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SUMMARY

A scheme for the representation of Sub-grid Scale Orography (SSO) in NWP and climate models is presented.
It arose in part from a desire to represent nonlinear low level mountain drag effects not currently
parametrized. An important feature of the scheme is that it deals explicitly with low-level flow which is
"blocked", when the effective height of the sub-grid scale orography is high enough. In this new scheme,
it is assumed that for this "blocked" flow, separation occurs at the mountain flanks resulting in a form drag.
This drag is parametrized on model levels which are intersected by the SSO, and provides a dynamically
based replacement for envelope orography. The upper part of the low level flow goes over the orography
and generates gravity waves. The different parameters of the scheme are adjusted, using an off-line procedure
in which the scheme is used to estimate the mountain drag and the momentum profiles above the Pyrenees
and these estimates are validated with the PYREX data. T106 and T213 forecasts with this new scheme and
with mean orography show that the forecast mountain drag consistently reproduces the drag measured during
PYREX. Isentropic flow diagnostics further show that the new scheme has a realistic impact on the flow
dynamics, reinforcing the low-level wake observed in mesoscale analyses of the flow. With this new scheme
and a mean orography, the ECMWF model outperforms a version of the model which has an envelope
orography and the old gravity wave drag scheme in terms of forecast skill, while no longer suffering any

disadvantages of envelope orography. The proposed low-level drag parametrization should also be relevant
at much higher model horizontal resolutions than T213.



1. INTRODUCTION

In many of the studies concerning the representation of orography in Numerical Weather Prediction (NWP)
and General Circulation (GCM) models, attention has been focused either on the parametrization of sub-grid
scale mountain waves or on the optimal representation of the resolved mountain ranges. The first approach
has led to the introduction of the gravity wave drag schemes (Boer et al, 1984; Palmer et al, 1986; Miller
et al, 1989) and the second to the use of an envelope orography, for example, which improves the model
representation of the large scale planetary waves (Wallace et al, 1983). These studies dealt essentially with
the impact of the sub-grid scale orography and of the resolved scale orography on the global dynamics of
the atmosphere. Recent studies of the local behaviour of the ECMWF model near the Pyrenees (Lott, 1995)
have shown that the model underestimates the mountain drag, and generates mountain waves, with a
horizontal scale close to the model truncation and which are often not observed. Furthermore, the way these
waves are dissipated and affect the flow is unclear and unrealistic. These results are surprising since envelope
orography increases the height and volume of the orography, and increases the drag on the atmosphere
(Tibaldi, 1986). The envelope orography, however, is detrimental to the data assimilation Pprocess since more
low level data, located below the model ground, are rejected using an envelope orography. Envelope
orography also tends to give excessive precipitation, especially from convection generated by the elevated
heating of the enhanced orography. It may therefore be desirable to replace the envelope orography by a
mean orography without further changes but such a reduction of the mountain height will reduce the model
mountain pressure drag with detrimental effect on the forecasts and model climate. The fact that the present
gravity wave drag scheme inadequately represents low level drag, and the fact that the total mountain drag
is already too small in the current model with envelope orography indicate that a major revision of the
representation of Sub-grid Scale Orography (SSO) is desirable, and necessary to successfully represent the
overall impact of orography on the global dynamics. Clark and Miller (1991) have shown, using a nested
high resolution model, that there is a large underestimation of the total drag at horizontal resolutions coarser

than about 10 km, which cannot adequately be made up by the use of an envelope orography.

Recent work by Baines and Palmer (1990) presents the principles of a sub-grid scale oro graphic drag scheme
in which particular emphasis is placed on the representation of three-dimensional wave surface stress. These
authors also suggested that further drag should be provided at model levels which intersect the sub-grid scale
orography. The following sections propose a theoretical formulation for such a drag on model levels and this
forms a major component of the new sub-grid scale orographic drag scheme. The general principles are
presented in section 2, interpreting results from theoretical studies of flow near mesoscale orography in the
context of numerical weather prediction models. Section 3 describes the parametrization scheme in detail.
In section 4, using an off-line procedure, the new scheme is used to predict the drag and the momentum flux
profiles, observed during the PYREX experiment. Section 5 of the paper presents an on-line validation of
the scheme. The scheme is tested with the ECMWF model (at T106 and T213 resolutions), using forecast
experiments covering the Periods of Intense Observation of the PYREX campaign. At both resolutions, it
appears that the model with the new scheme is consistently able to reproduce the measured pressure drag.
Isentropic diagnostics of the flow dynamics are used to study the impact of the scheme on the low level flow

dynamics. Section 6 summarizes some experimental forecast results comparing performances of the model



with mean orography with and without the new scheme, and with a version of the model with envelope
orography and the old gravity wave drag scheme that has been used operationally at ECMWE.

2. GENERAL PRINCIPLES OF THE NEW SCHEME

The new scheme uses ideas presented by Baines and Palmer (1990) combined with ideas based on bluff body
dynamics. It assumes that the mesoscale flow dynamics can be described by two conceptual models, the
relevance of which depends on the non-dimensional height of the mountain,
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where H is the maximum height of the obstacle, U and N are the wind speed and the Brunt-Viasala
frequency of the incident flow respectively.

At small H N all the flow goes over the inountain and gravity waves are forced by the vertical motion of the
fluid. Assuming that the mountain has the shape of a single elliptic mountain with height variation
determined by the parameter b in the along ridge direction and by the parameter @ in the cross ridge
direction such that y = a/b < 1, then the geometry of the mountain can be written as:

H
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In the simple case when the incident flow is perpendicular to the ridge the gravity wave surface stress has
the magnitude, :

T, = po b G B(y) NUH? : 3)
assuming that the Boussinesq and the hydrostatic approximations are valid. In Eq (3), G is a function of the
mountain sharpness (Phillips, 1984), and G ~ 1.23, for the mountain given by Eq (2). The constant B(y)
is a function of the mountain anisotropy, ¥y, varying from B(0)=1 for a two-dimensional ridge to B(1)=r/4,

for a circular mountain.

At large H,, the vertical motion of the fluid is limited and part of the low level flow goes around the

mountain.  As explained in section 3, the depth of this blocked layer when U and N are independent of

height can be expressed as,

H,-H
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where H,, is a critical non-dimensional mountain height of order unity. The depth Z, can be viewed as the

upstream elevation of the isentropic surface that is raised exactly to the mountain top (Fig 1). In each layer



below Z, the flow streamlines split around the obstacle, and it is assumed that flow separation occurs on the
obstacle’s flanks. Then, the drag exerted by the obstacle on the flow at these levels can be written as,
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Here I(z) is a length scale characterizing the horizontal extension of the obstacle as seen by the flow with

upstream altitude z, and C, is a constant close to 'unity according to the 'theory of jets in ideal fluids

(Kirchoff, 1876; Gurevich, 1965). According to observations, C ; can be nearer two when suction effects
occur in the rear of the obstacle (Lamb, 1932). In the proposed parametrization scheme, this drag is applied
to the flow level by level, and will be referred to as the drag of the "blocked" flow, D,. Unlike the gravity
wave drag scheme, the total stress exerted by the mountain on the "blocked" flow does not need to be known

"a priori". For an elliptic mountain, the length of the obstacle as seen by the flow at a given altitude z is

given by,

I(z) - 2b ZLZ_‘Z o | | (6)

In Eq (6), it assumed the level Z, is raised up to the mountain top, with each layer below Z, raised by a

factor H|Z, (Fig 1). This leads to a reduction of the obstacle length effectively seen by the the flow when
compared to the case for which the flow does not experience vertical motion as it approaches the mountain.

Then, applying Eq (5) to the flnid layers below Z,, the stress due to the blocked flow drag is obtained by
integration from z=0 to z=Z,: |
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However, when the non-dimensional height is close to unity, the presence of a wake is generally associated
with upstream blocking and with a downstream foehn (e.g. Fig 1). This means that the isentropic surfaces
are lifted on the windward side and descend close to the grdund on the leeward side. Assuming that the
lowest isentropic surface passing over the mountain can be viewed as a lower rigid boundary for the flow
passing over the mountain, the distortion of this surface will be seen as a source of gravity waves. Since this

distortion has the same magnitude as the mountain height, it is assumed that the wave stress is given by

Eq (3), whatever the depth of the blocked flow, Z,. Then, when the non-dimensional mountain height is

larger than H,,., the total stress can be written:
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When the non-dimensional mountain height is smaller than H,., the total stress is only the gravity wave

stress. The addition of low level drag enhances the gravity wave stress in Eq (8) substantially: Fig 2 shows

the ratio between the total stress and the wave stress as a function of H,, for two pairs of parameters

(CpHy) compared to the pressure drag measured in two numerical experiments of uniform stratified flow
incident over @) a two-dimensional ridge (Stein, 1992) and (ii) a three-dimensional ridge (Miraﬁda and
James, 1992). In these comparisons, it is assumed that the nonlinear enhancement of the drag observed in
the two-dimensional simulations represents the drag enhancement one should observe for a flow perpendicular
to a very elongated ridge. In the comparison of Eq (8) with the results of Miranda and James (1992) it is

assumed that differences in the mountain shape used by these authors and that given in Eq (2) may be

neglected. Fig 2 shows that two-dimensional drags are well estimated by this conceptual model for C,=2.,

H,.=0.4. Since there is substantial upstream blocking in these two-dimensional simulations when the non-

dimensional height H,, exceeds two (Stein, 1992), the large value of C, simulates this upstream blocking.
Three-dimensional drag values are approached by this conceptual model for C,=1., H,;=0.75. In this case,
the smaller value of C, is probably related to the reduction of the upstream blocking in three-dimensional

simulations. Larger H,. corresponds to a reduction of the nonlinear effects due to the three-dimensional
dispersion of the mountain waves. In the new scheme proposed below, these effects will be partly taken into

account by allowing the value of C, to vary with the aspect ratio of the obstacle, as occurs for separated
flows around immersed bodies (Landweber, 1961) while setting the critical number, H ne=0-3, as a constant

intermediate value. Note also that for large H, Eq (8) overestimates the drag in the 3D case, due to the fact

that the flow dynamics become more and more horizontal and the excitation of gravity waves is reduced
accordingly. This is not taken into account in the new parametrization scheme partly because a large non-
dimensional mountain height often corresponds to slow flows for which the drag given by Eq (8) is then very

sméll in any case.

3. DESCRIPTION OF THE NEW SCHEME.

These ideas have been utilized to represent the effects of SSO in the ECMWF model. Following Baines and
Palmer (1990), the ‘SSO over one gridpoint region (GPR) is repre’sen‘ted by four parameters p, y, o and@
which fepresents the standard deviation; the anisotropy, the slope of the orography and the geographical

orientation of the orography. These four parameters are calculated from the US Navy (10°x10”) dataset (see
Appendix for details).



The scheme uses values of low-level wind velocity and static stability and these are partitioned in two parts.

The first part corresponds to the incident flow which passes over the mountain top, and is evaluated by
averaging the wind, the Brunt-Vaisala frequency and the fluid density between p and 2p above the model
mean orography. Following Wallace et al (1983), 2p is interpreted as the envelope of the sub-grid scale
mountain peaks, above the model orography. The wind, the Brunt-Vaisala frequency and the density of this

part of the low level flow will be labelled as U, N, and p,, respectively. The second part is the "blocked"

flow, and its evaluation is based on a very simple interpretation of the non-dimensional mountain height H,,.

To first order in the mountain amplitude, the obstacle excites a wave, and the sign of the vertical
displacement of a parcel is controlled in the vertical direction by the wave phase. If a fluid parcel ascends
the upstream mountain flank over a height large enough to significantly modify the wave phase, its vertical

displacement can become zero, and it cannot cross the mountain summit. In this case, the blocking height

Z,, is the highest level located below the mountain top for which the phase change between Z, and the
mountain top exceeds a critical value F_,

I
[ g dz>F,. ©)
z, °p
In Eq (9), the wind speed, U,(2), is calculated by resolving the wind, U(z), in the direction of the flow U,.
Then, if the flow veers or backs with height, Eq (9) will be satisfied when the flow becomes perpendicular

to U,. Levels below this "critical" altitude define the low level blocked flow. Eq (9) will also be satisfied

below inversion layers, where the parameter N is very large. These two properties allow the new
parametrization scheme to mimic the vortex shedding observed when pronounced inversions occur (Etling,
1989). The upper limit in Eq (9) was chosen to be 3p, which is above the sub-grid scale mountain tops.

This ensures that the integration of Eq (9) does not lead to an underestimation of Z,, which can occur due

to limited vertical resolution when using an upper limit of 2 (a better representation of the peak height),

and could be relaxed with better vertical resolution.

In the following the drag amplitudes will be estimated, combining formulae valid for elliptic mountains with
real orographic data. Considerable simplifications are implied and the calculations are virtually scale analyses
relating the different amplitudes to the SSO parameters. Hence the calibration and validation of the new

scheme described in Sections 4 and 5 is essential.



3.1 The blocked flow drag
Within a given layer, located below the blocking level Z,, the drag is given by Eq (5). At a given altitude

z, the intersection between the mountain and the layer approximates to an ellipse, of eccentricity

@ p)~ahy 2L, | | (10)
Z+|L : ' :

where, by comparison with Eq (6), it is also assumed that the level z=0 (i.e., the model mean orography)

is at an altitude p above the mountain valleys. Taking into account the flow direction, the length I(z) can

be written approximately as:

Z,- ‘ '
Iz) ~ 2max(b cosy, a siny) 52 1n
p

where y is the angle between the incident flow direction and the normal ridge direction, 0. For one GPR,
and uniformly distributed SSO, if the incident flow is normal to the ridge (¢ =0), it encounters L/2a obstacles
and, if it is parallel to the ridge ({=n/2), it encounters L/2b obstacles where L is the length scale of the
GPR. Summing up these contributions the dependence of Eq (11) in @ and b can be neglected and the

léngth I(z) becomes:

Z.—
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Furthermore the number of consecutive ridges (i.e. located one after the other in the direction of the flow)

depends on the obstacle shape: there are approximately L/2b successive obstacles when the flow is along the

ridge and L/Zd, if it is normal to the ridgé. Taking this into account together with the flow direction gives:

l(z)-——-— ‘ coqu smtl:) ‘ (13)

Relating the parameters @ and b to the SSO parameters: @ ~ p/o, and a/b ~ y, and allowing the drag

coefficient to vary with the aspect ratio of the obstacle as seen by the incident fluid:

2 ‘2
o COSTYHYSIY (14)
ycos?y+sin
the drag per unit area can be written:
Z,-z '
Db(z)-—Camax(Z—— ) 2 || 2= max(cosiysiny) vl (15)
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The drag coefficient is modulated by the aspect ratio of the obstacle to account for the fact that C, is twice
as large for flow normal to an elongated obstacle than for flow round an isotropic obstacle. The drag tends
to zero, when the flow is nearly along a long ridge, because flow separation is not expected to occur in such
configuration. It can be shown that the term max(cosy, ysing) is similar to a later form used for the

directional dependence of the gravity wave stress. For simplicity, this later form is adopted:

Z,-
,,(z)-—Cdmax(Z-—— 00 (B cos?r+C siny) |U|

(16)

where the constants B(y) and C(y) are defined below. The difference between Eq (15) and Eq (16) has been

shown to have a negligible impact on any aspect of the model behaviour.

In practice, Eq 16 is suitably resolved and applied to the component form of the horizontal momentum
equations. To ensure numerical stability this term is evaluated quasi-implicitly level by level such that large

drag values cannot create flow reversal in one timestep.

32 The gravity wave drag

This gravity wave part of the scheme is based on Miller et al (1989) and Baines and Palmer (1990), and
takes into account some three-dimensional effects in the wave stress amplitude and orientation. For clarity
and convenience, it is briefly described here. Assuming that the SSO bhas the shape of one single elliptic

mountain, the mountain wave stress can be written as (Phillips, 1984):

(tp7)=pxUuN H?b G ( Beos™+Csin®yr, , (B-C)siny cosyr,, ) y)]
where B =1 - 0.18y - 0.04y2,C = 0.48y +0.3y? and G is a constant of order 1. Furthermore, whenb
or g are significantly smaller than the length L characteristic of the gridpoint region size, there are typically L%/4ab
ridges inside the GPR. Summing all the associated forces gives the stress per unit area,

(t1T)=PxUyNy 1o G ( Beos?Y,+Csin?y, , (B-C)siny cosi, ) (18)

where H in Eq (17) was replaced by 2p and a by p/o.

It is worth noting that, since the basic parameters p,, U, N, are evaluated for the layer between p and2p

above the mean orography that defines the model’s lower boundary, there will be much less diurnal cycle
in the stress than in previous formulations that used the lowest model levels for this evaluation. The vertical
distribution of the gravity wave stress will determine the levels at which the waves break and slow down the

synoptic flow. Since this part of the scheme is only active above the blocked flow, this stress is now constant

from the bottom model level to the top of the blocked flow, Z,. Above Z,, up to the top of the model, the
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stress is constant until the waves break. This occurs when the total Richardson number falls below a critical
value Ri_, which is of order 1. When the non—dimensiénal mountain height is close to urity, this algorithm
typically predicts wave breaking at relatively low levels. This is not surprising since the linear theory of
mountain gravity waves predicts low level breaking wave at large non-dimensional mountain heights (Miles
and Huppert, 1969). In reality, the depth over which gravity wave breaking occurs is more likely related to
the vertical wavelength of the waves. For this reason, when low level wave bréaking occurs in the scheme,
the corresponding drag is distributed (above the blocked flow), over a layer of thickness AZ, equal to a
quarter of the vertical wavelength of the waves, i.e.:
Z+AZ |
.[ N g~

x
y Uy 2
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Above the height Z, + AZ are waves with amplitude small enough to continue propagating vertically.

4. OFF-LINE CALIBRATION
The new scheme essentially depends on the four parameters, C, G, Ri_ and F. The first two parameters

directly control the amplitude of the blocked flow drag and of the gravity wave drag. The third and the
fourth parameters control the vertical distribution of these drags. The final forms of Eqs 9, 16 and 18 contain
several assumptions and simplification; investigations of the sensitivity of parameter values have therefore
been made before testing the scheme in the model. This is done using an off-line calibration in which the
SSO scheme is just a predictor of the perpendicular component of the mountain pressure drag, and of the

momentum flux vertical profiles which were observed during the PYREX field experiment.

In the foﬁowing, the incident wind (extracted from the ECMWEF re-analysis (Lott, 1995) of the data collected
during the PYREX campaign (Bougeault et al, 1993)) is provided every 6 hours as an input to tﬁe new
parame‘trization.‘ For each flow profile the parametrization scheme is ﬁséd to calculate a mountain drag and
a momentum flux profile whjch. can then be conipared to the corresponding measufementé. This direct
comparison is possible when the size of the GPR is close to the PYREX North-South’ transect length
(=150 km), along which the measurements are done. This length is a little larger (20%) than the latitude grid
scale of the ECMWF model at T106. This direct comparison is further justified by the fact that at T106, the
Pyrenees are virtually unresolved by the model orography, and hence the total mountain drag has to be
parametrized. The GPR chosen covers the are.a [(-1W,1E)x(41.7N,43.3N)], which encloses the Pyrenees.
Over this area, the (10’x 10’) USN dataset provides 110 values of the orography elevation. This data is

displayed in Fig 3 as a function of their longitude. Over this GPR, the SSO parameters have values, y=0.63,
0=0.0021, =75°, p=600 m and k_, (the model orographic height) =930 m. In Fig 3, the valuesh,, h, +2p



and h -p are also indicated. As mentioned earlier, this example illustrates that the envelope of the peaks

correspond well to A _+2p, while the envelope of the valleys is approximated by h,-n. The total Sub-grid

Scale mountain height is then ~1800 m, which is a good approximation of the Pyrenees elevation. It is
smaller than the mountain elevation measured along the PYREX central transect (~2100 m), which is not
surprising since the GPR covers a part of the Pyrenees which is smaller than the central maximum. For this
reason the pressure drag, measured along the central transect, will overestimate the North-South drag of the

entire ridge. To quantify this overestimation, it is assumed that the pressure drag measured along one given
North-South transect located at a given longitude, ¢, has the order of magnitude, NUH?(¢p). Here H stands
for the maximum mountain height at the longitude ¢. This predictor of the measured pressure drag was

found to perform well along the Greenwich meridian ( ¢ =0), according to Bessemoulin et al (1993). In this
case, an estimation of the North-South component of the stress per unit area of the Pyrenees is,

L) —_—
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later referred to as the reduced measured stress. This ratio between the measured drag and the stress to be
parametrized over the GPR can be estimated using the USN dataset, giving the mountain drag per unit area
over the GPR as approximately 75% of the drag measured along the PYREX central transect.

Figure 4 shows the comparison between the drag predicted by the SSO scheme with the reduced measured
drag, the gravity wave drag contribution to the overall parametrized mountain drag is also shown. The

parameters of the scheme are, C,=1, G=0.5, F_=0.5, Ri_=1. This set of parameters was chosen to give a

satisfactorily compromise between the forecast performance of the model at T106 and the Pyrex data. Figure
4 shows that in many cases the new scheme gives a drag which is realistic in sign and in amplitude. The
maxima and the minima of the measured drag are generally well represented by the scheme. Nevertheless,
there are two periods where the scheme is inadequate (Days 27-31 and 54-59). These periods are
characterized by strong westerly winds, when the measured drag is mainly a "lift" force, which is not
parametrized in the new scheme. Figure 4 also shows that the contribution of the blocked flow drag to the
total mountain drag is significant when compared to the gravity wave drag contribution. On many dates
(Days 4-6, 7-9, 14.4-15.5, 22-23, 33-35, 38.5-40.5, 43-44, 45-50) the drag contribution from the low level
blocked flow significantly enhances the predicted mountain drag, bringing it closer to the measured drag.

The same off-line procedure has been applied to the gravity wave drag scheme previously used (until replaced

by this new one), and the results are displayed in Fig 5. It shows that with the constant value, k = 2.5 x 10’

m™” used (which relates the gravity wave stress amplitude to a typical horizontal wavelength of the orographic

10
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disturbance (Palmer et al, 1986), the old scheme gives too small a drag. This would correspond to an
overestimation of the typical horizontal wavelength of fhe disturbance (noted by these authors). Following
Bougeault et al (1993), multiplying k by 4 i.e. k = 1. x 10*m”, leads to far better agreement with the
observations. Nevertheless, even in this configuration, the scheme still shows only a moderate skill. A strong
diurnal cycle is present which is unrealistic. This diurnal cycle is a result of using only the three lowest
model levels to estimate the incident flow characteristics in the old scheme. Very large amplitude drags occur
in the morning when there is large low level stability, and very small amplitude drags in the late afternoon,

when the static stability is near neutral.

Figure 6a shows the horizontal momentum flux vertical profiles generated by the new scheme, by the old
scheme, and from the measurements for 15 October 1990 at 6UTC (Bougeault, private communication). At
low levels, below about 2100 m, the stress profile shows a strong shear which is related to the drag of the
blocked flow. Above this layer up to about 4500 m, the stress profile shows a shear related to low level
breaking gravity waves. It is important to note that this shear extends significantly above the mountain top,
in qualitative agreement with the low level shear stress observed during aeroplane flights between 3900 m
and 5700 m. Such an "elevated" low level shear stress does not occur in the old scheme. The vertical stress

profile in the new scheme was found to be rather sensitive to the value of the critical Richardson number,
Ri_, as it controls the amount of gravity wave activity that is transmitted to higher levels. At small Ri_, e.g.
around a quarter, most of the wave drag is at high altitudes, and little low level "breaking wave" drag occurs.
For Ri =1, as used in Fig 6, significant low level wave breaking occurs, and the stress decreases with height

to a value which fits reasonably with the stress value measured above 6000 m during the aeroplane flights.
More profiles are shown in Fig 6b for 16 November 1990 at 6UTC. Here again the new scheme shows
strong low level drag contributions from the blocked flow drag and breakihg gravity waves. At high levels

both the old and new schemes have too large stresses in these particular examples.

5. VERIFICATION AND DIAGNOSTICS

5.1 On-line verification

Although useful and straightforward to carry out, the preceding calibration does not guarantee that the new
scheme will behave properly near the Pyrenees in forecast configurations. In this section, this behaviour is
examined at boﬁh T106 and T213 resolutions with the ECMWF model. The tests, in which the model
orography is a mean orography, will show that the low-level blocked flow drag more than com;ensates for
the envelope orography. Attention is limited to the PYREX Period of Intense Observations (PIO), which
covers 25% of the two months of the PYREX campaign, during which the wind component, perpendicular
to the mountain range was often large. The procedure followed is close to that presented in Lott (1995)

where the model transect was as close as possible to the PYREX transect. In the ECMWF model, the

11



transect is defined along the Greenwich meridian, making its orientation slightly different from that of the
PYREX transect which was oriented perpendicularly to ihe ridge. Although this difference could be handled
by suitable interpolation of the data in the model, such a correction was found to have a small impact on the
results. These different transects are shown in Fig 7. Since the Pyrenees are quite well represented in the
model at T213, the length of the transect in the model was taken a little larger than the Pyrex transect to try
to capture, as much as possible, a model pressure drag which can be related to the Pyrenees. As Fig 7 shows,
5 gridpoints along the Greenwich meridian are necessary to define the transect at T213. At T106, the
Pyrenees are very difficult to identify, and it is assumed that all the mountain drag has to be parametrized.
At this lower truncation, it can be seen that the PYREX transect is almost entirely located between two
gridpoints of the model. As a consequence, it will be assumed that the Pyrenees drag in the T106 model is
the mean of the Sub—grid scale orographic drag between these two gridpoints, with the mountain drag
interpreted as the sum of the contribution of the boundary layer turbulence scheme and the sub-grid scale
orographic drag. This might seem surprising since the microbarographs were separated by a typical distance
of 10 km along the Pyrex transect. However, this network could not capture pressure drag related to
turbulence with horizontal scales significantly smaller than this. On the other hand, it is clear that the new
scheme and the boundary layer scheme will interact at low levels. Knowledge about turbulence above high
and narrow mountains is poor both from a theoretical viewpoint and from measurements and, with such
uncertainties, it is reasonable that the total mountain drag (i.e., the model pressure drag + the boundary layer
drag + new sub-grid scale orography drag) should be at least as large as the measured pressure drag.

Fig 8 shows the T106 model drag (from forecasts run for 48 hrs with data extracted every 6 hrs) compared
to the "reduced" measured drag. The parametrized stress does well during most of the normal ridge
configurations. Similar comparison with drags predicted by the forecast model with the old gravity wave
drag scheme did not show such skill.

In T213 forecast configurations, the parametrized drags make up the difference between the model pressure
drag and the measured pressure drag. With mean orography the model pressure drag is significantly smaller
than in the operational model with envelope orography. This is simply related to the fact that with a mean
orography, the maximum mountain height of the Pyrenees is significantly smaller than in the operational

model with an envelope orography. In fact, Lott (1995) has shown that the model drag in the model is well

estimated by NVH? where V is the wind component perpendicular to the ridge. Since the explicit pressure

drag is much reduced in the model with mean orography, the new scheme has to make a substantially larger
contribution to the model mountain drag than was the case for the old gravity wave drag when the envelope
orography is used. Fig 9 shows that this is the case during all the PYREX POI’s. While the old gravity
wave drag is very small and does not make up the difference often observed between the model drag and the

measured drag, the new orography representation of the sub-grid scale orography gives a parametrized drag
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that is large, and makes up in a very consistent way the difference between the model pressure drag and the

measured pressure drag.

52 Case study o k

In the new scheme, it is assumed that when the ﬂow component perpendicular to the ndge 1s large the
mountain drag is malnly related to a slowing down of the low level ﬂow and to upward propagating waves.
The amphtude of the wave stress s1gn1ﬁcantly above the mountam top is often small (when compared to the
surface stress) because high mountains force large waves which do not really propagate The large low-level
drag can have a s1gmﬁcant unpact on the flow dynam.lcs at the sub-synoptic scale. The realism of the new
scheme can therefore be evaluated by makmg diagnostics of the low level ﬂow n the model and comparing
it to more accurate simulation of the flow near the Pyrenees One case is exammed using 1sentrop1c
diagnostics similar to those presented in Lott (1995) The impact of the scheme on the flow dynarmcs is
studied by comparing a forecast in which the scheme is active to one in which it is not, with both having
mean orography. Fig 10 presents such flow diagnostics on the surface 6=293 K. At this level, the synoptic
flow is essentially from the north—west(Fig 10a). Over the mountains, it is significantly deflected southward,
and m the lee of the ridge the wind is signiﬁcantly decelerated. Fig 10b shows the elevation of this isentropic
surface, ranging from about 1700 m above the model ground upstream of the mountain and descending to
1100 m south of the mountain. Although srgmﬁcantly distorted, thlS layer is at an altitude which experiences
the low-level drag in the new scheme. The i impression that the ﬂow is decelerated at thls level is reinforced
by the presence of a vorticity dipole which begins over the mountain and extends significantly downstream
(Fig 10c). Nevertheless the presence of such a dipole can be due toa conversion of planetary vorticity into
relative vorticity by changes in the 1sentrop1c layer depth, while conserving potential vorticity. In this case
the occurrence of the vort1c1ty dipole would essentially depend on reversible processes related to the
advectlon by the flow of the potential vorticity. To evaluate if this reversible picture applies here, Fig 10d
shows the Bernoulli function,

2+V2

B=-CT+gz+ “ 2D

which is a conserved quantity on isentropic surfaces (Schdr, 1993) in the absence of body forces and diabatic
heating. The Bernoulli function shows a deficit across the ridge, since the flow essentially crosses the
Bernoulli "contours” as it passes over the ridge. To verify that this deficit is related to the new scheme, Figs
10e and 10f shows the flux of absolute-vorticity (Haynes and McIntyre, 1987), and the contribution to this
flux from the non-conservative body forces and -diabatic heating which are determined by the:physical

parametrization scheme of the model, i.e.

ﬁ(€m+f)+ExF—‘E'xé% e @2)
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where @ and £ 4 are the isentropic wind and the isentropic relative vorticity respectively, f is the planetary

vorticity, F and  represent the body force and the diabatic processes related to the parametrization schemes,

respectively. Comparing Figs 10e and 10f, the non-advective contribution to the absolute vorticity flux is
clearly large over the mountain. Likewise comparing Fig 10e with the Bernoulli function map, the deficit
of the Bernoulli function (which is the stream function of the absolute vorticity flux (Schdr, 1993)) must be
due to the parametrized processes. The fact that the new scheme plays a predominant role in the production
of the wake is further confirmed looking at the non-conservative forcing when the new scheme is switched
off. This is significantly smaller (Fig 11b), and the vorticity dipole is less pronounced (Fig 11a). Lozt (1995)
has shown sumlar isentropic diagnostics of the mesoscale re-analysis of the PYREX data from the Peridot
model (Bougeault and Mercusot, 1992). In these diagnostics, a very similar wake was observed at this

isentropic level, due to flow separation processes occurring on the Pyrenees flanks.

6. TESTING OF THE FORECAST PERFORMANCE

The preceding sections are intended to show that the new scheme is well based dynamically, and that it
corresponds well with PYREX data diagnostics. However, a parametrization scheme in a global numerical
model must perform well under a much wider range of situations. Furthermore, the ECMWF model is
routinely run at several horizontal resolutions ranging from T63 to T213. Consequently, extensive testing
is required in such a model before a new parametrization scheme can be considered suitable to replace a
previous one. Since different horizontal resolutions imply different basic orographies and different associated
sub-grid scale orographic fields, the resolution issues are particularly prominent. In view of the PYREX
testing at T106 and T213, and the fact that the current ECMWF operational system is run at T213, most of
the forecast testing has been done at these higher resolutions. Results from T63 forecasts and longer
simulations will not be discussed here. As has been discussed already, the new scheme is designed to be used

together with a mean orography.

6.1 An ’effective’ orography

Since an envelope orography is substantially higher than the mean one to be used with the new SSO scheme
proposed here, the question arises as to whether there is an "effective’ orography implied when using the new
scheme since it influences the flow well above the mean orographic heights. As presented here, the scheme
only directly affects the momentum and not temperature or moisture variables. As such, the ’effective’
orography for surface fluxes of heat and moisture, for example, is the (resolved) mean one. However, there

is also an effect on these fluxes through the near-surface wind field which will be modified by the new
scheme; this is, however, difficult to quantify. For the momentum there is the obvious impact of Z,, the

blocking height, but since the sub-grid scale orography also has a vertical profile (given by the square root
part of Eq 16), a possible better measure of ’effective’ orography ought to be given by
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i

h eﬁ(x’y) - (x,y) + 8h(x,y,t) where §h(x,y,) = f A % Zdz

the integral being a function of both location and time. This integral can be evaluated analytically giving
. 8h = z,((B*+1)Tan"'(1/B)-P)

where p? = p/Z,. For Z,-p, for example, 8k~ 0.57p.

Fig 12 shows an example of this orographic field computed as a ten-day forecast average. Also shown is
the corresponding mean orography. This ’effective’ orography increment can be large (over a thousand
metres for most major mountain ranges) and thus provides a higher effective’ orography than a one standard

deviation envelope would. -

6.2 Forecasts without reassimilation

One of the ways that the impact of the parametrization scheme can be assessed is using objective skill scores.
Ideally forecasts should be run from analyses generated with an assimilation system using the same model
as the forecast one (see section 6.3), however to obtain a broad annual spread of initial dates, the scheme was
first tested without reassimilation. - Fig 13 shows comparisons of two sets of twelve forecasts (one per
calendar month) run at T106 and T213 as measured by rms height errors. The comparison is between
forecasts run with mean orography only and with mean orography plus the new scheme. In general the
impact of the scheme is positive. This is also true for tropical wind verification (not shown). There is,

however, little impact for the S Hemisphere.

6.3 Forecasts including reassimilation

Four periods of assimilation and forecasts were carried out. For each period the comparison was made with
a forecast system that used envelope orography and the old GWD scheme. The data assimilation system is
sensitive to the orography and since the use of near-surface data and especially radiosonde data depends on
the observing station heights. Consequently more data is used when the assimilating model uses mean
orography. Three T106L.31 experiments for two-week periods in January, April and August, and a two-week
T213L31 experiment for March 1994 were run. The mean results for the three lower-resolution periods are
similar to those of section 6.2, with a positive impact in January (Fig 14a) and a near neutral one in August
(not shown). The T213 (March) results are also slightly positive (Fig 14b). There is a modest positive
impact in the S Hemisphere probably due to the use of mean orography in the data éssimilation.

Prior to operational implementation of this scheme, two three-week T213 assimilation and forecast

experiments were carried out. For one, the period 6 Dec 1994-26 Dec 1994, the forecasts (only) were rerun
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with the orography scheme switched off i.e. with mean orography only. This isolates the impact of the new
scheme on the forecast model only. Fig 15 shows the rms 500 mb height errors averaged over the set of

nineteen forecasts (8/12/94-26/12/94) and the benefits of the new scheme are clear.

7. - CONCLUDING REMARKS

A new parametrization of sub-grid scale orographic drag has been presented. It encompasses recent
developments in the nonlinear theory of stratified flows around obstacles. In this scheme, particular attention
has been paid to the drag in the model layers of the atmosphere below the sub-grid scale mountain peaks.
This low level part of the scheme replaces the envelope enhancement of model orography. The upper part
of the scheme still represents the role of gravity waves. This part has been revised to allow a better
representation of mountain ridge orientation and anisotropy. It also removes some arbitrary assumptions in
the previous scheme. The depth over which the gravity wave drag part of the scheme is felt by the flow at
low levels is now linked to dynamical properties of the mountain waves. The incident wind characteristics
are calculated above the boundary layer (when the mountain is high enough) suppressing the strong diurnal
cycle which was found to occur in the old gravity wave drag scheme. The parameters of the new scheme
have been calibrated using an off line procedure, in which the scheme has been used to predict the mountain
drag measured during PYREX. In this calibration, the new drag scheme outperforms the old gravity wave
drag scheme, and fits well with the surface drag measured during field experiments. It also gives more
realistic momentum flux vertical profiles than those of the old scheme. It was further shown that the new
scheme has a realistic dynamical impact on the model dynamics in the vicinity of mountains, reinforcing the
scheme’s basic premise that mesoscale mountain drag slows down the low-level flow under most atmospheric
situations. Results from forecast experimentation such as skill scores, precipitation amounts and distribution
indicate that overall the combination of mean orography together with the new scheme performed better than
that using envelope orography plus the current GWD scheme. As was noted in section 4, there remains the
problem of representing the lateral force present when there is strong flow parallel to the ridges. This is the
subject of ongoing work. The scheme is beneficial to the forecast skill of the ECMWF model at all forecast
ranges and has been in operational use since 4 April 1995. The theoretical background to this work suggests
that not only models of climate and GCM resolution but also much higher resolution limited area models
should parametrize the drag due to the ’blocked’ flow.
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Fig1  Schematic representation of the low level flow behaviour parametrized in the new-scheme (see text for details).
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©®—@® Miranda & James, 1992
&-— & Stein, 1992
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Fig2 Ratio between the total mountain drag and the linear gravity wave drag as a function of H,,. The continuous

line and the dotted line correspond to the drag ratio predicted by the conceptual model upon which the new
SS0D scheme is based. The dotted line with diamond symbols corresponds to values found in 2D nonlinear
simulations (Stein, 1989). The continuous line with circie symbols correspond to values found in 3D nonlinear

simulations (Miranda and James, 1992).
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THE USN DATA FOR A GRID POINT REGION

2000

HEIGHT

1000 |

1

CENTERED ON THE PYRENEES

7 7 Hm + 2 St Dev

Hm

0
-1.5

| - 0.5 1.5
LONGITUDE

2.5

Fig3 The USN orography dataset (10'x10’) of mountain elevations plotted as a function of longitude for a grid point
region covering the Pyrenees mountain range [(-1W,1E)x{41.7N,43.3N)}.
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Fig4 Offdline calibration: comparison between the pressure drag measured dufihg the PYREX field experiment, and
the drag predicted by the new scheme.
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Fig5 Same as Fig 4 but for the old gravity wave drag scheme. The dashed line (k=0.000025 m™) shows the

operational gravity wave drag scheme. The dotted line (k=0.0001 m™") show the same operational scheme but
for a larger value of the constant k.
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Fig6  Off-line calibration: stress vertical profiles predicted by the new scheme, by the old gravity wave drag scheme
and as measured. (a) 15 October 1990, 6 UTC. (b) 16 November 1990, 6 UTC.
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Fig7  Orography profiles of the transects along which the pressure drags are calculated.
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Fig 8  T106 forecasts, ECMWF model with mean orography and the new sub-grid scale orographic drag scheme.
Parametrized mountain drags during PYREX.
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Fig9 T213 forecasts, ECMWF model with mean orography and the new sub-grid scale orographic drag scheme.
Explicit model pressure drag and parametrized mountain drags during PYREX.
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(a) isentropic relative vorticity, interval= 0.5 10 s™; (b) potential vorticity fluxes due to the parametrized frictional
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Fig 12 a) The T213 orography, shading every 300 m.
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1995).
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APPENDIX 1: SPECIFICATION OF SUBGRIDSCALE OROGRAPHY

For completeness, the following describes how the subgridscale orography fields are computed in Baines and
Palmer (1990). The mean topographic height above mean sea level over the grid point region (GPR) is

denoted by & and the coordinate z denotes elevation above this level. ‘Then the topography relative to this

height (h(x,y)-h) is represented by four parameters, as follows:

i) The net variance, or standard deviation p of h(x,y) in the GPR. This is calculated from the US
Navy data set or equivalent, as described by Wallace et al (1983). 1 gives a measure of the
amplitude and 2 approximates the physical envelope of the peaks (Wallace et al, ;1983).

ii) A parameter- vy which characterises the anisoﬁopy‘olf the topography within the GPR.

iii) An angle , which denotes the angle between the low-level wind direction and that of the principal
axis of the topography.

iv) A parameter ¢ which represents the mean slope within the GPR.

y and ¢ may be defined from the topographic gradient correlation tensor

oh oh

" Ox; ax,.’

where x; - x, x, = y, and the terms may be calculated (from the USN data set) by using all relevant pairs

of adjacent grid points within the GPR. This symmetric tensor may be diagonalised to find the directions
of the principal axes and the degree of anisotropy. If

the principal axis of Hj; is oriented at an angle 0 to the x-axis, where @ is given by

0 = V2 arctan(M/L). (A2)
This gives the direction where the topographic variations, as measured by the mean square gradient, are

largest. The corresponding direction for minimum variation is perpendicular. Changing coordinates tox’, y’
which are oriented along the principal axes (x/=x cos@+y sin@, y’=y cos@-x sin8)), the new values of K, L
and M relative to these axes, denoted K’, L’ and M’, are given by

K' =K L = L*+MY»% M -0,

where K, L and M are given by equation Al. The anisotropy of the orography or "aspect ratio" y, is then
defined by

Al



P AV
ayl ax/ :
_ K/_L/- K_(L2+M2)’/‘A
‘K/+LI K+(L2+M2)"/z

If the low-level wind ‘Vector is directed at an angle ¢ to the x-axis, then the angle y is given by
¥=0-6. |

The slope parameter, o, is defined by

2
02 - "'QE ’
o’

i.e. the mean square gradient along the principal axis.

A2

 (A3)
(A4)

(A5)
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