A FAMILY OF SEMI-LAGRANGIAN SCHEMES

Jean Coté", Sylvie Gravel André Méthot¥,
Alain Patome# Mlchel Roch’ and Andrew Stamforth*
Recherche en prévision numérique
# Canadian Meteorological Centre
Dorval, CANADA

1. INTRODUCTION

Since Robert et al. (1985) first demonstrated a semi-implicit semi-Lagrangian discretization of the
hydrostatic primitive equations, this method has found increasing favour at weather-forecasting and
climate centres throughout the world (e.g., Bates et al. 1993; McDonald and Haugen 1992; Purser and
Leslie 1994; Ritchie and Beaudoin 1994; Ritchie et al. 1995; Tanguay et al. 1989; Williamson and Olson
1994).

Although it has been known for some time (Kaas 1987; Coiffier et al. 1987; Staniforth & Coté 1991;
Tanguay et al. 1992) that semi-implicit semi-Lagrangian schemes can experience difficulties at high
Courant number in the presence of orography, it is only recently that this problem has been elucidated. In
Rivest et al. (1994), hereafter referred to as RSR94, its source was clearly identified and a solution
proposed in a two-time-level context. It consists of off-centering the semi-implicitly-treated terms along
the trajectory, and Rivest & Staniforth (1995) have proposed a possible retrofit scheme for three-time-
level-based centered schemes. Héreil & Laprise (1995) have recently extended the RSR94 analysis to the
semi-implicit semi-Lagrangian discretization of Tanguay et al. (1990) of the non-hydrostatic Euler

equations.

Two questions emerge naturally from the RSR94 study. First, is it possible to exploit the decentering of the
time scheme to create a richer family of semi-Lagrangian time schemes that not only address the
orographic resonance problem, but also have other interesting properties: e.g. enhanced accuracy or
simplicity. The response to the first part of this question is straightforward. It is indeed possible to
create a richer family, and it remains only to determine its properties. It turns out that one member of this
generalized family is equivalent to the O(At3) scheme proposed in McDonald (1987). This then leads to
the second question, that posed in McDonald (1987): "It would be interesting to test this scheme in a

realistic setting to see if the promise of high accuracy in both At and Ax held up in practice".

The goals of the present paper are: to present this generalized family of schemes; to assess the merits of
different members of this family based on both theory and practice and to thereby answer McDonald
(1987)'s question; and to present some results obtained using the original Rivest et al. (1994) semi-implicit
semi-Lagrangian scheme in a prototype of a global variable-resolution baroclinic model currently under

development.
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The generalized family of time schemes is defined in Section 2, and its resonance and stability properties
analysed therein. A first practical assessment is accomplished by integrating a global shallow-water
model subject to orographic forcing for various members of the family of schemes examined theoretically
in the previous section. These results are presented in Section 3. A brief description of the global
variable-resolution baroclinic prototype is given in Section 4, and results from it are presented in Section 5.
These latter tests are performed in the absence of orography. Finally, some conclusions are summarized in

Section 6.

2. THEORY
2.1 The generalized family of O(At?) schemes
The linearized one-dimensional shallow-water equations after a three-time-level semi-implicit semi-

Lagrangian discretization may be written as (cf. RSR94):

Dv —;

—+ =0, 2.1
Dr Ju (2.1)

Du 3¢ ' J¢.
A L 2.2
Dt ox i ox @22

D¢ _ou'

+d— =0, 2.3
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where ¢ and @ are respectively the fluid depth and orographic height multiplied by g, the other

symbols have their usual meaning, and for the generalized family of schemes introduced here:
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F' = F[x(t) —rUAtt — rAt], (2.6)

where t =nAt ,and r and n are integers.
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The basic-state quantities U and ® are assumed non-zero, and the orographic geopotential ¢ is both
non-zero and time invariant. The linearized equations before discretization may be recovered by
redefining DF /Dt and F as:

(_QE) :.QE.{.U?E_, (2_7)
Dt Joxaer Ot ox
(F’) =F. (2.8)
exact

It is possible to rewrite the governing equations (2.1)-(2.3) in terms of the geopotential height
(N=¢+¢,) of the fluid's surface instead of its geopotential thickness ¢, as advocated by Ritchie and
Tanguay (see their paper in this volume). Note that the essential difference between their approach and
the RSR94 one is that the governing equations are rewritten in the following alternate way before

discretization:

Dv —t

—+ fu =0, 2.1

D1 fi (2.1
Du dn '
2% =0, 2.2'
Dt o« 22

D1l | 3 _ ;90

Dt o o 239
The change of variable has the effect of slightly changing the way in which the forcing appears in the
equations, but it does not change the form of the unforced terms, all of which appear on the left-hand sides
of the equations. Because of this latter fact, it turns out that the analysis given below of (2.1)-(2.3), and
the conclusions drawn therefrom, also apply mutatis mutandis to the system (2.1)-(2.3"). The semi-
implicit semi-Lagrangian formulation introduced by Ritchie and Tanguay can therefore be generalized in
exactly the same way as that introduced above for the Rivest et al. (1994) one, and this makes the link

between the present work and theirs.

The above 2-parameter (8, £) family of schemes is the most general O(A2)-accurate scheme based on
three time levels, and is a generalization of the 1-parameter (§) family presented in RSR94. The
parameter O here is exactly as in RSR94. It was introduced there to decenter the 2-time-level Crank-

Nicolson semi-implicit semi-Lagrangian discretization, and thereby address the problem of spurious
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orogrophically-induced resonance by introducing a third time level to evaluate the time-averaged
contributions along the trajectory. A further new parameter € has been added here. It optionally
introduces the use of a third time level in the evaluation of the time derivatives along the trajectory.
This additional degree of freedom might be expected a priori to permit an improvement to the RSR94
family of schemes by reducing the time truncation errors [possibly to O(A#3)] while still maintaining
stability and avoiding spurious resonance. Note that McDonald (1987)'s proposed O(A#3) scheme (cf. his
eq.27) is a special case of the generalized family. This is discussed further later. Special cases of the

above generalized scheme for particular values of 6 and € are summarized in Table 1.

d € Scheme

0 0 Crank-Nicolson using time levels t and t-At

% ——%— Crank-Nicolson using time levels t and t-2A4t

o 0 General RSR94 1-parameter (8) scheme

% 0 Particular RSR94 scheme, for which results were shown
—%— % Backward implicit
—% —é— McDonald's proposed 0(At3) scheme

Table 1:  Particular cases of the generalized scheme as a function of & and €.

2.2 Decomposition of the solution of the linearized equations

The complete solution to the linear system (2.1)-(2.3) can be written as the sum of free and forced modes:

v(x,2) vfree (x,1) vforced (x)
u(x,t) |=| we(x, 1) |+| uorced (x)

free forced
o] |7 | |7 | 2.7)

The free solutions satisfy (2.1)-(2.3) with the forcing ¢(x) set identically to zero. Letting

106



COTE, J. ET AL.: A FAMILY OF SEMI-LAGRANGIAN SCHEMES

yfree (x.1) v{ree
ufree(x’ 1) |= ul{ree ei(kx+a)t), 2.8)

¢f"ee (x,1) ¢ /{ree

each free mode (there are three for each wavenumber) then satisfies

Aw)| ul"® |=0, (2.9)

where

Qo) (o) 0
A(w)=|-T(w) Qo) ikl()] (2.10)
0 kdl(w) Qo)

a(w)={* e)E? - /S +26)E+e _[(1+ S)EA—te][E -1 o1
I‘(co)=%[(1+6+s)E2 +(1—26)E+(6—£)], (2.12)
E(w)=exp[i(w +kU)At], (2.13)

and exact interpolation has been assumed. Setting
det{A(w)] =0, (2.14)

then gives the dispersion relation for @. Note that for the exact solution of the linearized equations

(with no discretization), (2.11)-(2.12) may be replaced by the definitions
Qexacr(@) =i(w +£U), (2.15)
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I‘exact(c')) =1, (2.16)

and the usual (free) Rossby and gravity-wave dispersion relations then result from (2.14):

Opxact = —kU, (Rossby),

2

f (2.17)
=—kUxk,|®+ ) (gravity).

The forced (steady-state) solutions satisfy (2.1)-(2.3) in the absence of any time variation (d/df =0), and

may be Fourier decomposed as

plorced (x) v l{orced
" forced (x) =] u forced eikx. (2.18)
forced I} d
orce orce
¢ (x) ¢k

They then satisfy

v/{orced 0
Alw=0) u,{orced =| —ikgy |. (2.19)
(PI{orced 0

Note that for the exact solution of the linearized equations (with no discretization), A(®@ =0) simplifies

to

kU f 0
Apuc(@=0)=| —-f kU ik |, (2.20)
0 ikd kU

(cf. RSR94). Physical resonance then occurs when the determinant of A ,,,.(® =0) vanishes, i.e. when
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2
U= |0+ L |, (2.21)
k

which, as discussed in RSR94, corresponds to supersonic flow and is unlikely to occur in a shallow-water

model representative of the atmosphere at 500 hPa.

The existence or not of computational resonance is determined from (2.19), and a scheme’s stability from
the solutions of the dispersion relation (2.14). Note that the matrix A defined by (2.10) plays a
determining role for both resonance and stability. These latter are respectively discussed in the following
two sub-sections. Note also that the elements of A are independent of whether the equations are written
as (2.1)-(2.3) or as (2.1)-(2.3"). This means that the following analysis and its conclusions also apply to

the generalization of the Ritchie and Tanguay formulation given in this volume.

2.3 Analysis of computational resonance

For the discretized linear equations, whenever
det[A(w =0)] =0, (2.22)
the stationary forced gravity modes determined by (2.19) are resonant, and these resonances may be

spurious (RSR94). This leads to the following two quadratic equations that govern the resonance of the

stationary forced gravity solutions:

[(1 +e)k iAAtQJr—(Zt‘?—)]E,?eS - [(l +2¢) miAAt—(l:;—leE,.es + eLiAAt (8 ; J =0, (2.23)
where

E,.s = E(w = 0) = exp[ikUAt], (2.24)

A =KD+ f2. (2.25)

Since kUAt is real by definition, resonance is only possible if Ere ¢ lies on the unit circle, i.e. if

|E,es| = |E(0 = 0)| = 1. (2.26)

109



COTE, J. ET AL.: A FAMILY OF SEMI-LAGRANGIAN SCHEMES

For the special case € =0, the conditions (2.23) for resonance in the present 2-parameter (§,€) family of
schemes reduce to (15) of RSR94 for their 1-parameter (§) family. The further special case 8 =& =0 (cf.
Table 1), corresponds to the conditions (9) of RSR94 for the spurious resonance of centered 2-time-level
semi-implicit semi-Lagrangian schemes. As discussed in RSR94, spurious resonance occurs for certain
combinations of large Courant number and nondimensional wavenumbers of the orographic forcing, and can
be avoided by suitably off-centering the time discretization along the trajectory. In the present study this
is controlled by the § and € parameters.

Summarizing, any of the schemes considered here will be non-resonant provided IE(CO = O)I #1. They

may not however necessarily be stable, and this aspect of the discretization is now examined.

24 Analysis of stability
Stability is determined from the dispersion relation obtained by solving (2.14). Thus

[(1 +e)+ iWAt(—l—%ﬁl}# - [(1 +26)— iWAt(l—_z-z—a—)}E te+ iWAt(—‘?;—S) =0, (227)

where W =0, (Rossby), (2.28)

TA = iw/kzcb +f2, (gravity), (2.29)

I

and the scheme is stable provided
|E| = |expli(@ + kU)Af] <1. (2.30)

Note that (2.27) can be identified with the dispersion relation that would result from applying the

generalized family of schemes of the present study to an oscillation equation, yielding the discretization

DF | wF =0, (2.31)
Dt

where W is real. This is equivalent to having performed a decomposition in terms of the eigen-functions
of the matrix A. The leading-order term of the truncation error (obtained in the usual manner via a

Taylor-series expansion and placed on the right-hand side of 2.31) is
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) . I B B A V) D’F 3
Truncation error = zW(—l—z— + EJ(At )—5;2— + O(At ) . (2.32)

For the quadratic associated with the Rossby modes (for which W = 0), (2.27) factors easily and E =1 or
g/(1+ €). The first root corresponds to the physical Rossby mode and it is stable since it satisfies (2.30).
The other root corresponds to a computational Rossby mode (introduced by discretizing a 1st-order-in-time
equation over three time levels), and it will satisfy (2.30) and be stable provided £=-1/2. Now
e=-1/2 corresponds to a centered three-time-level discretization, and this value for £ must be excluded
since (see above and RSR94) the stationary forced gravity modes would suffer from spurious resonance.
Although satisfaction of the strict inequality € > —1/2 is sufficient to stabilize the computational Rossby
mode, € should be positive, otherwise it will have the undesirable property of changing the sign of this
computational mode at alternate timesteps (timestep decoupling). & should not only be positive but small

to ensure adequate damping of this computational mode during the integration.

For the quadratic associated with the gravity modes (for which W =i\/k2¢>+ f2 ), (2.27) does not
factor easily. It is nevertheless possible to get some insight into the influence of § and € on the stability
of the free gravity solutions by solving (2.27) asymptotically for E for the physical mode when WA? is
small. A straightforward but lengthy expansion in terms of WA? for the physical root of (2.27) then

yields the following expansion for its modulus:

IEP =1-8(1+2&)(WA)* + %5(1 +26)[1+105+26(1 + £)|(WA)S + 0[(WAt)8]. (2.33)

From above, since (1+2€)> 0 for stability of the computational Rossby solution, it is necessary to take
6>0, (2.34)

in order to both satisfy the stability condition (2.30) and to also remain off resonance. This is a necessary
condition for stability. From (2.32), it has the further consequence that the only O (A#3)-accurate member
of the present generalized family of three-time-level schemes (i.e. 6 =—1/6) is unstable and therefore
inadmissible. This is unfortunate. By numerically solving (2.27) when W = i\/kzd) +f 2 for a broad
range of values of the parameters WAt, &, and &, it is found that the valid domain for remaining both

stable and off resonance is

6>0, > —%, (2.35)
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as suggested by the above analysis.

A corollary of the present analysis is that it addresses the query, first raised in McDonald (1987) and
discussed in the above introduction, concerning the viability of the O(At3)-accurate scheme (cf. his eq. 27)
tentatively proposed therein. This scheme corresponds to (8,€) =(—1/6,1/6) in the present notation,

and it is therefore unstable for gravity modes since it violates the above-derived condition (2.34).
Summarizing, it is advisable to choose & and € from the more restricted domain

6>0, €20, (2.36)

to avoid having a time-decoupled computational Rossby mode. It is also advisable to use the smallest-
possible values of & and € (consistent with being adequately off-resonance), to respectively minimize the
truncation errors (see 2.32) and to maximally damp the computational Rossby mode of amplitude

ell+e).

3. RESULTS USING A SHALLOW-WATER MODEL

3.1 Preliminaries and control integration (8 = £ = ()

The variable-resolution global shallow-water model described in Coté et al. (1993) has been modified to
include the present generalized family of semi-implicit semi-Lagrangian time schemes. To evaluate the
proposed family of schemes and to provide some guidance on the choice of the values for the parameters O
and &, the methodology introduced in RSR94 is adopted. The grid configuration and the model orography
used here are as depicted in their Figs. 4 and 5. The grid has a uniform (1/2°) resolution window over N.
America, and the orography is zero everywhere outside this window. The experiments consist of 48-h
forecasts initiated from the 500-hPa height and wind analyses of 1200 UTC 12 February 1979 after an
implicit-normal-mode initialization. The initialized geopotential used in all of the described

experiments is displayed in Fig. 6 of RSR94.

Two methods for computing trajectories were described in RSR94, and for both of these the upstream point
at time ¢ — At is obtained as in Coté et al. (1993) using winds extrapolated forward from those at times
t—Atand t—2At to 1~ (At/2). In the first of the two methods the upstream point at time ¢t —2A¢ is
obtained by simply extending backward the great-circle trajectory that joins the arrival point at time ¢ to
the already-determined upstream point at time 7 — A¢ by a distance equal to that between them. In the
second method, the trajectory between the arrival point at time ¢ and the upstream point at time ¢ —2A¢
is determined in the same way as for the trajectory between the arrival point at time ¢ and the — At
upstream point, except that the wind field at time ¢ — At is used and the time interval is twice as large.
This gives rise to a piecewise-defined trajectory rather than the continuous great-circle one of the first

method. For the results shown in RSR94, the trajectories were computed using the first method. This was
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done on the basis that the results using either of the two methods were very similar, with a small
advantage for the second method, but the first method was a little cheaper computationally. However it
was found in the present study that the use of the first method significantly degrades the results for some
of the other members of the generalized family of schemes. Therefore the trajectories for all of the
integrations presented here that require evaluation at the ¢ —2Af upstream point were computed using

the piecewise-defined trajectories of the second method.

Figure 1 shows the "control" 48-h forecast of the total geopotential height [(d) + (/)S) / g1 obtained using
the standard two-time-level semi-implicit semi-Lagrangian scheme (6 = £ =0) with a timestep of 10
min and is identical to Fig. 7 of RSR%4. No spurious noise is apparent in the vicinity of the Rockies because
of the small (significantly less than unity) Courant number. This integration serves as the standard of
comparison in what follows. Integrations at large Courant number (with Af = 60 min) for various members
of the generalized family are compared against it below. Note that for a timestep this large, the

standard two-time-level scheme manifests spurious resonance (see Fig. 8 of RSR94).

3.2 An O(Af?)-accurate backward-implicit scheme (5§ =1/2, £ = 1/2)

The solution proposed in RSR%4 to address the spurious-resonance problem of the standard two-time-level
scheme at large Courant number is to decenter the scheme. This is done by adding a third time level in the
evaluation of terms that are averaged along the trajectory (and changing the averaging weights), while
leaving the semi-Lagrangian discretization of the total derivatives unchanged. It corresponds to
evaluating the total derivatives in the simplest, most compact, fashion at the expense of complicating
the evaluation of the other terms. The alternative examined in this sub-section is to do the contrary, viz.
to maximally simplify the computation of the other terms by evaluating them entirely at the arrival
point with weight one, and to decenter the evaluation of the total derivatives by adding a third time
level and changing the weights appropriately. This corresponds to setting 8 =1/2, € =1/2 in the present
generalized family (we label this scheme backward-implicit) rather than choosing 6 =1/2, £=0 as
used to produce the results shown in RSR94. It has the advantage of no longer computing terms such as Vo
and V-V at times ¢ — Af and t —2At since they are not needed. Both of these schemes have the same
value of &, and both are formally O(A#2)-accurate with the same coefficient for the leading-order error
term (cf. 2.32 with § setto 1/2).

Figure 2 displays the 48-h forecast for the described backward-implicit scheme using a 60-min timestep.
Comparing it to the control (Fig. 1) and the corresponding result shown in RSR94 using the same timestep
(their Fig. 11), it is seen that this backward-implicit scheme at this timestep is about as effective in

addressing the spurious resonance problem as is the RSR94 scheme (with & set to 1/2).

113



COTE, J. ET AL.: A FAMILY OF SEMI-LAGRANGIAN SCHEMES

Fig. 1 The geopotential height (dam) for the 48-h Fig. 2 As in Fig. 1, but for the O(Af2) "backward-

"control" forecast using a centered 2-time- implicit' scheme (8 = 1/2, € = 1/2) with
level scheme (8 = & = 0) with At =10 At = 60 min.
min.

Fig. 3 As in Fig. 1, but for an uncentered RSR94
scheme (8 = 1/6, € = 0) with At = 60 min.
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3.3 Another member of the RSR94 family of schemes (8 =1/6, € =0)

In RSR%4, results were only shown for one specific value of the free parameter of their family of schemes,
viz. 6 =1/2. It was argued that this was a good (but not necessarily optimal) choice. A careful
examination of Fig. 3 of RSR94, where the ratio of the amplitudes of the numericél and analytical
geopotentials is displayed, suggests that it may be possible to use a value as small as & = 1/6 and still
remain acceptably far removed from resonance or near-resonance. Figure 3 displays the 48-h forecast for
this scheme (6 =1/6, £ =0). It is seen that while the forecast is quite close to the corresponding result
with 6 =1/2, £=0 (Fig. 11 of RSR94), it is nevertheless a little more noisy over the Rockies. This
indicates that for this choice of orography and timestep, the optimal value of & lies somewhere between
1/6 and 1/2. If § is chosen to be smaller than 1/6 then spurious resonance will manifest itself, and if it is

taken to be greater than 1/2, then the time truncation error (see 2.32) will increase.

3.4 Further experiments

A set of further 48-h forecasts has been performed, with timesteps varying from 30 min to 120 min, using a
variety of values for 6 and €. The specific parameter values used were (6,€)= (1/2,0), (1/2,1/2),
(1/6,0) and (1/8,1/8). These schemes respectively correspond to: the RSR94 (6 =1/2), backward-
implicit, and RSR9%4 (& =1/6) schemes; and a scheme in the new family lying somewhere between the
RSR94 (0 =1/2) and backward-implicit extremes. The rms geopotential height differences between

these forecasts and that of the control one (Fig. 1) have been computed and are displayed in Fig. 4.

It is seen that all of these schemes behave similarly for timesteps as long as one hour, and all are very
close to the control forecast with rms differences wrt the control of less than 1.7 m. This is considerably
smaller than the criterion of 4m used in RSR94 to determine acceptability. For larger timesteps the rms
differences wrt the control for each of the forecasts, except one, behave very similarly and meet the 4 m
criterion for timesteps as long as 100 min. The exception is the backward-implicit scheme (8 = € = 1/2)
for which the difference growth is somewhat faster, and the maximum timestep that satisfies the 4m
criterion is reduced to approximately 85 min. Although it is a viable scheme, it is not as good as the
others considered for very large timesteps, e.g. the rms difference wrt the control with a 120 min timestep
is almost twice that of the others. At first glance this is surprising since the leading-order truncation error
(cf. 2.32) of the backward-implicit scheme is exactly the same as that of the RSR94 scheme with (5, E)=
(1/2,0). However this behaviour can be explained by the fact that the leading-order term for the
damping rate (see 2.33) dependson £ and is twice as large in the backward-implicit scheme than in the
RSR%4 (0 =1/2) one.

4. A GLOBAL VARIABLE-RESOLUTION BAROCLINIC MODEL
A two-dimensional prototype (Coté et al. 1993) of a global variable-resolution model has been developed
to provide the "proof-of-concept” for the horizontal variable-resolution strategy, and it has been tested

extensively on a variety of meshes. The formulation has been generalized to three dimensions and dry
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At (hour)
Fig. 4 The rms geopotential height differences (m) of four schemes wrt the control as a function of

timestep (h). Solid - RSR94 (8 = 1/2, & = 0); dash/dot - RSR94 (8 = 1/6, € = 0); long dashed
- backward implicit (8 = 1/2, € = 1/2); short dashed - (8 = 1/8, & = 1/8).

Fig. 5 Schematic for horizontal glacement of variables, displayed around a pole. Circled points: D. 0.
Crossed points: V, T, 17.

116



COTE, J. ET AL.: A FAMILY OF SEMI-LAGRANGIAN SCHEMES

hydrostatic primitive-equations prototype is currently undergoing testing, validation and refinement.
Some preliminary results were given in Coté et al. 1995, and some further results are presented in Section 5

of the present paper. The coding of a moist version is almost complete.

4.1 Governing equations

The equations are those that govern the flow of a frictionless adiabatic hydrostatic fluid on a rotating

sphere. A terrain-following hybrid coordinate is defined as

* ®

_P—=Dbr _ D —Dr
- - *® % 7
Ps—DPr ps-—Dpr

n (4.1)

* *

where P =pr +(ps* —pT*)n, (4.2)

Psand pr are the respective pressures at the bottom and top of the atmosphere, and pS* and pT* = pr
are the respective bottom and top constant pressures of a motionless isothermal (T* = constant) reference
atmosphere. Equation (4.2) is a direct consequence of the definition (4.1) of the vertical coordinate, and
permits the thermodynamic equation to be written in such a way as to ensure the computational stability

of the gravitational oscillations. The governing equations in this coordinate system then become:

H
%—+RTV1np+V¢+f(kaH)=o, 43)
d, |op L
dt nc?n on
d T p M d *
—1 - |—x1 — |1—xn—1{1 =0, (4.5)
df[n(T ) n(p ﬂ nd"(np )
a9 dlnp
—L=—RT , (4.6)
an an
d H )
I —=—+V'.V+n—, (4.7)
where E7A 7977
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¢ = gz is the geopotential height, and X =R/ Cp- In the above, eqns (4.3)-(4.6) are respectively the

horizontal momentum, continuity, thermodynamic and hydrostatic equations.

The boundary conditions are periodicity in the horizontal; and no motion across the top and bottom of the

atmosphere, where the top is at constant pressure pr. Thus

1‘15%7—:0 at n=0,1. (4.8)

4.2 Temporal discretization

The time discretization is fully-implicit/ semi-Lagrangian. Consider a prognostic equation of the form

d—F+G=0, 4.9)
dt

where F represents one of the prognostic quantities (v, In|dp/an|, ln(T/ T*) - K‘ln( p/ p*)}, and G

represents the remaining terms, some of which are nonlinear. Such an equation is approximated by time

differences and weighted averages along a trajectory determined by an approximate solution to

dx
_El:V:‘(XCi’t)' (4.10)

where X, and V3 are the three-dimensional position and velocity vectors respectively. Thus

(Fn _ Fn—l)
At

+(3G”+i—G""2) 0, (4.11)

4
where " = y(x3,1), ¥ = y[x3(t-mAr),t-mAt], y={F,G}, t=nAt.

Note that this scheme is decentered along the trajectory as in Rivest et al. (1994), in anticipation of the
introduction of orography (not included in the results of the present paper). In this way the spurious
resonant response arising from a centered approximation in the presence of orography will be avoided.
This decentered scheme nevertheless shares the O(Atz) accuracy of the more usual centered schemes. It
corresponds to setting the parameters of the generalized family of schemes to be (8,€) = (1/2,0). Cubic
interpolation is used everywhere for upstream evaluations (cf. eqn 4.11) except for the trajectory

computations (cf. eqn 4.10), where linear interpolation is used with no visible degradation in the results.
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Grouping terms at the new time on the left-hand side and known quantities on the right-hand side, eqn

(4.11) may be rewritten as

n
(F + %AtG) =l %AtG”“z. (4.12)

This yields a set of coupled nonlinear equations for the unknown quantities at the meshpoints of a regular
grid at the new time 7, the efficient solution of which is discussed below. A fully-implicit time
treatment, such as that adopted here, of the nonlinear terms has the useful property of being inherently
computationally more stable than a more explicit one (e.g. those of Bates et al. 1993 and McDonald and

Haugen 1992, whose computational stability is analysed in Gravel et al. 1993).

4.3 Spatial discretisation

A variable-resolution finite-element discretisation, based on that described in Coté et al. (1993), is used in
the horizontal with a placement of variables as shown schematically in Fig. 5. It has the advantage
that only one set of trajectories is required, although other placements are possible and are being
examined. In particular, a cell-integrated version of the model using a C-grid has been coded. The

vertical discretisation is modeled after that of Tanguay et al. (1989).

4.4 Solving the coupled nonlinear set of discretized equations

After spatial discretisation the coupled set of nonlinear equations still has the form of eqn (4.12). Terms
on the right-hand side, which involve upstream interpolation, are evaluated once and for all. The
coupled set is rewritten as a linear one (where the coefficients depend on the basic state) plus a
perturbation which is placed on the right-hand side and which is relatively cheap to evaluate. This set
is then solved iteratively using the linear terms as a kernel, and the nonlinear terms on the right-hand
side are re-evaluated at each iteration using the most-recent values. The linear set can be algebraically
reduced to the solution of a three-dimensional elliptic-boundary-value problem, the horizontal aspects of
which are discussed in detail in Appendix B of Coté and Staniforth (1990). In practice the cost of solving
the coupled set of nonlinear equations is only marginally more expensive than the iterative solution of the
variable-coefficient linear set. The most significant contribution to the cost of a timestep is that of

interpolation, which is the same regardless of whether the coupled set of equations is linear or nonlinear.

5. RESULTS

51 Methodology

A preliminary assessment of the above-described global variable-mesh strategy was made in Coté et al.
(1995) by performing three 48-h integrations starting from the same initial data, the Canadian
Meteorological Centre analysis valid at 12 UTC 12 Feb 1993. For all integrations, the model was run with

23 vertical levels (pr = 10 hPa) using a 30-min timestep: a Laplacian diffusion was included with a
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coefficient of 1.5x10° m2s™1. There was no topography and there were no heat or momentum fluxes. The
first two experiments were performed to assess the impact on the forecast of changing the orientation of a
uniform-resolution (1.2°) mesh by 39° along a meridian. It was found that the global rms differences
between the two 48-h forecasts are acceptably small: 4.9 m for the 500 hPa height field (which is about
5.5 km above the Earth's surface), and 0.6 hPa for the mean sea-level pressure (mslp), which amounts to
less than one part in a thousand. The second and third experiments were performed to verify the thesis
that the 48-h forecast over a 81.6° x 60° uniform-resolution (1.2°) window centered at (103°W, 51°N) over
N. America can be well reproduced at a fraction of the cost of using 1.2° uniform resolution everywhere.
Note that the points of the two meshes were coincident over the uniform-resolution window. Over this
window the rms 500 hPa height and mslp differences of the two forecasts were respectively found to be 7.0
m and 0.6 hPa.

It was also mentioned that it would ideally have been preferable to run these experiments at the same
0.5° resolution as for the analogous ones presented in Coté et al. (1993) for the shallow-water (2-d)
prototype, but it was not possible to do so at that time since computer-memory management had not yet
been sufficiently optimized. Although this is still the case, it is nevertheless possible to increase the
resolution by 50%. So in the present paper the experiments of the last of the two above-mentioned
comparisons have been redone, but with the resolution increased from 1.2° to 0.8°, and the timestep reduced

from 30 mins to 20 mins, all other parameters remaining unchanged.

The mesh configurations (only every third latitude and longitude are shown for pictorial clarity) of the
two experiments are displayed in Figs. 6 a-b, and their attributes are summarized in Table 1. Expt A is run
with uniform resolution, whereas Expt B is run with variable resolution. The mesh of Expt B is coincident
with that of Expt A over its 81.6° x 60° uniform-resolution subdomain: it has 5.25 fewer degrees of freedom.
The resolution of the variable mesh of Expt B degrades smoothly away in each direction (each successive
meshlength is approximately 10% larger than its predecessor) from the 81.6° x 60° uniform-resolution
(0.8°) window centered on a point of the equator of the rotated coordinate system. This point is located at
(103°W, 51°N) in geographical coordinates as in the analogous experiments of Coté et al. (1995). Uniform
resolution again refers to uniform spacing in latitude and longitude: however the meshpoints of the
window are also almost uniformly spaced over the sphere with a meshlength that varies between

approximately 76 and 88 km.
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Fig. 6(a) The uniform 0.8° resolution 450 x 226 mesh Fig.6(b)
used for Expt A: for clarity only every 3rd
point in each direction is plotted.

A variable-resolution 162 x 120 mesh
having an 81.6° x 60° window of uniform
0.8° resolution, centered on (103°W, 51°N),
and used for Expt B: for clarity only every
3rd point in each direction is plotted.

Fig. 7 Initial geopotential height at 500 hPa in Fig. 8 Same as in Fig. 7, but at 48-h for Expt A.
dam on an orthographic projection; contour
interval = 6 dam.
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Expt Rotated Mesh: Dimensions Resolution
Coordinate System? Uniform/
Variable
Yes, 0.8°
A centered on (103°W,51°N) Uniform 450x 226 everywhere
Yes, 0.8°
B | centered on (103°W,51°N) Variable 162x120 on 81.6° x 60° window
Table 1: Experimental configurations.
5.2 The experiments

The 500-hPa height field of the initial analysis used for the experiments is shown in Fig. 7. The
integration of Expt A (i.e. uniform resolution everywhere in the rotated coordinate system) is considered to
be the ground truth for the purposes of validating the 48h forecast of the variable-resolution integration
(Expt B): the meshes of both integrations are identical over the uniform-resolution window of Fig. 6b. The
2-day variable-resolution forecast is shown in Fig. 9 and may be compared to that of the control (Fig. 8).
The two forecasts (Expts A vs B) are quite close over the uniform-resolution area of interest (defined by the
curvilinear rectangle of Fig. 9). This confirms the thesis that the forecast over the 0.8° uniform-resolution
window can be well reproduced at a fraction (about a fifth) of the cost of using 0.8° uniform resolution
everywhere. However they are significantly different over areas of low resolution, as indeed they are
expected to be. Quantifying this, the global rms differences between the forecasts of Expts A and B are
respectively 26.6 (26.8) m and 3.3 (3.4) hPa for the 500 hPa height and mslp fields, where the
corresponding Coté et al. 1995 results are given in parentheses. However over the curvilinear rectangle,

where the meshpoints of the two grids are coincident, they are only 6.1 (7.0) m and 0.6 (0.6) hPa.

Note that the spatial truncation errors associated with the variable-resolution portion of the model's
grid propagate with the speed of the local wind. This has to be taken into account when defining a
uniform-resolution region of interest for the model. It has to be sufficiently large, so that the entire region
is not unduly contaminated by the error advected in from the variable-resolution portion of the grid during
the time of integration. It is therefore a compromise between the width of this region and the length of
the run. The differences between the forecasts of Expts A and B increase as a function of the proximity to
the upstream boundaries of the uniform-resolution window, due to the inflow from the coarser-resolution
outer domain (see Fig. 10). In principle they should be somewhat smaller if the experiments were to be run
at 0.5° resolution instead of 0.8°, since the inwardly-propagating upstream flow of Expt B would then be
better resolved. However it is important to realise that the initial conditions of the two experiments are

deficient in the sense that they are not in good dynamic balance.
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Fig. 9 Same as in Fig. 7, but at 48-h for Expt B. Fig. 10(a) Difference between 48-h forecasts of Expt

A and Expt B for 500 hPa geopotential
height; contour interval = 6 m.

Fig. 10(b) Same as (a) but for mslp ; contour interval = 2 hPa.
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The analyses are consistent with an underlying orography, which has been "removed” in the present
experiments for a simplified atmosphere. ' Consequently some large-scale gravity waves of
unrealistically-large amplitude are created: they subsequently propagate, and slosh about during the
integration, and they do so with different phase speeds. Evidence of this can be seen in the time traces
(not shown) for the surface pressure at a point in the uniform-resolution subdomain located at (100°W,
48.2°N), and the amplitude of the surface pressure oscillation is a couple of hPa or so. With dynamically-
balanced initial conditions (e.g. obtained using a digital filter) the time traces would presumably be

significantly smoother, and the differences between the two integrations consequently reduced.

6. SUMMARY AND CONCLUSIONS

The 1-parameter family of O(At2)-accurate schemes introduced in RSR94 to address the problem of the
spurious resonance of semi-implicit semi-Lagrangian schemes at large Courant number, has been
generalized to a two-parameter three-time-level family by introducing the possibility of evaluating
total derivatives using an additional time level of information. The RSR94 family can be considered to be
the limiting case of the generalized family that maximally simplifies the evaluation (using a two-time-
level difference) of the total derivatives. The other limiting case is the "backward-implicit" scheme,
where maximum simplification of the evaluation (entirely at the arrival point) of the other terms occurs,
and where an additional (third) time level is employed to evaluate the total derivatives. It has the
virtues that the only upstream evaluations required are those associated with the total derivatives, and
that it does not require derivative terms such as V¢ and V-V to be evaluated at any time other than the
present one (which is done implicitly and bnly at arrival meshpoints). Both of these limiting cases are

off-centered discretizations, to avoid spurious resonance, and all schemes examined are O(A£2) accurate.

Resonance, stability and truncation-error analyses have been performed for the proposed generalized

family of schemes. Theory then leads to the following conclusions:

a) to avoid instability and resonance the domain of validity for the parameters is (6>0,
e>-1/2);
b) it is advisable to choose 0 and € from the more restricted domain (6>0, £€20), to avoid

having a time-decoupled computational Rossby mode;
c) it is also advisable to use the smallest-possible values of & and € (consistent with being
adequately off resonance), to respectively minimize the truncation errors and to maximally damp

the computational Rossby mode;

d) the backward-implicit scheme has twice the damping rate of the RSR94 scheme, even though

they both have the same leading-order truncation error;
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e) although there is a sub-family of the generalized family of schemes that is formally O(A#3)-
accurate (8 =—1/6, € free), it is unstable for the gravity modes; this is unfortunate; starting from a
stable-but-resonant centered two-time-level scheme (8 =& =0), a degree of freedom can be
added to address resonance (by using an additional time level and thereby decentering either the
evaluation of the total derivatives or the other terms), but adding a further degree of freedom

(while still only using three time levels) does not permit increasing accuracy to O(At3); and

f) a corollary of e) is that the O(Af3)-accurate scheme tentatively proposed in McDonald (1987) is

unstable for gravity modes.

Sample integrations for various members of the generalized family were performed using a shallow-water
model. It was found that the results were consistent with the theory, and that stable non-resonant
forecasts at large Courant number are possible for a range of values for the § and & parameters. Within
the RSR94 family of schemes, the scheme (8 = 1/2) for which results were shown in RSR%4 is a good choice
but not an optimal one. A smaller value of 6 than 1/2, but no smaller than 1/6, can reduce the leading-
order term for the truncation error by as much as a factor of 2 (see 2.32) and the damping rate by as much as
a factor of 3 (see 2.33), while still acceptably controlling resonance. It was found that while either of the
two methods presented in RSR94 for computing the trajectories is acceptable for their scheme, only one of
them is acceptable at large timestep for some members of the generalized family. The method that
computes the trajectory in a piecewise fashion is therefore to be preferred to the one that uses a single

great-circle trajectory.

A two-dimensional 'proof-of-concept' prototype of a variable-resolution global model has been available
for some time now. It has been found that the overhead associated with using a model of global extent for
short-range forecasting, even at the scale of several kilometers, is relatively small: more than half of the
total number of meshpoints are over the uniform-resolution area of interest, and the overhead of using
variable resolution outside this area is consequently comparable to that of the sponge regions of driven
limited-area models. The generalization of the formulation to three space dimensions is outlined in the
present paper and some preliminary results with an adiabatic version of this baroclinic model are
presented. They confirm the potential of the proposed strategy: differences between the 48-h forecasts for
the 500 hPa geopotential height and mean-sea-level pressure fields obtained from a uniform 0.8° model,
and those obtained from a variable-mesh model with equivalent resolution on a 81.6° x 60° sub-domain,

are acceptably small.
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