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Summary: In its original goal of overcoming the unreasonably
restrictive Courant-Friedrichs-Lewy timestep criterion suffered
by a traditional Fulerian treatment of advection, the
alternative semi-Lagrangian approach to advection has clearly
succeeded, leading to more efficient code for integrating the
primitive meteorological equations. However, with this freedom
comes the new responsibility of ensuring a higher standard of
formal accuracy in those methods of time integration that adopt
the longer timesteps appropriate to the Lagrangian framework.
This paper will primarily focus on ways in which a carefully
formulated strategy of grid-to-grid interpolations enables new
methods of numerical time integration to exploit the
trajectory-based framework provided by the lagrangian grid, so
as to achieve a significant enhancement of the formal accuracy
in time. We also describe how the same interpolation strategy
allows one, in a very natural and efficient way, to enforce
exact conservation laws of mass, and of mass-weighted linear
quantities, throughout the entire integration period.

1. INTRODUCTION

Early investigations of the semi-Lagrangian method (for example, by
Wiin-Nielsen, 1959; Krishnamurti, 1962; Sawyer, 1963) provided indications
that this style of modeling the atmosphere was a feasible way to integrate
either filtered (balanced) or primitive equation models, but it was not at
that time obvious that the more compliciated semi-Lagrangian approach offered
significant computational advantages over the conventional Eulerian approach.
Interest in the semi-lLagrangian method for numerical weather prediction was
rekindled by Robert and collaborators (Robert 1981, 1982; Robert et al., 1985)
who realized that, in combination with the leapfrog semi-implicit technique
(Robert, 1969), it provided a way to avoid the stringent restriction on time

step implied by the advective Courant-Friedrichs-Lewy (CFL) criterion. The
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method could therefore improve the computational efficiency of a forecast
model by allowing longer time steps to be taken. Bates and McDonald (1982)
showed how the method could be effectively used also with a split-explicit
scheme for the adjustment of the fast gravity waves, again, with longer time
steps than the Eulerian method would allow, giving rise to a very efficient
computational method. The intervening years have seen the development of a
number of notable refinements of the semi-Lagrangian method together with its
adoption as the method of choice in several operational models around the
world. The review article of Staniforth and Co6té (1991) remains a good survey
of all but the most recent of these developments.

A significant proportion of the dynamics computations in a
semi-Lagrangian model is taken up by the grid-to-grid interpolations required
at each time step as the data are transferred between the Lagrangian and
standard Eulerian grid. Clearly, it is therefore desirable in the case of a
semi-Lagrangian model to keep the number of independent trajectories to a
minimum, which suggests that every attempt should be made to keep the
dynamical variables on a single nonstaggered grid. It is well known that,
using conventional numerical differencing procedures, a nonstaggered spatial
grid has a tendency to engender a loss of formal accuracy, especially in the
geostrophic adjustment process, and is prone also to grid-splitting during any
extended integration (Mesinger, 1973). In Purser and Leslie (1988) we showed
how such problems with the nonstaggered grid could be very effectively
remedied through the use of high-order spatial differencing in conjunction
with the periodic application of a low-pass spatial numerical filter. In this
way, we were able to achieve very satisfactory results in a limited area
barotropic model. Encouraged by this success, we extended the principle of
adopting high-order numerics also to the vertical dimension in the multi-level
version of this model (Leslie and Purser, 1991), again with measurable and
significant improvements in forecasts compared to conventional finite
difference Eulerian methods.

In order to gain the full advantages provided by high-order spatial
numerics, it 1is necessary to apply the same philosophy also to the
semi-Lagrangian interpolations. This presents no great problem in one
dimension, where the standard recipe for producing a Lagrange interpolating
polynomial can be easily applied at any desired degree. However, it is

apparent that, when applied in two or three dimensions, the computational work
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involved in evaluating the cartesian products of such high-degree polynomials
increases with the square or cube of the degree chosen. For high-order
numerics, this burden can become a disproportionate amount of the total
computational load. We were therefore led to consider alternative strategies
for the interpolation between grids that would enable the retention of
high-order accuracy at a more reasonable cost.

The solution to this problem was found in a dimensional splitting of the
interpolation operator into a sequence (or "cascade") of separate
one-dimensional 1interpolations 1involving a succession of grids, the
intermediate grid, or grids, being composed of both Lagrangian and Eulerian
coordinates (Purser and Leslie, 1991). This key innovation, in turn, has
provided new opportunities for enhancing the semi-Lagrangian technique, as
this report will indicate. On the one hand, the cascade interpolation
procedure works with equal facility in either direction between the Lagrangian
(distorted) and Eulerian (regular) grids, so that it now becomes feasible, and
indeed desirable, to adopt a semi-Lagrangian scheme based on forward
trajectories. This in turn enables the principle of high-order accuracy to be
further extended into the time-domain, as we shall discuss in some detail
below. On the other hand, the cascade method, by separating out the
individual dimensions of the problem, allows the incorporation of exact
conservation properties (Ran¥ié, 1995; Leslie and Purser, 1995), at least of
mass and other "linear" quantities, directly into the interpolation procedure
with little extra cost or inconvenience. Furthermore, this approach enables
the surface pressure and the vertical motion in a hydrostatic model to be both
handled as diagnostics of the horozontal motion. This feature is more in
keeping with the custom adopted in conventional Eulerian models and leads to a
significant simplification in the treatment of the vertical aspects of the
trajectory definitions. Thus, it is possible now to refute the common claim
that practical semi-Lagrangian methods are "unable to conserve anything". We
shall provide a description below of a procedure that allows conservation of
mass and tracers to be achieved in a natural way in an interpolation procedure
of arbitrary order of accuracy.

The introduction of high-order "Adams-Bashforth" (AB) time integration
has been shown to produce modest but consistent improvements in forecast model
accuracy (Purser and Leslie, 1994), but is achieved at the cost of additional

storage requirements. As a first step towards mitigating this storage cost,
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the thermal and moisture equations were expressed in terms of
quasi-conservative variables whose coupling to the oscillatory gravity modes
of the model 1is, in the Lagrangian frame, indirect. With this partial
separation of the moisture and thermal variables from the oscillatory
dynamics, one can then use the N-cycle integration method of Lorenz (1971) to
retain the high-order temporal accuracy while reducing the storage burden
associated with these variables to the theoretical minimum (two fields per
variable). In order to effect further storage savings, we observe that, since
with the mass-conserving form of continuity, the horizontal velocities
explicitly appear only in the horizontal momentum and kinematic equations,
these velocities can be eliminated as prognostic variables (with a resulting
significant saving in storage) by condensing these four equations into a
coupled pair involving a second-derivative in time of the trajectory
displacements. As shown in Purser and Leslie (1996), such coupled equations
can be treated to a high-order of accuracy in time using "Generalized
Adams-Bashforth" (GAB) methods possessing exceptionally good characteristics
of formal truncation and numerical stability. We end this report with a
discussion of a family of "“Generalized Runge-Kutta" (GRK) methods, inspired
largely by the Lorenz N-cycle methods, by which further economies of storage
might be obtained in a semi-Lagrangian framework while retaining in part the

property of high-order temporal accuracy.

2. CASCADE INTERPOLATION AND CONSERVATION OF MASS

The motivating principle underlying the "cascade" method for grid-to-grid
interpolation is most clearly illustrated by comparing the effort needed to
perform fourth-order (cubic) interpolation by the conventional construction of
the cartesian product of x- and y-interpolators on the one hand with the
effort associated with the corresponding cascade method on the other hand. As
we see in figure la, the conventional approach requires interpolations to each
of the four intermediate targets marked "X" before these intermediate values,
in the role of source points for the final interpolation, enable the final
target value at the location marked "0" to be computed. The computational
effort involved is thus roughly proportional to 4%+ 4 in this example, but
N+ N for generic Nth-order interpolation in the plane, and a daunting
N3+ N2+ N when extending this conventional method to three dimensions. It was

this unreasonably explosive growth in the computational cost with formal order

232



Purser, R.J., et al.: Accuracy and conservation...

of accuracy of interpolation that provided the original stimulus to the search

for a better method - the cascade method (Purser and Leslie, 1991).
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Fig.1 (a) Bi-cubic interpolation to a single target (0) by

conventional cartesian-product method.
{(b) Cascade interpolation to a Lagrangian grid of points

(0) via an intermediate hybrid grid (X).

In Figure 1b are shown the corresponding steps of cubic interpolation but
now conducted according to the cascade strategy of splitting the dimensions of
the problem into separate steps. In the first step one interpolates, only in
one of the dimensions, to target points, again marked "X", that collectively
form a hybrid grid - in the case illustrated, a grid of distorted (Lagrangian)
X-coordinates and undistorted (Eulerian) y-coordinates. Then the second step,
again involving interpolations only in the other dimension, completes the
process for a total average cost per target proportional to 4 + 4 computations
at fourth-order, or N + N at Nth-order, or 3N at Nth-order 1in three
dimensions.

Symbolically, it is convenient to express the "cascade" of interpolations
between successive (possibly hybrid) grids using (lower case) x,y,c, to denote
the Eulerian grid coordinates and (upper case) X,Y,Z, to denote the
corresponding Lagrangian coordinates. While the cascade of figure 1b then

symbolically follows the route:
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(x,y) — X,y) — X,Y) , (2.1)

it is apparent in practice that a reversal of this sequence, that is, starting
from the Lagrangian grid and terminating at the Eulerian grid, is equally
straightforward and equally inexpensive. For example, in a three-dimensional
model employing forward trajectories, we might consider the sequence

symbolized by:

X,v,Z) — (x,Y,2) — (x,v,2) — (x,y,0) . (2.2)

We emphasize that the interpolation performed by (2.2) is very hard to execute
by the conventional approach without a lot of costly iteration and, mainly for
this reason, the latent advantages of forward-trajectory semi-Lagrangian
pfocedufes have been largely overlooked.

One important advantage of treating the vertical component of
interpolation in the "forward" sense is that it permits surface pressure and
vertical motion to be diagnosed directly from hbrizonfal motion once we modify
the basic cascade to incorporate the conservation of mass. In a Lagrangian
framework, the conservation of mass M can be expressed withouﬁ the appearance
of time derivatives: ' ' '

oM

FETXTVTET = constant , (2.3)

where the constant appropriate to each trajectory is made consistent with the
hydrostatic definition for‘the mass in an infinitesimgl volume,

dM = (P dx dy de)/g . o ‘ (2.4)
The manner in which the cascade may be adapted to incorporate mass continuity

is suggested by the "chain-rule" identity:

oM _ M 8(X,Y,I) _ M &X
3x,Y,T) 8K, Y,E) 3(x,Y,%) ~ 3(X,Y,2)dx|,

) (2.5)
z

and others like it. Taking the sequence (2.2) as our cue, we start with mass
per unit Lagrangian volume, 8M/8(X,Y,Z).
(i) Now integrate with respect to X along Lagrangian grid lines of

constant Y and Z:
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Xl
a aM
Ay, ) f IR (2.6)
thus evaluating at each point X’ along such a 1line the "“cumulative"
distribution consistent with the "density" distribution with which we began.
(ii) From the Lagrangian grid coordinates X’ at which it is convenient to
hold these values, interpolate to the corresponding Eulerian grid coordinates,

1

x’. The cumulative mass recorded at the end of each of the grid lines active
at this stage of the cascade is unchanged if the domain is either bounded or
periodic. Therefore, conservation of the total mass (obtained by further
integrating with respect to Y and X) remains unaffected.

(iii) Use the differencing method exactly inverse to the quadrature of
step (i), except now with respect to the Eulerian coordinate x, to recover the
mass per unit hybrid (x,Y,Z) grid:

M  _ o ( oM
8(x,Y,Z) &[a(y,z))y s (2.7)

For well-conditioned mutually-inverse operations of quadrature and
differencing one 1is obliged to stagger the grid X’ of cumulative values
relative to the standard grid X of density values (and of course, grid x’ is
likewise staggered with respect to grid x). Also, at orders of accuracy
greater than second, the condition of mutually reciprocal quadrature and
differencing operators implies one or both operators become implicit over the
entire line. For a given number of computations, greatest accuracy occurs in
the case of "compact" operators, as discussed in detail in Purser and Leslie
(1994).

The second major stage of the cascade proceeds in a similar manner to
yield the mass density of the (x,y,Z)-grid. To see how we invoke the
hydrostatic assumption in the third and final stage to diagnose the new
surface pressure, simply integrate this density with respect to X along the

now vertical coordinate columns:

1
aM P (%)

oM _ _
Ia(x,y,Z) = =y T & (2.8)
0

Having ascertained the new surface pressure distribution, partial integration

of the coordinate-density through each one of these columns to staggered
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Lagrangian grid surfaces X’ reveals the Eulerian vertical coordinate,

c(x,y,Z’), of the intersection of the column with each such X’:

zl
Ps(x,y) c(x,y,2")

aM ~
J_’—a(x,y,z) dz = S . (2.9)
0

In this way, the vertical elevation ¢ of the quasi-horizontal Lagrangian
surfaces becomes a diagnostic of the procedure, just as the vertical velocity
o becomes a diagnostic of a conventional hydrostatic Eulerian model. These
diagnosed values o are finally used to complete the cascade interpolation of
other dynamic variables back to the standard Eulerian grid. The conservation
of quantities other than mass is obtained by proceeding in the same way,
creating one~-dimensionally cumulative distributions prior to each
interpolation step, then differentiating them in the Eulerian target grid. It
is pertinent to the development of efficient and accurate time integration
methods, described in detail in the following sections, that this
quasi-conservative treatment of the continuity of advected quantities by the
cascade algorithm obviates the need to deal directly with either horizontal or
vertical velocity components for these terms.

Observe that, at every stage of the cascade method, the operations
involved can be made accurate to any order desired. However, special
procedures must be adopted near the poles of a latitude-longitude grid where,
owing to a violation of the necessary condition of "transversality" of the
hybrid grid intersections, "the simplest cascade strategies break down.
Remedial modifications of the conservative cascade in such a grid geometry

will be suggested in a future article.

3. HIGH-ORDER TIME INTEGRATION SCHEMES

The cascade method makes it feasible to use forward trajectories.
Therefore, it is natural to reconsider the methods by which the model
equations are integrated in time. In particular, the forward-trajectory style
of semi-Lagrangian modeling makes it relatively straightforward to adopt some
of fhe standard high-order time-integration methods, suitably modified to
incorporate a semi-implicit control of the high-frequency gravity modes. This
section will briefly characterize two important general classes of numerical

integration techniques and will provide a more detailed discussion of two
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particular methods relevant to our semi-Lagrangian models: the Adams-Bashforth

and the Lorenz (1971) N-cycle schemes.

3.1 One-step and multi-step schemes

For a system of first-order differential equations, such as those used in
atmospheric modeling, the traditional methods for numerically integrating them
are conventionally (for example, Gear, 1971) classified (perhaps misleadingly)
either as "one-step" methods, exemplified by the "Runge-Kutta" (RK) family, or
as "multi-step" methods, whose best-known examples are the leapfrog and
classical Adams-Bashforth (AB) methods. The RK methods are characterized by a
cycle of N relatively simple steps, individually of low-order accuracy, which
build upon each other to culminate in a result at the end of the cycle having
a higher-order. In contrast, the steps of a multi-step method are each of
identical form and each achieves the intended order of accuracy, but at the
price of invoking values at earlier time levels of either the state vector or
the vector of "force" terms of the coupled equations. Thus, unlike the RK
methods, a multi-step method often requires a special starting procedure and
is thereafter encumbered by the continuing existence of latent non-physical
"computational modes" for which additional storage must be provided.
However, one important practical advantage of the multi-step methods in the
context of atmospheric modeling is that they can more easily be adapted to
accommodate the semi-implicit treatment of the meteorologically uninteresting
fastest modes of the model needed to allow the model to run efficiently. This
is an especially important consideration in a semi-lLagrangian models whose

hallmark is a long time step.

3.2 Adams-Bashforth schemes and their semi-implicit modification
The Nth-order AB method (abbreviated ABN) applied to an equation or

system of equations of the form

dx(t) _ F(y, t) (3.1)

dt
constructs an increment at the new time step T according to,

N
X=X+ ) B F st (3.2)
k=1

where
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x(tdt) , (3.3a)

~
n

|
n

F(x°, t6t) . (3.3b)

The N standard coefficients, Bk, are uniquely defined by the condition that
the scheme be accurate to Nth-order in time and are given in Table 1 for N =
2, 3, 4. There are many non-standard, but equivalent, ways of expressing each
AB algorithm (Gear, 1971), but a particularly convenient starting point for

semi~-implicit modification is a two-stage construction,

X' =x  +)DF st (3.4a)

' o= x +XEF st , (3. 4b)
a K=o k

in which D and E are related to standard coefficients B by:
D +E =B , k=1,..,N. (3.5)

An implicit modification can be introduced for the fast modes that
require it in a very natural way by simply replacing F' = F(xT) in (3.4) by
F: = F(x:) selectively for just these modes. For example, an implicit

treatment of these modes:

x,=x  + ] CF.“at, (3.6)

is second-order accurate if,

- [aa+g)  (1-28) B
(CO,Cl’ Cz) - [ 2 ’ 2 ) z) s
(3.7)

C =0, k>2,
k

and is achieved using such a modification of (3.4) and (3.5) when

coefficients Ek satisfy the recurrence,

EO = CO
, (3.8)

E =E + C - B , k>0.
k k-1 k k
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For schemes, ABN, N = 2, 3, 4, the resulting coefficients Dk and Ek are listed
in table 1. The non-negative de-centering parameter B of (3.7) is introduced
as a way to regain the "robustness" (explained below) discovered by Durran

(1991) to be lacking in the context of a centered semi-implicit AB3 method.

METHOD 7 nB1 nB2 n83 'nB4 nD1 nD2 nD3 nEo nE1 nE2 nE3
AB2 2 3 -1 (2-B) B (1+8) (-1-R)
AB3 12 23 =16 5 (17-6B) (-5+6B) (6+6B) (-11-6B8) 5

AB4 24 55 -59 37 -9 (43-12B)(-28+12B8) 9 (12+12B) (-31-12B) 28 -9

Table 1. Standard, and two-stage, coefficients of Adams-Bashforth schemes.

In practice, the substituted force terms, F:, cannot be made exactly
consistent with x: (except by a prohibitive degree of iteration) so one must
revert to a linearization of the relevant part of the system about some
convenient basic state. Let v denote the Jacobian operator normalized by the
time step &8t such that, for any infinitesimal increment of the state-vector,

dy, the corresponding increment of the force-vector, dF, is given by:

drF.é8t = v dx , (3.9)

and let the idealized approximation to v be denoted Vo The implied
approximation Yy is usually based on a linearization, simplified by the
neglect of physics, orography and horizontal gradients of the Coriolis
parameter, about a stably stratified basic state at rest. Since one need only
treat implicitly the very fastest gravity modes, which are found only amongst
the modes of deepest vertical profiles, then any components of Yo except those
acting upon these deepest-modes can also be neglected. This is essentially
the approach pioneered by Burridge (1975) who treated only the two deepest
vertical-modes out of the ten of a ten—level model. The concept of robustness
mentioned above refers to the ideal of retaining numerical stability in the
semi-implicit algorithm even when the actual Jacobian v is slightly different
than the idealization, Vo In practice, it is difficult to comprehensively
analyze the robustness of a semi-implicit algorithm for a system of many
degrees of freedom; instead we model the problem by considering the simplest
case in which there is only one (oscillatory) mode with v reducing simply to

its (imaginary) complex-frequency. We then find that a small positive
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coefficient B helps to ensure robust stability. However, the second-order
algorithm AB2 is formally unconditionally unstable for pure oscillations even
in its explicit form (although it is sometimes used in models possessing other
sources of numerical damping).

Apart from the interpolations, the components of one complete time step

of the semi-implicit algorithm might be summarized symbolically as follows.

X" =2+ )Y DFfst, (3.10a)
k=1
T T Nal o ok
R*=EF'8t + ) EF, "8t (3.10b)
k=1
x.=x +R', (3. 10¢)
SF'st = v (I - Ev ) ' RY, (3.10d)
0 00
sx° = anFTSt , (3. 10e)
xf = x: + 8" , (3.10f)
F' = F' + 8F° . (3.10g)

In (3.10), variables at different time-levels of the same equation are
regarded as belonging to the same Lagrangian trajectories. Step (3.10a)
denotes the advancement of the array of existing trajectories and the
prognostic variables associated with them to the new time level t. This is
immediately followed by an interpolation (via the forward-trajectory cascade
method) of the variables at this time level to the standard grid.
Simultaneously, using the same interpolation coefficients, those components
Fz_k of earlier times still needed in subsequent steps, are interpolated also,
but now from the existing array of trajectories to the locations implied by a
new array of trajectories that terminate at the standard grid at time level T.

Step (3.10b) represents the evaluation of a field of "residuals"” (RY) using

the new force terms FT (which, of course, can only be calculated while the

corresponding state variables xr are located on the standard grid). Step
(3.10c) 1is the explicit part of the adjustment. The remaining steps are
required only for the modes treated implicitly. In practice, (3.10d)

translates (in a grid-point model, at least) into the solution of a horizontal

elliptic equation for each vertical mode [details are provided in appendix (a)
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of Purser and Leslie, 1994], which is why it is so desirable to minimize,
subject to stability, the number of these implicitly treated vertical modes in

the manner of Burridge (1975).

3.3 Economizing on storage using the Lorenz N-cycle scheme

A variant of the algorithm (3.10) was tested for the AB3 method by Purser
and Leslie (1994) in the semi-Lagrangian version of the Australian Bureau of
Meteorology Research Centre (BMRC) regional forecast model (Leslie et al.,
1985) and was found to give significantly more accurate forecasts than
existing second-order methods. However, as we noted in Leslie and Purser
(1995), it is desirable to achieve the high-order temporal accuracy using, if
possible, a greater economy of storage. Therefore, we exploited the
Lagrangian framework to express the thermal and moisture equations in
quasi-conservative form, using specific entropy as the thermal variable. With
these two prognostic equations expressed in terms of quasi—conseryative
variables decoupled (in the lLagrangian frame) from the oscillatory effects of
the gravity modes, it becomes possible to employ explicit time integration
methods for them. One class of such methods, is the class of high-order,
“N-cycle" schemes of Lorenz (1971) which enjoy optimal storage economy. Thus,
at least a start can be made in reducing the storage burden by adopting the
Lorenz method. Since a generalization of this method is discussed in section
5, it is appropriate to provide a brief summary of the gulding principles
here.

Each of the N time steps of the cycle of the Lorenz method superficially
resembles the FEuler forward method, but istead of the true force terms, a
vector of what we shall call "effective force" components is substituted,
comprising a weighted average of present and past force vectors. The

averaging is done recursively so that the scheme formally can be summarized:
G' = wF'st + (1 - w)G', (3.11a)

2ot = T s G (3.11b)

To start a fresh cycle, say at time level T = 0, without invoking earlier
force contributions, the initial weight of the cycle must be unity, w0 = 1,
thus reinstating the true Euler method for the first step. However,
nontrivial weights for the subsequent N-1 steps are specially chosen to ensure

a result of Nth-order accuracy at the cycle’s end, T = N. The motivation for
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this strategy is that it allows the fields G and x to be incremented in place,
thereby keeping the storage requirement minimal. Lorenz shows that Nth-order
acuracy for a coupled linear system 1is achieved when who= N/ (N-T),
T=1,...,N-1.

The Lorenz N-cycle method can only be made semi~implicit for fast
oscillatory modes with difficulty, which is why we have not attempted to use
the lorenz method directly for trajectory computations. Instead, we have
sought further storage economies for the high-order integration of
trajectories by first unifying the momentum and kinematic equations, as
described in the next section, thereby eliminating the velocity components as

prognostic variables.

4, GENERALIZED ADAMS-BASHFORTH METHODS
4.1 Explicit methods
Ignoring metric terms, the momentum and kinematic equations of a

semi-Lagrangian model can be written,

du RT P G¢

I - fv = - ﬁz ot Dx = Fx , (4.1a)
§_¥+fu=—§§%—%+DyEFy, (4.1b)
g_f = u, (4.1c)
g_ﬁt’ = v, (4.1d)

where Dx, D, are parameterized viscous terms, Fx, F , are components of the
total forceydensities {but excluding Coriolis forcegg and other symbols are
conventional. We have already noted that, using Jacobian expressions of
continuity, u and v are eliminated from the other governing equations. It is
evideht that, by combining the momentum and kinematic equations into a pair of
coupled equations involving the second derivative in time, the velocity
components are eliminated here also. It is convenient to adopt complex number

notation for trajectory displacements and for corresponding force terms:

X =Ex+ 1y, (4.2a)

F

F + iF (4.2b)
x y
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so that (4.1) are united into a second-order equation governing the complex
displacement:

2
D(y) = d—ﬁ Y (4.3)

dt dt
It is natural to generalize the form of the Adams-Bashforth schemes of
section 3 to accommodate an equation of the form (4.3). For the explicit
"Generalized Adams-Bashforth" (GAB) method of Nth-order (GABN), we find that,
apart from a choice of normalization, there is only one expression of the

construction,

Axt +Ax T+ A" = TBF St (4.4)

N

T-1 T-2 Z T-k
giving Nth-order accuracy. For N=1, the scheme is quasi-second-order to the
extent that exact second-order accuracy is obtained in the case of vanishing
Coriolis parameter. The true GAB2 scheme 1s destabilized by the presence of a
Coriolis effect and therefore is disqualified as a practical method, but
schemes (4.4) with N = 3 and 4 remain stable and appear to have excellent
characteristics. While GABS is formally unconditionally unstable when f = O,

the instability is sufficiently weak to allow this scheme be to viable also in

practice. In the special limiting case, f = 0, these schemes reduce to the
family considered by Stermer (1907). The coefficients for this case are
listed for schemes up to fifth-order in table 2. A procedure for the

evaluation of the coefficients when f # 0 is given in Purser and Leslie

(1996).

METHOD 7 nB1 nB2 nB3 nB4 nB5
GAB1 1 1

GAB3 12 13 -2 1

GAB4 12 14 -5 4 -1

GAB5 240 299 =176 194 -96 19

Table 2. Coefficients of GAB schemes when f = 0 (Stermer methods).
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4.2 Semi-implicit methods

In order for the GAB schemes to be of practical value in the context of a
semi-Lagrangian model we must seek robust semi-implicit modifications. In
Purser and Leslie (1996) we show that linear modes about a state of rest of an

f-plane model are idealized by the equation,

StZD(x) = vzﬂe(x) , (4.5)

where, again, v 1is the characteristic imaginary "frequency" (v2 = 0)
normalized by a time step 6t. A prerequisite for a semi-implicit version of a
GAB method is that it be robustly stable when applied to (4.5). 1In this case
we might also demand that an acceptable method be "robustly stable" in the
sense that, whenever |v| = Ivol, where vo is the approximation for v assumed
in the basic linearization for the semi-implicit treatment, the stability of
the discretization is assured.

By choosing a normalization of the coefficients in (4.4) that makes

A+= 1, and in analogy to (3.4), we split the GAB scheme first into a two-stage

process:
xT+Ax'1+Ax'2=ZDFT"‘3t2, (4.6a)
0 "a -
k=1
X' = '+ ZE FU ¥ st2 . (4.6b)
a k
k=0
The consistency condition,
D - AE - AE =B , (4.7)
k 0 k-1 - k-2 k

must hold for each k. Upon substitution of F: for F' in (4.6), the implicit

discretization,
2L+ At 4 AT = ZCFT st? (4.8)
a 0""a -"a k=0ka

is implied, with,
C =D +E . (4.9)

The robustness of various schemes with Ck =0, k > 3, were investigated

in Purser and Leslie (1996). The best results for f = 0 were obtained using,
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C +C =0, (4.10a)

1 =
3G, ~C) =98, (4.10b)

where 8 is a new de-centering parameter analogous to 8. For the method, GAB1,
robustness is achieved without de-centering, that is, with C0 = C2 = 1/2 and
C1 = C3 = 0, when f = 0. The higher-order GAB schemes are found to require
minor de-centering, & = 0.08, to ensure robustness of their semi-implicit
forms.

The substitution of GABN for the ABN schemes 1in the trajectory
calculations essentially halves the . storage requirements for these
computations. Also, the GAB schemes of a given order are found to be
substantially more accurate and more stable than the AB schemes of
corresponding order. However, apart from GAB1l, which is optimally economical
in storage, the higher-order schemes still require extra storage and possess
computational modes. The next section describes a recent attempt to remedy
this remaining defect by adopting some of the principles embodied in the

Lorenz N-cycle schemes.

5. N-CYCLE GENERALIZED RUNGE-KUTTA SCHEMES
5.1 Explicit methods

Inspired by the method of Lorenz (1971), we consider the possibility of
building an accurate N-cycle scheme for the trajectory equations (4.3) relying
on a modification of the scheme GABl to provide the basic building block
corresponding to Lorenz’s use of the Euler method. Since, with f = 0, the
GAB1 scheme achieves second-order accuracy, we require each step of our
N-cycle scheme to be also at least second-order. However, this additional
stipulation is too restrictive to allow non-trivial N-cycle methods to be
constructed unless we also relax the condition of equality of time steps
within the basic cycle. Consider, then, the discretization of the operator D

of (4.3) for non-uniform time steps:

(61D (x) = AR+ AT e AT (5.1)
where the time levels are t' and &t is the average time step,
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this remaining defect by adopting some of the principles embodied in the

Lorenz N-cycle schemes.

5. N-CYCLE GENERALIZED RUNGE-KUTTA SCHEMES
5.1 Explicit methods

Inspired by ;he method of Lorenz (1971), we consider the possibility of
building an accurate N-cycle scheme for the trajectory equations (4.3) relying
on a modification of the scheme GAB1 to provide the basic building block
corresponding to Lorenz’s use of the Euler method. Since, with f = 0, the
GAB1 scheme achieves second-order accuracy, we require each step of our
N~-cycle scheme to be also at least second-order. However, this additional
stipulation is too restrictive to allow non-trivial N-cycle methods to be
constructed unless we also relax the condition of equality of time steps
within the basic cycle.. Consider, then, the discretization of the operator D
of (4.3) for non-uniform time steps:

(8t1)D" () = A" + A" + ATXT T, (5.1)

where the time levels are t° and 6t is the average time step,
st = (t" - to)/N, of the cycle, introduced here to make the coefficients AZ
non-dimensional. These coefficients are consistently and symmetrically

defined at each t by,

A = - {2 + if &t Aa] , o€ {-, 0, +}, (5.2)

R R L R D V- (5.3a)

-ttt - T, Y- TYet (5.3b)

>
>
=4
"
=

with,

(5.4)

|

—
—+
+

-
+

s
A
~N
V]

Neglecting the Coriolis terms, this discretization becomes second-order
accurate only when regarded as applying at time tv. Since linear

interpolation or extrapolation is also a second-order accurate operation, we

246



Purser, R.J., et al.: Accuracy and conservation...

can ensure each step of the N-cycle method:

G' =W (F'st®) + (1 -wo)G' Y (5.5a)
Afxr+1 + Agxt + Afxt'1 =G' (5.5b)

is consistently second-order accurate in the absence of a Coriolis effect when

W' is defined:

S ot : (5.6)

This is the weight implied by linear interpolation between FTBt2 (at tT) and
' (at TY) to an "interpolant", G' (at T%). As before, in order to break
the chain of recursions (5.5a) at the transition between cycles, say at t = 0,
we require W' o= 1, which in turn implies [from (5.6)}] that the first and last
time step of the basic cycle must be equal. This constraint means that the
only non-trivial N-cycle schemes are those with N =2 3. The N - 2 "inner" time
steps, however, are effectively free parameters completely at our disposal.

It can be shown that an N-cycle scheme of the kind described above, but
constrained to have N - 1 steps of "standard" length, &t’, and only a single
time step (the last-but-one of each cycle, say) of non-standard length, bst’,
has the property of exactly conserving the amplitude of pure oscillatory modes
of (4.5) in the absence of the Coriolis term. This implies that, 1if the
parameter b can be "tuned" to eliminate the coefficient of second-order
phase-error, the resulting scheme automatically becomes at least fourth-order
accurate for the coupled linear equations. By straightforward but laborious
algebra, it emerges that this condition is obtained when b is a root of the

quartic:

(N-1) + (2N-3)b + b> + 2b> + b* = 0 . (5.7)

Although the only real roots are negative for each N, this feature does
not disqualify the schemes in practice. We choose the least negative root in
each case to form the members of our standard family of fourth-order
"Generalized Runge-Kutta" (GRK) N-cycle schemes. The parameters, b, of the
first few of these schemes, which we denote, GRK3, GRK4, etc., are listed in

table 3, together with the coefficients € of fourth-order truncation error
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(defined as in Purser and Leslie, 1996) for these schemes. The corresponding

error coefficient for GAB4 is included in the table for comparison.

METHOD b (IF APPLICABLE) €

GRK3 -.682327803828019 -. 19781

GRK4 -.611292089333354 -. 05925

GRKS5 —-.579906887754780 -.03465

GRK6 -.562286141036588 —-. 02542
1.549842058970427

GRKS* -1.034583655219236 +.01180

2.448640620176322

GAB4 +.07917

Table 3. Time step ratios b and coefficients of fourth-order error

A numerical search of the full parameter spaces of the possible 4-cycle
and 5-cycle schemes reveals no new 4-cycle schemes of interest, but several
new 5-cycle schemes, among which is one that we denote, GRKS*, that apparently
has an even smaller coefficient of fourth-order truncation error, e, than any
of the first few members of the standard family of GRK schemes. The time
steps in the basic cycle of GRK5* are in the ratio,

1: bl: b2: ba: 1 , (5.8)
with the parameters b defined also in table 3. While the superiority of GRK5*
is suggested by the magnitude of the formal coefficient of principal
truncation error, we must remain aware of the limitations of the linearized
analysis. Before we can test the new methods in a full atmospheric model, it
is necessary to find a way of accommodating the semi-implicit treatment of the

fast modes.

5.2 Semi-implicit methods

By analogy with the AB and GAB semi-implicit modifications, we can
construct a semi-implicit GRK algorithm based on splitting the explicit
components into two stages. However, there are two new features: first, the
coefficients D and E are now different at each step within the basic cycle;

second, the algorithm must include the recursive calculation of effective
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force G and allow for the inclusion of the weight w' in the formulation of the
elliptic equation to be solved at each step for the implicit adjustments.
With these features included, the symbolic summary of the semi-implicit GRK

algoritm for one entire time step is:

AT ATy v A = DG, | (5.9a)
x, =2, -EG,, (5.9b)
¢ = WTTET st ¢ (1wTheL (5.9¢)
RT+1 - E'L'+1 G’L'+1 , (59d)
=X e R (5. 9€)
soT! = wrﬂvi [I _ Er+1wr+1V§]_1Rr+1 , (5. 9¢)
6x'c+1 = ETscTHL (5.9g)
AR S (5.9h)
Gt = g™t o+ sgTt (5.91)

As before, 8t is the average time step of the cycle. The field, x:, is
computed in (5.9b) in order to reduce storage requirements. The values of the
products E'w' found to give robust stability in each scheme are 1listed in
table 4, in which it assumed that the negative time step of each of the

standard schemes, GRKN, is the penultimate step, N-1, of its cycle.
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METHOD  E° v E%® BN ENY ENS
GRK3 2.50 0.20  2.50

GRK4 3.30  1.70 0.20 1.70

GRKS 4.09 3.00 2.50 0.20  2.00

GRK6 4.85 4.70 4.70 3.50 0.15  2.50

GRKS* 3.00 0.25 0.25 2.50 2.44

Table 4. Semi-implicit parameters Erwt, for a cycle of each GRK scheme.

5.3 Practical assessment of schemes

As with our previous studies, the GRK schemes were tested using a
semi-Lagrangian version of the BMRC grid-point regional forecast model using
consistently high-order spatial discretization. In this study, the initial
fields are the twice-daily analyses from the Australian Bureau of
Meteorology’s operational archives, for the six month period March 31 to
September 30, 1995. The schemes were run in exactly the same manner as
described in Purser and Leslie (1994), in which verification of forecasts is
carried out only over subdomains in which there are active systems. If the
whole domain is used, the differences are usually very small, as they are
dominated by the almost identical performance of these highly accurate schemes
over areas in which there is 1little activity. The control model in each
example has the same spatial resolution, but a very high temporal resolution
(except for the intermittently invoked physics parameterizations).

The RMS differences of the forecast from the control at 48 hours are
tabulated for these active sub-domains for the low-order operational model,
the GAB1, the GRK models and the fully fourth-order GAB4 scheme. The results
at 850 hPa, 500 hPa and 250 hPa are shown for temperature in table 5. The
order of increasing accuracy is: operational, GAB1, GRK3, GRK4, GRK5, GRK6,
GRKS5* and GABA. These results confirm our hypothesis that GRK schemes provide
a superior forecast over quasi-second-order scheme GAB1 (which has the same
memory requirements), but despite the small coefficient of principal error of
the GAB5* scheme when applied to linear equations, we find in practice that it
is not superior to the fully fourth-order GAB4 scheme. However, the latter

method places far greater demands on memory.
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MODEL 850 hPa 500 hPa 250 hPa
OPERATIONAL 2.307 1.973 2.266
GAB1 1.954 1.665 2.071
GRK3 1.919 1.630 2.048
GRK4 1.8%6 1.611 2.023
GRK5 1.872 1.584 2.015
GRK6 1.868 1.5872 2.002
GRKS* 1.847 1.569 1.974
GAB4 1.820 1.547 1.959

Table 5. RMS errors in 48 hour temperature predictions (K) relative to the
control forecasts. The values are averaged over the period March 1 1995 to

September 1 1995.

6. CONCLUSIONS

We have described an efficient computational method by which the
grid-to-grid interpolations of a semi-Lagrangian model can be performed for
either backward (upstream) or forward (downstream) trajectories. An
adaptation of the basic method enables mass and other variables to be
conserved automatically. By overcoming the obstacle associated with
interpolation from forward trajectories, our "cascade" interpolation scheme
has cleared the way for the investigation of a new class of semi-Lagrangian
algorithms in which both classical and new time integration schemes can be
tested in an attempt to reduce the (small) time truncation errors incurred by
the relatively long time steps used in a semi-Lagrangian model.

We have discussed the application of the classical AB schemes to increase
accuracy and the use of the Lorenz (1971) N-cycle to maintain this accuracy
for the thermal and moisture terms at a reduced cost in memory. Improved
storage economies are realized by replacing the AB methods for the
trajectories by GAB methods in which the velocities become merely diagnostic
variables. The high-order GAB methods are the most accurate schemes we have
examined, but still require extra memory. In an attempt to reap the benefits
of high temporal accuracy at an almost optimal economy of storage, we have
developed a new family of GRK schemes inspired by the Lorenz N-cycle schemes.

In their semi-implicit forms, these methods are shown to produce improvements
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over the second-order schemes of comparable storage requirements, and to
approach the accuracy of the truly fourth-order GAB4 scheme in practice.
Further work will be directed to extending these techniques to the global

domain and to incorporation of nonhydrostatic effects.

ACKNOWLEDGMENTS
Support for this work was provided by the UCAR Visiting Scientist Program
and by ONR Grant N00014-94-1-0556.

REFERENCES
Bates, J R, and A McDonald, 1982: Multiply-upstream, semi-Lagrangian advective
schemes: Analysis and application to a multilevel primitive equations model.

Mon Wea Rev, 110, 1831-1842.

Burridge, D M, 1975: A split-semi-implicit reformulation of the Bushby-Timpson
10-level model. Quart. J. Roy. Meteor. Soc., 101, 777-792.

Durran, D R, 1991: The third-order Adams-Bashforth method: an attractive
alternative to the leapfrog time integration scheme. Mon. Wea. Rev., 119,

702~-720.

Gear, C W, 1971: Numerical Initial Value Problems in Ordinary Differential

Equations. Prentice Hall, 253pp.

Krishnamurti, T N, 1962: Numerical integration of primitive equations by a

quasi-Lagrangian advective scheme. J Appl Meteor, 1, 508-521.

Leslie, L M, G A Mills, L W Logan, D J Gauntlett, G A Kelly, M J Manton, J L
McGregor and J M Sardie, 1985: A high resolution primitive equations model for
operations and research. Aust. Meteor. Mag., 33, 11-35.

Leslie, L M, and R J Purser, 1991: High-order numerics in an unstaggered
three-dimensional time-split semi-Lagrangian forecast model. Mon Wea Rev,

119, 1612-1623.

Leslie, L M, and R J Purser, 1995: Three-dimensional mass-conserving

252



Purser, R.J., et al.: Accuracy and conservation...

semi-Lagrangian scheme employing forward trajectories. Mon Wea Reyv,

123, 2551-2566.

Lorenz, E N, 1971: An N-cycle time-differencing scheme for stepwise numerical

integration. Mon. Wea. Rev., 99, 644-648.

Mesinger, F, 1973: A method for construction of second order accuracy
difference schemes permiiting no false two-grid interval wave in the height

field. Tellus, 25, 444-458.

Purser, R J, and L M Leslie, 1988: A semi-implicit semi-Lagrangian
finite-difference scheme wusing high-order spatial differencing on a

nonstaggered grid. Mon Wea Rev, 116, 2069-2080.

Purser, R J, and L M Leslie, 1991: An efficient interpolation procedure for
high-order three-dimensional semi-Lagrangian models. 'Mon Wea Rev, 119,

2492-2498.

Purser, R J, and L M Leslie, 1994: An efficient semi-Lagrangian scheme using
third-order time integration and forward trajectories. Mon Wea Rev, 122,

745-756.

Purser, R J, and L M Leslie, 1996: Generalized Adams-Bashforth time
integration schemes for a semi-Lagrangian model employing the
second-derivative form of the horizontal momentum equations. Quart J Roy

Meteor Soc (to appear).

Ranéi&, M, 1995: An efficient conservative, monotonic remapping as a

semi-Lagrangian transport algorithm. Mon Wea Rev, 123, 1212-1217.
Robert, A, 1969: The integration of a spectral model of the atmosphere by the
implicit method. Proc of WMO/IUGG Symp on NWP, Tokyo, Japan Meteorological

Agency, VII.19-VII.?24.

Robert, A, 1981: A stable numerical integration scheme for the primitive

meteorological equations. Atmos Ocean, 19, 35-46.

253




Purser, R.J., et al.: Accuracy and conservation...

Robert, A, 1982: A semi-Lagrangian and semi-implicit numerical integration
scheme for the primitive meteorological equations. J Met Soc Japan, 60,

319-325.
Robert, A, T L Yee and H Ritchie, 1985: A semi-Lagrangian and semi-implicit
numerical integration scheme for multi-level atmospheric models. Mon Wea

Rev, 113, 388-394.

Sawyer, J 5, 1963: A semi-Lagrangian method of solving the vorticity advection
equation. Tellus, 15, 336-342.

Staniforth, A, and J Co6té, 1991: Semi-Lagrangian integration schemes for

atmospheric models - a review. Mon Wea Rev, 119, 2206-2223.

Stermer, C, 1921: Méthodes d’ intégration numérique des équations

différentielles ordinaires. C R Congr Intern Math Strasbourg, 243-257.

Wiin-Nielsen, A, 1959: On the application of trajectory methods in numerical

forecasting. Tellus, 11, 180-196.

254





