forecast.
This so called J48/36 gradient follows the singular vector approach of Ron Gelaro to propagate the 12 hour
forecast error forward in time for 36 hours and then calculate, with the singular-vector equivalent of the adjoint,
the sensitivity at initial time. In a similar way the adjoint J48/36 gradient is based on the forecast inconsistency
between the 48-hour forecast from 12 z and the 36-hour forecast from 0z, whereby the adjoint calculations follow
the 48-hour trajectory. As for the J48 calculation, 3 iterations of the minimization procedure are carried out to

derive optimal perturbations without increasing the computational cost too much.

6.3 Performance of the T106 integrations

Based on the experience that the use of T63 as horizontal resolution reduced the growth of perturbations, most
research experiments were performed with the T106 resolution. A longer series of 20 days of integrations was
run for June 1995. As the inconsistency of the 48-hour and 36-hour forecasts is due to errors in both initial
conditions at 12z and 0z, we expect only to see a fraction of the true sensitivity of forecast errors to initial
conditions at 12z from J48/36. By multiplying the sensitivity perturbation by a factor of 2 the perturbations had

the same amplitude as the J48 perturbations which seemed to be a relevant choice.

The results show behaviour of the sensitivity integrations that has been found for other periods as well. The
J48-integrations show a general improvement in forecast skill compared to the control runs (Fig 18 for the NH).
The fact that the minimization is done for the Northern Hemisphere area explains why, on smaller sub-areas like
Europe (not shown), an occasional deterioration of skill by the use of the J48 perturbations can be seen. The
definition of the cost-function for a smaller area sufficiently further upstream would probably improve the

performance over Europe.

The anomaly correlation graph for the J48/36-integrations shows the performance depends on the skill of the
control forecast. At a number of days when the control forecast changes from a relatively bad to a better score,
the J48/36 integration shows the opposite behaviour of improving on the bad control forecast but doing worse

for the previous good forecast. This suggests that analysis errors causing a poor 12z forecast for a specific day
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Fig 18 Time series of day 5 anomaly correlations for the Northern Hemisphere. Control forecast (solid line), 2 day- .

~ lagged sensitivity integration (dashed line), 12 hour-lagged sensitivity integration (dotted line).
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were already present 12 hours earlicf in the 0z analysis, causing the J48/36 gradient to correct the previous 12z
analysis into the wrong direction by interpreting the inconsistency between the 0z and 12z-forecast as a problem
in the 12z-analysis. On average over the 20 cases in June (Fig 19) the J48/36 integrations showed fairly neutral
behaviour with slight gains in the short-range forecast and slight losses in the medium rénge contrary to the J48
integrations which persistently showed an improved ;c,kill for all forecast ranges. From these scores that show
a gain by J48/36 of less than 12 hours it seems unlikely that an applicétion for real time forecastinkg would be
beneficial if the perturbations are restricted to a positive sign. However, two sets of forecast runs from negative
and positive perturbations based on J48/36 would form a valuable extenstion of the existing ensemble prediction

system.

7. CONCLUDING REMARKS

This study confirms that the sensitivity of forecast errors to initial conditions, calculated operationally at
ECMWEF for more than two years, provides useful diagnostic guidance for identifying areas in which analysis
errors contribute to large forecast errors. As the sensitivity gradient is closely linked to the stability of the flow
it is not surprising that the largest sensitivity is found during the winter when the flow is more baroclinically
unstable than in the summer. Apart frdm the dominating seasonal effect there is also an influence from the model
formulation itself. Reduced forecast errors due to improved parametrization schemes have made the short range

forecast less sensitive to analysis errors.

The choice of the inner product in the adjoint calculations has an important effect on the horizontal structure of
the sensitivity gradient. By using an "enstrophy"” like inner product as an alternative to energy the sensitivity
gradient obtains an unrealistically large scale. Model experiments with different increments confirm that the
large scale part of the enstrophy based sepsitivity gradient does not grow as fast as the small scale part that is
more similar to the small scale structures identified with the energy norm. The fact that the energy norm provides
an efficient way of identifying the relevant scales of analysis errors is confirmed by comparing the modified

initial conditions to observational data.

Whereas the sensitivity gradient represents the direction that contributes to the fastest growing analysis error,
the application of an iterative procedure minimizing the short-range forecast error leads, after some iterations,
to so called sensitivity increments that describe a larger subspace of analysis error directions. A large number
of iterations in the minimization algorithm does not seem to be beneficial, in particular, as there is still a
discrepancy between the model with simplified physics used for the adjoint integrations and the forward model
with the full physics. It seems that three iterations provide a reasonable structure of fast growing analysis errors

which substantially improves the fit to observations when subtracted from the analysis.
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Fig 19 Mean verification scores for control forecasts (solid: line), 2 day-lagged sensitivity integration (dashed line),
12 hour-lagged sensitivity integration (dotted line).
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Modifications of analyses based on sensitivity gradients or sensitivity increments can improve the forecast skill
beyond the optimization time of 48 hours, in some cases spectacular gain of forecast skill has been achieved.
However, the succéss during non-linear error growth is not guaranteed. The fast growing errors in the first
48 hours may be unrepresentative for later error development from initially smaller growing errors. The Beneﬁt
in model performance is also dependent on the model resolution. With initial increments of identical spectral
resolution, higher resolution versions of the model allow a faster growth of perturbations and produce a larger

gain in predictive skill

The improvement of forecast skill by adding sensitivity increments to the analysis can normally not be
transformed into real predictive skill, as the waiting time of for the verifying analysis is large comparéd to the
gain of forecast skill. A reduction in waiting time can be achieved by shortening the forecast length. As the main
déta volume available for the analysis arrives only at 12z and Oz, a 12 hour forecast length is the shortest that
would allow a verification against an analysis of sufficient quality to identify model errors. Experience, however,
has shown that the 12 hour forecast errors are not sufficiently large to obtain a well defmgd sensitivity field.
Much larger differenceé evolve between the 48 hoﬁr forecast from 12z from the 36 hour forecast from 0z.
Calculating the sensitivity of this forecast divergence with respect to the initial conditions at 12 z
(12 hour-lagged) produces sensitivity structures similar to the 48-hour forecast error sensitivity (2 day-lagged).
Although the 12 hour-lagged sensitivity increments do not improve the forecast as much as the 2 day-lagged

sensitivity increments, it seems that in particular bad forecast cases a real predictive skill is possible.
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Appendix A
A
e J48/24
g 748
- &
y T .
Do Dl D2 D-1 DO D1

J48/36

Definition of gradients
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APPENDIX B
The minimization uses the quasi-Newton algorithm M1QN3 developed at INRIA (Gilbert and Lemarechal,
1989). The algorithm may be written concisely as
d, = -HNJ(®x)
Ox;1,
CH = F(Sg Sy S5 Y Yy Y H,.O)
where 5; = dx;;, - Ox and y, = VJ(8x;;) - VJ(6x).

= 0x + ad,
[

Nocedal (1980) demonstrated that under certain restrictive conditions, successive iterates dx;” produced by the
algorithm are identical to those produced by conjugate-gradient minimization of J with exact line searches. The
conditions under which this equivalence holds are that ¢, is chosen at each iteration to minimize J along the line
ox® + ad,, and that the identity matrix is used for Hio. Neither of these conditions is met exactly in our

algorithm. Nevertheless, we expect the following result to hold to good accuracy.

It is well known (see for example Bertsekas, 1995) that for a quadratic function the n™ iteration of conjugate-
gradient minimization with exact line searches minimizes J over all vectors in the Krylov space

{Oxy", Oxy +(J ")dxy", dxy +(J P dxy, ...y Sxg+(I Y Bxy)
where (J) is the Hessian matrix of J.

As n increases, (J /)" dx,' points increasingly in the directions of the leading eigenvectors of (J/), and J is
rapidly minimized in these directions. (It is this property of Krylov spaces to rapidly converge towards the space
spanned by the leading eigenvectors of a matrix which is exploited by the Lanczos algorithm, which is also

closely related to conjugate-gradient minimization.)

The Hessian matrix of J is M’ ST AM' - The eigenvectors of this matrix are the singular vectors of M !  with
respect to the inner product [.,.] ;. Thus, to the extent to which the quasi-Newton minimization algorithm mimics
conjugate-gradients, J is rapidly minimized in the directions spanned by the leading singular vectors of the

tangent linear model.
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