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Summary: One of the most important aspects in ensemble forecasting is the creation of initial
perturbations. Several different approaches have been proposed to solve this problem but there is
not yet a consensus regarding an optimal strategy. In this paper we describe the path taken at
NCEP, along with some comparison with other methods. ;

Creating initial ensemble perturbations envolves two steps: (1) the estimation of the uncertainty in
the control analysis in a probabilistic fashion and (2) the sampling of that distribution. Regarding
sampling one has to consider that in the atmosphere there are only a small number O(10) of fast
growing independent perturbations in any region while there are O(106) nominal degrees of
freedomin our models. And since it is the fast growing errors that willimpact the forecasts most, with
a limited number of ensemble forecasts we should attempt to sample the subspace of the most
unstable directions while ignoring the neutral or decaying part of the phase space of possible
analysis errors, since they cannot be sampled well with a small number of ensemble forecasts
anyway. . ; :

For estimating the fast growing component of the analysis errors, we use the breeding method (see
Kalnay and Toth, 1996, same volume). By applying several independent breeding cycles we sample
the subspace of the fastest growing possible analysis errors. We note here that the singular vector
based method (when applied with commonly used norms) is not an estimation but rather a sampling
method and that without good estimation of the initial error it may lead to suboptimal sampling.

Ensemble forecasting has been operational at NCEP (formerly NMC) since December 1992. In
March 1994, more ensemble forecast members were added. In the new configuration, 17 forecasts
with the NCEP global model are run every day, out to 16 days lead time. Beyond the 3 control
forecasts (a T126 and a T62 resolution control at 00Z and a control at 12Z), 14 perturbed forecasts
are made at the reduced T62 resolution. Global products from the ensemble forecasts are available
from NCEP via anonymous ftp. : :

We found that the breeding based NCEP ensemble is able to extend the useful skill of numerical
weather predictions by several days, making it possible to issue daily weather forecasts perhaps
out to two weeks in advance during some winter periods. This may be especially useful since the low
ensemble spread can identify these periods in advance. Analysis rank (or "Talagrand”) diagrams
show that the verification escapes the ensemble cloud only about 12 % of the time (in excess of
what is expected due to the limited size of the ensemble).

1. INTRODUCTION

Itis a common knowledge that weather forecasts fail with time. It has also been observed for a long
time that the loss of skill in the forecasts does not occur at the same lead time every day. In the
example of Fig. 1a, one could issue a confident 4-day forecast while in the case of Fig. 1b the
ensemble correctly suggests a much greater uncertainty. Also, there are days when we have skill
even beyond day 10 while on other days the skill may be lost as early as five days into the forecast.
One reason for the ultimate failure of weather forecasts has been clear, namely our techniques,
. including our numerical models, are imperfect. Since the pioneering work of Lorenz (1963) we
know, however, that this is not the only reason for forecast failure.

As Lorenz showed, the most fundamental cause of forecast failure is that the atmosphere is a
chaotic system. This means that given an arbitrarily small error in our analysis of the initial state of
the atmosphere, the forecasts are bound to fail after some finite time. This would happen evenif we
had a perfect model of the atmosphere. The estimated time of atmospheric predictability under
"ideal” conditions (small initial error and perfect model) is of the order of 2-4 weeks (see, e. g., Toth,
1991). ' :
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Fig. 1: 5640 m contour line of 500 hPa height field from all 17 108-hour lead time ensemble forecast
members verifying 1996/03/20/12Z (top) and 1995/10/20/122Z (bottom). The dotted line marks the high
resolution control forecast (MRF) and the heavy solid line is the verifying analysis.
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There is nothing one can do about the ultimate loss of predictability. We will never be able to
perfectly measure the initial state of the atmosphere and even so we would need to have a model
that resolves all scales perfectly, otherwise errors from smaller scales would propagate into the
resolved scales almost instantaneously. We can still aim at improving our models’ physical
parametrizations, spatial resolution, etc., but these improvements will only extend, and not change
the fact of finite predictability. What we can do, however, is fo predict the manner in which the loss
of skill occurs in our forecasts. As described by Epstein (1969) and Leith (1974), one can artificially
introduce small perturbations onto the analysis, representative of possible analysis errors, and
integrate the same numerical model used for the control integration, starting from each of the
perturbed analyses. With the availability of high speed computers and with the realization of how
much can be gained from it, this technique, called ensemble forecasting, is gaining ground at major
operational weather forecasting centers (Palmer et al 1992; Tracton and Kalnay, 1993)

In this paper we will first take a look at what measures are available for tracking atmosphenc
instability that is responsible for the loss of skill (section 2). Then in section 3 we will discuss what
kind of errors there are in the analysis. Based on the findings of sections 2 and 3, in section 4 we will
present a practical procedure for creating ensemble forecasts. This procedure is based on the
breeding technique that is discussed in more detail in a companion paper (Kalnay and Toth, 1996,
this volume). Some results from the operational implementation of the ensemble forecast system
at NCEP will also be presented in section 4. A discussion of open questions and other applications
of the breeding based ensemble technique at NCEP is contalned in sectlon 5.

2. MEASURES OF INSTABILITY

2.1 Lyapunov characteristics
Itis the presence of instabilities that give rise to chaos in certain dynamical systems. To measure
how unstable a system is one can look at the global Lyapunov exponents:

3, = lim nli ,,21"((8

where pj is an arbitrary linear perturbation introduced into the system at t=0. If one is interested in
more than one Lyapunov exponent, a set of ‘initial perturbations have to be evaluated and

reorthogonalized periodically. If there is at least one positive global Lyapunov exponent in a
system, the system will behave chaofically (Tsonis, 1992).

Knowing that a system is chaotic tells nothing about the possible changes in predictability over the
attractor (i. e., changes depending on the initial condition). For that, one needs to look at the local
Lyapunov exponents (LLVs, Trevisan and Legnani, 1995):

Pt + 9
o) = lim gt

where tis some (ideally infinite) time after the initial perturbation has been infroduced. Note that the
global Lyapunov exponent is an integral of the local exponents over the whole attractor and the
vectors corresponding to the exponents at any given point on the attractor are called the local
Lyapunov vectors. The leading LLVs are, by definition, the vectors that are capable of producing
the largest sustainable growth on the attractor

2.2 Finite time instability

41



TOTH AND KALNAY: ENSEMBLE FORECASTING AT NCEP

It has been indicated by Lorenz (1965) and subsequently pointed out by Lacarra and Talagrand
(1988) and Farrell (1988) that, over a prespecified period and for a chosen norm, growth faster
than that of the LLVs can exist in certain systems. If L is a tangent linear model that evolves a
perturbation ahead in time and L* is its adjoint then the eigenvectors of L*L (or the singular vectors,
SVs of L) are the "optimal” vectors. These vectors are optimal in a sense that given the full phase
space of a system, they represent the maximum possible growth for a prespecified time interval (for
which L is defined) and with respect to a chosen norm that is used in the definition of the inner
product. '

2.3 Comparison of Lyapunov and singular vectors

Both the LLVs and the SVs offer a full orthogonal basis for the description of the phase space of
dynamical systems and they both can be arranged into a spectrum of vectors with decreasing
instantaneous growth rates (see Fig. 2). Beyond these similarities, there are important differences
between the two sets of vectors: ‘

i) While the LLVs are basic and general properties of a dynamical system, the SVs are
specific in a sense that they pertain to a specific time interval and norm. Their structure may change
drastically by changing these arbitrary parameters. ' ‘

i) By definition, all perturbations turn toward the leading LLVs. This includes the SVs
as well which therefore turn away from their initial direction in the phase space into the direction of a
leading LLV (Szunyogh et al., 1996). So while the LLVs act as attracting directions or magnets in
the phase space, the SVs represent “repelling” directions.

iii) While the LLVs provide sustainable growth on the attractor, the SVs’ growth cannot
be maintained after the optimization period ends. The SVs’ super-Lyapunov growth is actually due
to a one-time abrupt phase space rotation of the initial vectors toward leading LLVs. In order to
achieve similarly fast growth again, one would need to reintroduce an initial SV into the
perturbation system again. : '

iv) LLVs represent natural perturbation development. The first D LLVs, where D is a
system’s Kaplan-Yorke dimension, span a subspace of the full phase space that the system can
naturally visit, i. e., the subspace of the attractor. In contrast, nothing guarantees that the leading
SVs would have to lie along the attractor. If this would be the case, for which we have several
indications that we discuss further down, the initial SVs could oocurina system only due fo special
forcing; the system, without specific forcing, could not naturally assume an initial SV perturbation.

v) Since analysis cycles can, as discussed by Kalnay and Toth (1995, this volume) be
considered as perturbation models run on the true state of the atmosphere, the leading LLVs can
naturally occur and dynamically amplify as analysis / first guess errors. In confrast, SVs, defined
with norms used in everyday practice, cannot appear and amplify dynamically as perturbations
(analysis errors) in a similar manner. '

The above point constitutes a major difference between the LLVs and SVs. The result is that while
the leading LLVs can dynamically develop from arbitrary errors in the analysis, SVs defined
through commonly used norms can only appear as analysis errors due to specific random
observational errors, projecting onto the SVs themselves. This question will be further discussedin
section 3. : : :

2.4 Do the singular vectors lie off the attractor?

The unique 'nat'ure of the leading SVs is further highlighted by simple model experimenis
suggesting that the SVs may not lie along the attractor. First, we would like to quote Anderson
(1995) who, in a three variable Lorenz model found that the leading SVs point toward phase space
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Fig. 2: Spectrum of 24-hour amplification rates for singularvectors (SVs) optimized for a 24-hour period in a
T10, 18level version of the NCEP MRF with totla energy norm (dotted line). The first1346 and the last 795 SVs
have been computed and a simple interpolation is used to estimate the middle of the amplification spectrum. -
For the same flow pattern a large portion of the Lyapunov vectors (LLVs) have also been estimated with a
24-hour orthogonalization time (for more details see, for example, Legras and Vautard, 1996) and the
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associated 24~-hour amplification values are also plotted (solid line). (From Toth et al., 1996.)
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regions that are not visited by the system at all. In turn he found that when the SVs are used as
initial ensemble perturbations, they do not perform as well as bred-type perturbations.

Anderson’s results have been confirmed by Legras and Vautard (1996, this volume), who found
thatin the Lorenz 3-variable model the first two LLVs are tangential to the attractor while non of the
SVs are on the atiractor. Legras and Vautard (1996) also pointed out that, in the same way in which
almost any perturbation in the far past, when integrated with the tangent linear model will become
the leading LLV at current time, almost any perturbation in the far future will become the leading SV
(with long optimization time) when integrated backwards in time to current time, using the adjoint
model (a process which cannot occur naturally).

Vannitsem et al. (1995, personal communication) experimented with a 3-variable Lorenz model
that has a dimension close to 2. it means that the first two LLVs can span most of the phase space
visited by the model. Still, they found that three LLVs are needed to explain the SVs, indicating that
in this model, the SVs lie off the attractor. Similarly, it was found that when explaining how random
errors develop in that system, one needs all three SVs but only the two leading LLVs. The
suggestion again is that the LLVs offer a more natural basis for describing natural perturbation
development.

In a study of a 3-level quasi—geostrophic model, Oortwijn and Barkmeijer (1995) found that with
very small magnitude initial SV perturbations they can force their system into phase space
domains that are very rarely or never visited by the unperturbed system.

With a Cane-Zebiak simple coupled ocean atmosphere model Xue et al. (1996) found that the
leading initial SV of the ocean part of this model, to a large extent, does not depend on the initial
condition, on the phase of the ENSO cycle or on the seasonal cycle. Chen et al. (1995), with a
similar model, arrived at the same conclusion though they note that the singular values do depend
on ENSO/seasonal cycle. In contrast, Xue et al. (1996) found that the leading SV at final time,
which must approximate the leading LLV well with a long, 6-month optimization period (see Legras
and Vautard, 1996, in this volume), does depend on initial conditions. The fact that the SVs don’t
show sensitivity to drastic changes in the basic state may suggest that their exira-Lyapunov
growth may be due to factors that are independent of ENSO, the major source of natural instability
in the system. The question arises whether the instabilities associated with the SVs represent
physically plausible processes or just patterns that are within the phase space of the model but
would never realize naturally because they are off the attractor.

With a T10 truncated version of the NCEP MRF Toth et al. (1996) found that the initial SVs defined
by the use of the total energy norm have an unusually sirong vertical filt and hence are
geostrophically highly unbalanced. These perturbations, again, seem to be off the attractor. The
initial fast perturbation growth of the SVs is associated with the fast geostrophic adjustment
through which the SVs assume a vertical tilt that is characteristic of observed baroclinic
instabilities. After this abrupt (24-hour or so) adjustment, the SVs lose their super Lyapunov
growth.

We would like to emphasize that some of the characteristics of the SVs discussed above may be
model specific and that further research is needed to better understand the nature of SVs. One has
to note, however, that the calculation of the SVs through singular value decomposition is a
mathematical procedure in which there is no built in-mechanism to prevent the occurence of
physically implausible results. Therefore, unless a norm that assumes a realistic initial error
distribution is used in the computation of the SVs, any physxcal interpretation of the SVs has to be
made with extra care.
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2.5 Nonlinear perturbations

So far we have discussed linear measures of instability. In a linear world, the leading LLV(s) may be
just perfect to describe possible error evolution since all perturbations with time turn toward the
leading LLV. The atmosphere and our forecasts, however, evolve nonlinearly. In this situation the
- forecast error at any lead time will depend on the initial error field. So if our goal is to estimate
forecast error, we need to consider each possible initial error pattern and follow its nonlinear
evolution.

- To do so, we need to have an estimate of the initial error distribution in a probabilistic fashion. Once
this estimate is available - and this estimate is the subject of the extensive research on initial
ensemble perturbations and analysis error covariance - the problem is relatively simple.
Theoretically, one could take the Liouville equations (Ehrendorfer, 1994) and integrate them for
any particular lead time to obtain the forecast probability distribution of the system, given its initial
probabilities. This approach, however appealing and simple it sounds, is computationally not
feasible for systems that contain more than a few variables. The only alternative is to take samples
from the initial estimated probability distribution of the system with frequencies proportional fo the
probabilities and run the nonlinear forecast model for an ensemble of those initial conditions.
Before we discuss in section 4 how this ensemble is generated at NCEP, we turn toward the more
basic questions of estimating and sampling analysis errors in the next section.

3. ESTIMATING AND SAMPLING ANALYSIS ERRORS
3.1 Sampling analysis errors

As discussed in Kalnay and Toth (1995, this volume) the analysis contains both fast growing errors
generated dynamically by the successive use of the first guess forecast fields in the analysis cycle,
and random errors that originate from observational and analysis errors. There are indications that
there may be only a few perturbations [O (10)] in any region that can grow dynamically fast at any
given time. These directions can be well estimated by either the breeding method or the singular
vector approach. In contrast, there are other directions, in which perturbations are neutral or
decaying, and their number is on the order of the number of variables in our models [O (108)].

So we are in a situation where there are 106 possible independent error patterns. A large portion of
the actual error (say, half) lies in a few directional subspace of the fast growing vectors that we can
well estimate. Evidently, these directions can be well sampled as well with the number of
perturbations used currently in ensemble prediction (O 10). The other half of the error lies in the
rest of the phase space with a dimension of 106 or so. It is evident that we cannot sample the
subspace of possible neutral and decaying errors well with 10 or so perturbations.

With an infinite number of ensemble perturbations the best approach would be that of Houtekamer
et al. (1996), who realistically sample both the small dimensional growing and the large
dimensional neutral/decaying part of the error. Houtekamer et al. run parallel analysis cycles with
randomly generated "observational” error added in each cycle, to arrive at perturbations that have
a realistic magnitude of both growing and neutral/decaying components. We would like to argue,
however, that in case ot a limited sample where the number of perturbations is largely below the
number of directions to be sampled (like the case for the neutral/decaying part of the error) one
needs to weight the magnitude of the error by the ratio between the sample size [O (10)] and the
dimension of the phase space ([O (108)] for the neutral/decaying subspace). Since this ratio is so
small, the ECMWF and NCEP perturbation strategies ignore the role of neutral/decaying
perturbations and focus solely on the fast growing part of analysis errors.
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Houtekamer et al.’s ensemble approach, which can be considered as an extension of the breeding
cycle, may not result in a noticeable difference from that of an ensemble based on breeding. Both
methods sample similarly the fast growing bred vectors which play the crucial role in error
development. Hence the effect of the addition of the neutral/decaying perturbations by
Houtekamer et al. can be expected to be relatively small.

3.2  Estimating growing analysis errors: Bred vs. singular vectors in ensembles

So far breeding (see Kalnay and Toth, 1995, this volume, and Toth and Kalnay, 1993, 1996) is the
only method that has been advanced as a way of estimating the fast growing part of the analysis
error. The singular vector approach, though it also determines fast growing directions in the phase
space, is not an error estimating technique. It is actually based on the simple assumption that the
initial error distribution is white noise, i. e. that all directions in the phase space are equally likely as
analysis errors (see, for example, Molteni et al,, 1995). When we choose a norm for the
computation of the fastest SVs we assume that the analysis error, with respect to that norm, has a
random white noise distribution. We would like to argue that with any obvious choice of norm (such
as rms, kinetic or total energy, etc.) this assumption is not valid. This is because of the dynamical
error evolution within the analysis cycle that results in excessive magnitude perturbations in the
directions of the leading LLVs or nonlinear bred veciors.

Once the analysis error initial distribution is estimated one could use the SV approach. However,
an appropriate norm needs to be found first, in which the analysis error looks like white noise.
Solving this inverse problem is not a trivial task and so far, apart from Houtekamer’s (1995)
approach that incorporated some statistical (but not dynamical) properties of the estimated
analy5|s error, it has not been addressed.

If one would assume that the bred vectors sample well the fast growing analysis errors and would
be able to find a norm in which the bred vectors would look like white noise, with the singular vector
approach one would be able to determine orthogonal directions within the subspace span by a set
of bred vectors, in order of descending growth rates. At NCEP, instead of solving this difficult
inverse problem, we use a set of bred vectors from separate breeding cycles started with
independent initial seeds, as initial ensemble perturbations. These bred vectors, unlike the
perturbations generated via the SV approach (Buizza et al., 1993) have some correlation (typically
0.2 - 0.3 globally). We speculate that strict orthogonality may not be a crucial requirement in a
nonlinear situtation where orthogonality is quickly lost anyway. The bred vectors thus offer a
sample of quasi~orthogonal vectors that are plausible fast growing analysis errors with roughly
equal growth rates; the fastest LLVs are naturally combined in a random manner, W|th weights
statistically proportional to their growth rates.

The resulting bred vectors are similar to the initial perturbations used at ECMWF in a sense that
there, too, the SVs are combined randomly and hence the growth rates of initial perturbations are
similar to each other. However, since no special norm is used in the generation of the singular
vectors, certain directions in the phase space may be overemphasized. Following earlier
discussions in sections 2 and 3, one needs to consider that the bred vectors appear and amplify in
the analysis via dynamical means. Thus their amplitude must be much larger in the analysis error
field than arbitrarily chosen error patterns. The leading initial SVs are just such arbitrary
perturbations since they don’t seem to.appear ndturally. Considering the large number of
dimensions [O (108)] in which random error is spread, much of the actual forecast error may come
frominitial LLVs or bred vectors as analysis errors and not frominitial SVs that are present only due
to random errors. This would be true even if the bred vectors would have only a few times larger
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amplitude in the analysis than arbitrary perturbations. This question obviously needs to be
addressed in a more quantitative manner; the next subsection offers only a first look at the
problem.

Ensemble forecasts based on SVs at ECMWF and on bred vectors at NCEP may still behave very
similarly, though. And some verification numbers we subjectively compared looked indeed similar.
This may happen because, as Szunyogh et al. (1996) found with a T10 version of the NCEP MRF
model, the initial SVs, if optimized for a 3-day or longer period, turn practically into the direction of
the leading LLVs by the end of the optimization period. At ECMWF, the optimization period is only
slightly shorter, 2 days long. So itis possible that after 2-3 days, the two sets of perturbations would
project relatively well on each other. And since nonlinearities on the larger scales become
important only after 2-3 days, the two systems, despite the difference in initial perturbations, may
yield similar results.

3.3 Bred vectors as analysis errors

We will present two attempts to compare the properties of bred vectors to independent estimates of
analysis uncertainty. In the first comparison we tried to establish if the bred vectors are able to
reproduce the statistical characteristics of analysis uncertainty. Here we measured analysis
uncertainty as the difference between two independently run analysis cycles. The two analysis
cycles were identical except that the initial first guess fields were different (and in one of the two
cycles the first guess was produced as an average of two slightly perturbed 6-hour forecasts). The
two analysis cycles were run for more than 30 days in May-June, 1992 and then the rms difference
between the two series of analyses for the last 24 days of the experiment were averaged. Similarly,
we computed the rms average of the bred perturbations from a breeding cycle (with
hemispherically fixed rescaling) for the same period. As we can see from the vertical cross sections
of the vorticity fields (Fig. 3) the bred vectors reproduce well the varying degree of uncertainty
present in the analysis. Regarding the horizontal distribution of analysis errors (not shown)
breeding is able to capture the variability over the Southern Hemisphere (where satellites provide a
quasi-homogeneous data coverage). Through the use of a geographical mask for rescaling within
the breeding cycle (see next section) we are also able to reproduce spatially dependent
uncertainty over the Northern Hemisphere where data coverage is far from uniform.

Inthe second comparison we tried to establish if the bred vectors are able to capture the dynamical
characteristics of analysis error on a day by day basis. In this approach we estimated analysis error
as a difference between the analysis (A) or first guess (FG) and observations (O), at observation
locations. In particular, we measured how much of the difference field (O-FG) or (O-A) projects
onto the bred growing vector (G, estimated from one breeding cycle). The procedure used is
identical to that reported in Kalnay and Toth (1996, see their Fig. 7 in this volume) except that here
we use the whole Northern and Southern Hemisphere extratropics (instead of smaller overlapping
regions). The results indicate that in the first guess (analysis) error fields defined above there is a
roughly 2.0 (0.9) % projection, in terms of rms total climate variance, onto the bred growing vector
of the day when the two hemispheres are averaged (equivalent to 1-2 m explained error at 500
hPa height in the first guess). Random perturbations would have a much smaller projection. We
also computed the same projection using bred vectors valid on other days within the same months
and obtained 2.5-3 times smaller values.

The above results provide strong evidence that the analysis uncertainty is far from being white
noise, and that the bred vectors can reproduce the major characteristics - both statistical and
dynamical - of this uncertainty.
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Fig. 3: Vertical distribution of uncertainty in the vorticity fields present in the control analysis as determined
from the rms difference between two analyses from independently run NCEP analysis cycles between May 23
and June 15,1992 (top, labels multiplied by 108). The analysis cycles were practically identical exceptthat the
initial first guesses differed slightly. The values shown are smoothed and the overall global mean is scaled to
one. The same mms difference between a pair of positively and negatively perturbed short range ensemble
forecasts from a breeding cycle for the same period is also shown (bottom, labels are multiplied by 107).
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4. ENSEMBLE FORECASTING WITH BREEDING
41 Operational implementation

Ensemble forecasting has been operational at NCEP since December 1992. As indicated by
Kalnay and Toth (1996, see their Fig. 3 in this volume) the current operational ensemble
configuration at NCEP consists of 17 model runs every day out to 16 days lead time. At00Z,a T126
controlis run out to 7 days lead time, after which it is truncated and run at a T62 reduced resolution.
Another control is also run started from identical but truncated T62 initial conditions. In addition,
there are ten perturbed forecasts, started with five bred perturbations both added to and
subtracted from the control analysis. The breeding cycle is incorporated within the
extended-range forecast ensemble so the generation of the initial perturbations is basically cost
free (see Fig. 4). At 1-day lead time we take the difference between a pair of positively and
negatively perturbed forecasts. After rescaling its amplitude, this difference field provides as the
initial perturbation for next day’s ensemble forecasts.

As mentioned in section 3.3, the breeding method, when used with a hemispherically fixed
rescaling factor, cannot reproduce the horizontally varying uncertainty in the analysis that is
present due to the inhomogeneous data coverage. To account for this factor, we follow a simple
procedure where we compute a rescaling factor for each gridpoint, based on observed growth in a
surrounding area. The perturbations are actually scaled back to a fixed geographical mask
illustrated in Fig. 5. Afier some tuning experiments we set the overall perturbation amplitude at
around 12 % of rms climate variability. This value is perhaps slighly above the estimated analysis
error. However, the non-systematic part of the model error would also project onto the fast growing
patterns at later lead times, which may explain why this perturbation size glves close to optimal
performance in the medium and extended range.

Considerable efforts have been directed toward displaying the information contained in the
ensemble in a user friendly manner (Tracton, 1994). Beyond the "spaghetti” plots shown in Fig. 1,
we have the ensemble and cluster means, variances, different probability and other charts
available to the forecasters on line, shortly after the forecast integrations finish. These products are
also accessible to the different field forecast offices throughout the country and are available to the
wider user community as well via fip (at nic@fb4.noaa.gov). Experience with the use of the
ensemble is building up at all levels and at NCEP we would like to help this process by the
development of new products that are based on the ensemble

42  Verification results

The ensemble results should be subjected to both objective and subjective evaluation. As for the
latter, Toth et al. (1996) found that the operational NCEP ensemble offers valuable tools for the
synoptician for the medium and extended range and occasionally even for the short range. At
NCEP and also at more and more regional offices of the National Weather Service, the global
ensemble forecasts constitute an integral part of the numerical forecast tools used every day. At
this point, the ensemble is used primarily to assess the reliability of the forecasts and to establish
scenarios alternative to that offered by the high resolution MRF control forecast.

An exhaustive objective verification of the NCEP operational ensemble forecast system would
involve the computation of a number of statistics over a long period of time and is beyond the
scope of this study. Instead, we will focus on a two-week period in December1995 in which the
NCEP global forecasts were particularly skillful. Fig. 6 shows the pattern anomaly correlation

49



TOTH AND KALNAY: ENSEMBLE FORECASTING AT NCEP

SELF-BREEDING OF TWIN FORECASTS
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Fig. 4: Schematic of a self contained breeding pair of ensemble forecasts. Note that breeding is part of the
extended ensemble forecasts at NCEP and that the creation of efficient initial ensemble perturbations
requires no additional computing resources beyond that needed to run the forecasts themselves. (From Toth
and Kalnay, 1996.) R
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Fig. 5: Relative regional uncertainty (for 500 hPa streamfunction) present in the control analysis as
determined from the ims difference between two analyses from independently run NCEP analysis cyclesfora
period in April-May 1992. The analysis cycles were practically identical except that the initial first guesses
differed slightly. The values shown are smoothed and the overall global mean is scaled to one.
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(PAC) score for the 15 days long MRF forecast started on 10 December 1995. The score stays
above .7 all the way out to 15 days lead time. (On average, PAC drops below 0.7 around 6 days
lead time during winter.) This is probably the first time that any weather forecast showed such a
high skill beyond two weeks that is close to what has been considered as the ultimate limit of
atmospheric predictability (Lorenz, 1969). Obviously, the model itself did not introduce substantial
error or bias into the forecast. We can also note in Fig. 6, however, that during the period 9-22
December 1995 this forecast was exceptional: there was only one other forecast (from 12
December 1995) that could get close to its performance, and only for the last few days of the
forecast period. If one forecast is successful, why the others from the same circulation regime are
not? :

In Fig. 7 we present similar verification scores for the operational 17-member NCEP ensemble
mean forecast. One notices two major differences between Figs. 5 and 6: the ensemble scores
are, overall, considerably higher than the MRF conirol scores, and they have much less variability
from one forecast to the next. This means that the ensemble mean consistently provides a more
reliable forecast than a single control forecast. This is one of the main advantages of the ensemble
forecast technique. If one considers a PAC of 0.5 or 0.6 to be the useful level of skill for daily
weather prediction, then the ensemble mean, as seen from the averaged scores in Fig. 8, is
extending the practical limit of predictability by 5-6 days during this period. For example, while the
MRF scores at day 9 range between 0.2 and 0.8, those for the ensemble mean are between 0.55
and 0.8, with the majority above 0.6. The separation between the scores for the MRF and the
ensemble mean become even larger by day 15: most MRF forecasts score below 0.45, while the
majority of ensemble forecasts score above that value. Since there are always errors (however
small they may be) in the initial analysis, they will amplify, due to the chaotic nature of the
atmosphere, when only a single forecast is used. One can get high scores for the control only by
chance, due to some fortunate arrangement in the initial error field. The ensemble mean forecast,
on the other hand, can filter out some of those nonlinear errors amplifying due to the atmospheric
instabilities.

A good example of the impact of ensemble averaging can be seenin Fig. 9, where the PAC for both
the control MRF forecast and for the ensemble mean are shown for 12 December 1995. While the
skill of the control forecast drops into the range of 0.5-0.6 for a couple of days - not a bad
performance on its own - the mean of the ensemble remains practically above 0.7 all the way out to
15 days. It is important to note that the spread of the ensemble members around the ensemble
mean was unusually low in this forecast - only 66 % of the spread for the ensemble averaged for
the winter of 1994/95 (S. Tracton, personal communication). So not only was the model accurate,
but the atmosphere itself was in a circulation regime with higher than average inherent
predictability during a long period in December 1995. And, very importantly, it was possible to
know in advance that the atmosphere was very predictable from the lower than average spread of
the forecasts.

As an example, in Fig. 10 we present the forecast started on 12 December 1995, along with the
verifying analysis. One can see that the ensemble mean forecasts well captured many of the major
changes in the hemispgeric flow configuration even with long lead times. For example, the position
of the low pressure area on the east coast of the United States is well predicted at 216 hours (9
days) lead time. Itis interesting to note that this low pressure area is less pronounced in the MRF
control forecast (Fig. 11), indicating that though the ensemble mean is generally a smoother field, it
is far from being a washed-out product. Another area of difference between the ensemble mean
(Fig. 10) and the control forecast (Fig. 11) at 216 hours lead time is around longitude 80 E. Here the
control forecast built up a major high pressure system that did not verify. In contrast, the ensemble
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mean flow is more zonal, closer to verification, testifying again that the ensemble mean can provide
a useful forecast guidance. Note also how well the emergence and maintainance of the ridge over
the west coast of the US is predicted during the second week of the forecastin the ensemble mean.

Though the skill of the ensemble mean forecast from the 12 December was perhaps the best
during the two weeks period studied here, the other forecasts, as can be inferred from the skill
scores, did also well. The forecasts and the corresponding verifying analyses in Fig. 12 again .
demonstrate that the ensemble mean forecast was able to predict many of the important synoptic
scale features and their change during December 1995, even 15 days in advance. For example,
the ensemble mean forecasts well indicated the retrogression of the ridge over the west coast of
the US during the first half of the verification period. As a result of this change, the Pacific trough
became shorter from the east by the end of the period, which was also indicated by the ensemble.
Over the east coast of the US, the continual reinforcement of the trough with arctic air from the
north throughout the verification period was also well predicted by the ensemble. In the Atlantic,
the ensemble mean forecast well captured the more and more westward tilt of the ridge/blocking
pattern that developed during the period. The split flow over much of Europe near the end of the
period was also predicted by the ensemble. Finally, a high amplitude ridge around longitude 80 E
was also well indicated by the ensemble around 28 December 1995. '

We would like to emphasize again that the NCEP MRF model performed exceptionally well during
December 1995. This is because, first, model systematic errors were apparently small. And
second, the atmosphere’s intrinsic predictability was high - note that strong zonal flow and blocked
flow configurations prevailed over the Pacific and Atlantic, respectively, during much of the period
studied here (see Figs. 10 and 12). This is a flow configuration that Toth (1993) found, in an
observational study, most stable. So such excellent ensemble mean scores may not be typical for
other periods, and we should generally expect a more modest performance, especially during the
summer months that is a difficult season for the global ensemble. However, our study shows that
there are periods during which useful daily weather forecasts can at least be made through 15 days
lead time, with relatively high confidence.

Another important characteristic of the NCEP ensembile is revealed in Fig. 13. To arrive at the
analysis rank (or "Talagrand”) distribution for the 17-member NCEP ensemble, at each grid point
and for each forecast the 17 members of the ensemble are first arranged in an order of increasing
height values, thus defining 18 bins (including 2 open ended bins). The verifying analysis falls into
one of these bins, and the frequency observed for each bin is accumulated over all grid poinis and
initial times. A perfect model and ensemble would have an expected value of 5.55% (100%/18
categories). The underlying assumption is that each ensemble member is equally likely and so is
each forecast bin, including the two extremes, both with an open end. If the ensemble spread is
insufficient, or the model has some kind of systematic error (bias), the distribution would be
U-shaped, with excess cases where the verifying analysis falls outside the range of the ensemble.

The distributions shown in Fig. 13 have a U shape (except for the 12-hr lead time forecasts) but the
values in the extreme categories are not too high: if we average all lead times, only in 12 % of the
cases does the verification fall outside the cloud of the ensemble, in excess of the value expected
from the limited size of the ensemble. This means that the forecaster can be reasonably confident
that the verification will be within (or close to) the cloud of the ensemble. Note that though the
ensemble starts out with a good estimation of errors at 12-hour lead time, the most excess cases
occur around days 2 and 4. This is the period during which the forecasts, which start from observed
initial conditions, swiftly adjust to the model climatology (model drift ) and the forecasts may show
some small but systematic errors due to this adjustment (see, for example, Anderson, 1995). This
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Fig. 11: 500 hPa geopotential height of the NCEP MRF T126 resolution control forecast at 9 days lead time,
initiated on 12 December 1995.
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Fig. 13: Analysis rank ("Talagrand”) distribution for the17-member NCEP ensemble for the 500 hPa height
forecasts over the Northern Hemisphere extratropics, accumulated for 13 days between 9 and 22 December
1995. (Data from 18 December are missing.) Results are shown (from left to right within each group of bars)
for 12-hour, 2-, 4-, 6-, 8-, 10—, 12—, and 14-day lead times. For further details see text.
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may explain why the distribution is more U-shaped at intermediate lead times. By 14 days (at
which lead time the forecasts are still skillful) the distribution becomes much flatter and only in 7 %
of the cases does the ensemble miss the verification.

5. DISCUSSION

No consensus has been reached within the ensemble forecasting community regarding the
optimal estimation and sampling of analysis uncertainty. Nor has there been any thorough study
comparing the existing techniques in a realistic forecast environment. In this situation, the best
approach perhaps is to combine ensemble forecasts generated at different numerical weather
prediction centers. Harrison et al, 1995, for example, found that using models and/or control
analyses from drfferent centers ylelds inan ensemble spread that is closer to optimal.

Currently ensemble forecasts from all centers have an ensemble spread that is smaller than the
size of the error in the ensemble mean forecast. The insufficient spread must be related to the use
of models that differ from reality. Different solutions have been suggested to alleviate this problem.
Houtekamer et al. (1996), for example, believe that the model usedin ensemble forecasting has to
be (perhaps drastically) changed from one member of the ensemble to the next. According to the
suggestion of Kalnay and Toth (1994), a large portion of the errors that are due to imperfect models
may be related to stochastic errors infroduced at each time step caused by limited resolution and
numerical and parametrization errors. These errors later project onto fast growing phase space
directions, enlarging the forecast error above the level of ensemble spread. To account for these
processes, Toth and Kalnay (1996) suggest a method to add bred perturbations to the ensemble
forecasts during the integration. Again, this is a research area with no definite answers yet.

In this paper we have focused on the application of the breeding method for medium and extended
range, ensemble forecasting at NCEP. However, NCEP is committed to ‘provide ensemble
guidance to the forecasters on all time scales. Applications (or plans thereof) of the breeding
method are underway from storm-scale models to the coupled ocean-atmosphere model. For
example, following the recommendations of a workshop (Brooks et al., 1995) a 15-member
regional scale ensemble is run once a week at NCEP. Half of the initial and boundary perturbations
are coming from the global ensemble while the rest is based on different in~house analyses. For
these experiments, the ETA (Black, 1994) and the regional spectral models (Juang and Kanamitsu
(1994) are used, thus providing an estimate of the vanablllty caused by drfferent model
formulatrons as well.

As mentioned in Kalnay and Toth (1996, in this volume) breedlng can also be applled in the context
of climate forecasts, in the framework of the NCEP coupled ocean—atmosphere model (Ji et al.,
1994). t _

Frnally we would like to mentlon the potentlal applrcabrllty of the bred global ensemble at NCEP in
targeting observations. The goal here is to find the "source”area from ‘which the initial (or 12 hour
lead) errors will most lmpact the forecast errors at3-5 days later, over a preselected verification
region. Additional observations in this source area may improve ‘the quality of subsequent
forecasts in the verification area. A singular vector decomposition (SVD) of the bred ensemble
perturbations (Bishop and Toth, 1996) offers an easy to implement solution to targeting. This
approach combines the advantages of breeding (that offers an estimate of fast growing analysis
errors) and SVD that allows for regionalization of the perturbations. Preliminary results are
encouraging and we hope that the method can be first applied in the winter of 1996/97, dunng the
FASTEX experiments in which the goal is to study and better predlct smaller scale cyclonrc waves
in the Eastern Atlantic. - :
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